Modeling the Effects of Fentanyl and Narcan on the Opioid Epidemic in Allegheny County Using Mathematics

Lindsay Moskal
Duquesne University

Lauren Sines
Duquesne University

Rachael Neilan Ph.D.
Duquesne University

Follow this and additional works at: https://dsc.duq.edu/urss

Part of the Disease Modeling Commons, and the Ordinary Differential Equations and Applied Dynamics Commons

This Poster is brought to you for free and open access by Duquesne Scholarship Collection. It has been accepted for inclusion in Undergraduate Research and Scholarship Symposium by an authorized administrator of Duquesne Scholarship Collection.
Abstract

In collaboration with the Allegheny County Department of Human Services (DHS), we developed a comprehensive mathematical model to describe the opioid epidemic in Allegheny County. The model is a system of differential equations describing how the size of each population class—Susceptible, Prescribed, Addicted, and Recovered—is changing over time. Variables describing the presence of fentanyl (a synthetic opioid) and the use of Narcan (medication used to block the effects of opioids) were included in the model. Model parameters were estimated using data provided by the DHS and reflect the opioid addiction and overdose rates in Allegheny County. Model simulations highlight the impact of fentanyl and Narcan on the annual overdose death rate. Additional results show the extent to which an increase in the availability of Narcan can decrease opioid-related fatalities over time.

Introduction

Timeline of the Opioid Epidemic

1990 - Physicians start prescribing opioids at an increased rate to treat pain.
2012 - Annual opioid prescription rate peaks at 81.3 prescriptions per 100 persons.
2015 - Overdose deaths increase substantially due to the use of synthetic opioids, such as fentanyl.
2017 - The opioid epidemic is officially declared a National Emergency.

Opioid Epidemic in Allegheny County

The Role of Narcan

- Narcan is medication used to block the effects of opioids.
- In 2017, PA increased funding to combat the opioid epidemic, allocating $5 million for Narcan distribution.
- In 2018, the number of prescriptions for Narcan doubled and overdose fatalities decreased.

Community Partner

We collaborated with Peter Jhon, a data analyst from the Allegheny County DHS, to develop a comprehensive mathematical model of the opioid epidemic in Allegheny County.

Mathematical Model

Variables

The population is divided into four classes:

- $S(t)$: proportion of the population that is not using opioids or actively recovering from addiction
- $P(t)$: proportion of the population that is using opioids as prescribed
- $A(t)$: proportion of the population that is addicted to opioids
- $R(t)$: proportion of the population that is in treatment for opioid addiction

* At all times t, $S + P + A + R = 1$.

Model

Movement between the classes is illustrated with arrows in the diagram below. Green arrows represent death, which occurs at a natural rate (μ) or an increased rate due to addiction (μ_f, μ_a). The presence of fentanyl (f) increases the death rate of addicts, whereas the availability Narcan (n) decreases the death rate of addicts.

Equations

The model is a system of differential equations describing how the size of each population class changes over time.

$$ \frac{dS}{dt} = -\mu S + \mu_f ST + \mu_a AT $$

$$ \frac{dP}{dt} = -\mu P + \mu_f ST $$

$$ \frac{dA}{dt} = -\mu_a A + \mu_f AT $$

$$ \frac{dR}{dt} = \mu_a A $$

Simulations and Results

Equations (1) – (4) were solved numerically and results were graphed using the statistical software R. The package deSolve was used to set the initial conditions:

$$ S(0) = 0.990504, \quad P(0) = 0.008, \quad A(0) = 0.001136, \quad R(0) = 0.000136 $$

Long-term Impact of Increasing Use of Fentanyl

We simulated the model to predict the cumulative number of opioid overdose deaths in Allegheny County over the next decade (2018–2028) for different values of F and n. Results show that as the percentage of drugs containing fentanyl (F) increases, the impact of increasing the availability of Narcan within the community diminishes.

Conclusions

- Results from model simulations indicate that increasing the availability of Narcan in the community will result in a meaningful reduction in the cumulative number of overdose deaths over a 10-year period.
- However, an increased presence of fentanyl will render Narcan less effective in reducing overdose deaths.
- State and local policymakers, including Governor Wolf, and organizations, such as the Allegheny DHS, can use our model to inform their decisions about the most beneficial way to allocate future funding to combat the opioid epidemic.

Resources

- CDC (2017). State and local policymakers, including Governor Wolf, and organizations, such as the Allegheny DHS, can use our model to inform their decisions about the most beneficial way to allocate future funding to combat the opioid epidemic.

Acknowledgements

Peter Jhon, Allegheny County Department of Human Services

Benedict Kolber, Department of Biological Sciences at Duquesne University

Contact Information

Lindsay Moskal
Lauren Sines

moskal@duq.edu
sines@duq.edu