Long-Term Object Permanence and Sitting in Infants with Motor Delays

Karl Jancart
Amber Delprince
Duquesne University
Melanie Tommer
Duquesne University
Jessica Spirnak
Duquesne University
Claire Boe
Duquesne University

See next page for additional authors

Follow this and additional works at: https://dsc.duq.edu/gsrs

Part of the Developmental Psychology Commons, and the Physical Therapy Commons

This Poster is brought to you for free and open access by Duquesne Scholarship Collection. It has been accepted for inclusion in Graduate Student Research Symposium by an authorized administrator of Duquesne Scholarship Collection.
Presenter Information
Karl Jancart, Amber Delprince, Melanie Tommer, Jessica Spirnak, Claire Boe, and Regina Harbourne

This poster is available at Duquesne Scholarship Collection: https://dsc.duq.edu/gsrs/2021/proceedings/12
Background/Purpose

Object permanence is the ability to understand that objects continue to exist even when they cannot be observed. It is a cognitive construct, grounded in infants’ everyday perceptual-motor experience, such as sitting and object interaction. The development of sitting may also contribute to building cognition through object understanding. Adequate postural control in sitting allows infants to process visual information and use their hands freely to manipulate objects, which facilitates cognitive development. It is not clear how sitting development relates to object permanence in infants with motor delays.

The purposes of this study were to investigate the development of OP skill in infants with varying levels of motor delays and the relationship between their sitting skill development and OP skill over time.

37 infants with different levels of motor delay were assessed for gains in object permanence and functional sitting between baseline and 12 months.

Participants

- Thirty-seven infants (baseline age range = 7mos, 12days – 17mos, 16days) with varying degrees of motor delays (mild, moderate, and significant) were recruited as part of a larger study (START-Play).
- Inclusion criteria:
 1. > 1SD below mean for corrected age on motor domain of the Bayley Scales of Infant and Toddler Development
 2. 7-16 months of corrected age
 3. Ability to sit propping with their arms for at least 3 seconds but unable to get in and out of sitting (sitting emergence)
- Exclusion criteria: blindness, progressive disorder

Procedure

- The Object Permanence Scale (OPS), and Gross Motor Function Measure-88 Sitting Dimension (GMFM-SD) measured at baseline, 1.5mo, 3mo, 6mo, and 12mo.
- An adequate postural control in sitting allows infants to process visual information and use their hands freely to manipulate objects, which facilitates cognitive development.

Object Permanence Scale (OPS)

- Consists of 7 tasks extracted from developmental studies on object permanence.
- Developed to measure OP from minimal to advanced skills, scaled from 0-20.
- During the test, infants sit on the floor or in a supportive chair depending on their ability to maintain a sitting position.
- OP videos were coded using Datayu coding software, which enabled a frame-by-frame analysis of partial scores (e.g., joint attention and reaching).

Analysis

- Kruskal-Wallis test with Bonferroni correction and Dunn’s post hoc test
- Predictors = GMFM-SD change
- Outcome = OPS scores
- Spearman Rho correlation of OPS and GMFM-SD change scores between baseline and 6mo and baseline and 12mo
- Multiple raters scored OPS videos, with 20% of all videos re-scored for inter-rater reliability, which ranged from 81.90% to 95.14% agreement.

Methods

Inclusion criteria:

- Thirty infants recruited (mild, moderate, and significant) were recruited as part of a larger study (START-Play).
- Thirty-seven infants (baseline age range = 7mos, 12dys – 17mos, 16dys) with varying degrees of motor delays (mild, moderate, and significant) were recruited as part of a larger study (START-Play).
- Inclusion criteria:
 1. > 1SD below mean for corrected age on motor domain of the Bayley Scales of Infant and Toddler Development
 2. 7-16 months of corrected age
 3. Ability to sit propping with their arms for at least 3 seconds but unable to get in and out of sitting (sitting emergence)
- Exclusion criteria: blindness, progressive disorder

Procedure

- The Object Permanence Scale (OPS), and Gross Motor Function Measure-88 Sitting Dimension (GMFM-SD) measured at baseline, 1.5mo, 3mo, 6mo, and 12mo.
- Thirty infants (baseline age range = 7mos, 12dys – 17mos, 16dys) with varying degrees of motor delays (mild, moderate, and significant) were recruited as part of a larger study (START-Play).
- Inclusion criteria:
 1. > 1SD below mean for corrected age on motor domain of the Bayley Scales of Infant and Toddler Development
 2. 7-16 months of corrected age
 3. Ability to sit propping with their arms for at least 3 seconds but unable to get in and out of sitting (sitting emergence)
- Exclusion criteria: blindness, progressive disorder

Object Permanence Scale (OPS)

- Consists of 7 tasks extracted from developmental studies on object permanence.
- Developed to measure OP from minimal to advanced skills, scaled from 0-20.
- During the test, infants sit on the floor or in a supportive chair depending on their ability to maintain a sitting position.
- OP videos were coded using Datayu coding software, which enabled a frame-by-frame analysis of partial scores (e.g., joint attention and reaching).

Analysis

- Kruskal-Wallis test with Bonferroni correction and Dunn’s post hoc test
- Predictors = GMFM-SD change
- Outcome = OPS scores
- Spearman Rho correlation of OPS and GMFM-SD change scores between baseline and 6mo and baseline and 12mo
- Multiple raters scored OPS videos, with 20% of all videos re-scored for inter-rater reliability, which ranged from 81.90% to 95.14% agreement.

Results

- Significant differences were found between the mild, moderate, and significant groups’ OP scores at all 5 assessments (p < .001).
- Dunn’s post hoc test showed significant differences between the mild and significant (adj. p range = < .001 - .008) and the moderate and significant (adj. p range = < .001 - .018) groups for OP scores at each visit.
- No significant difference was found between the mild and moderate (adj. p range = .407 – 1) groups.
- Spearman’s rho statistic showed significant positive correlations between OP and GMFM-SD scores with r ranging from .503 to .762 (p < .001) for all 5 assessments.
- Correlations of change scores between baseline and 6-months, and between baseline and 12-months, revealed weak positive correlations for both 6- (r = .323, p = .051) and 12-months (r = .327, p = .048) assessments.

Clinical Relevance

Therapists should understand that infants may build cognitive constructs during the emergence of sitting function. Cognitive tasks should be a focus while building functional motor abilities. Children with significant motor delays should receive intervention services as early as possible.

Conclusions

- Advancement of object permanence may be related to sitting development, in addition to advances previously noted in self-mobility studies.
- Infants with mild or moderate motor delays scored significantly higher in OP skill than infants with significant motor delays. Even though object permanence and sitting ability were significantly correlated at each assessment, the weakly correlated change scores from baseline to 6- and 12-months suggests a non-linear progression of these skills.
- Long-term follow-up could reveal a critical link between motor delays, OP development, and resulting cognitive development.
- As infants discover new motor skills, other skills, including cognitive skills, may not receive the resources needed for the expected performance. Therefore, measured cognitive skills may appear to decrease, which could be due to a cognition-action tradeoff.

References