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ABSTRACT 

Single-nucleotide polymorphisms (SNPs) are variations in the genome where one base pair can 

differ between individuals.1 SNPs occur throughout the genome and can correlate to a disease-state if they 

occur in a functional region of DNA.1 According to the central dogma of molecular biology, any variation 

in the DNA sequence will have a direct effect on the RNA sequence and will potentially alter the identity 

or conformation of a protein product. A single RNA molecule, due to intramolecular base pairing, can 

acquire a plethora of 3-D conformations that are described by its structural ensemble. One SNP, 

rs12477830, which was previously shown to harbor signatures of positive selection by Sugden et. al,3 was 

passed through multiple RNA folding algorithms. The results of SNPfold 2 demonstrate that the SNP 

significantly alters the structural ensemble, and the significance of this change offers a potential 

explanation of SWIF(r)’s result.3 Furthermore, the RNAfold Webserver 4-6 reveals that the mutant RNA 

molecule is more stable than the wild-type with a more negative free energy and a higher frequency. 

These loci of variation should be studied in order to understand the potentially induced conformational 

changes that could significantly alter the functional capacity of an RNA molecule. Future work aims to 

assess conformational changes elicited by SNPs previously shown to harbor signatures of positive 
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selection using ancestry-specific reference genomes to better understand motivations behind a locus 

experiencing positive selective pressure. 

INTRODUCTION 

The Central Dogma of Molecular Biology describes the hierarchy that the identity of a protein 

product is dictated by the sequence of the corresponding RNA, which is determined by the DNA. Thus, 

any alteration to the DNA sequence will alter the RNA sequence and has the potential to alter the protein 

product and lead to disease. Unlike DNA, RNA is single-stranded, and can adopt a 3-D conformation as a 

result of intramolecular base pairing.7 This “fold” can exert a direct effect on the synthesis of a protein 

product by sequestering or exposing the binding sites of translational machinery. RNA molecules are 

composed of four nucleotides (Adenine, Guanine, Cytosine, and Uracil) that are able to form specific 

bonds with one another.7 Many types of RNA molecules exist, and each type has a specific function 

ranging from catalysis, carriage of amino acids, regulation of protein synthesis, etc.7  

SNPs are a type of variation in the genome where one base pair can differ between individuals.1,7 

SNPs occur throughout the genome and can correlate to a disease-state if they occur in a functional region 

of DNA.1 Mutations in RNA can lead to altered protein concentrations and abnormal protein products.7  

A multitude of structures exist that a single RNA molecule can acquire; a structural ensemble.8 

Given an RNA sequence, existing algorithms are capable of predicting the “minimum free energy” 

structure and the “centroid” structure, which represents the “mean” structure of the ensemble.4-6 RNA 

folding algorithms exist according to various theories of RNA folding, including 

covariation/compensatory changes,9 energy minimization,10 and maximization of the total number of base 

pairs.11 The locus of variation introduced by an SNP should be studied in order to understand the 

potentially induced conformational changes that could significantly alter the functional capacity of an 

RNA molecule.  

We investigate a collection of SNPs previously shown to harbor signatures of positive selection 

according to the SWIF(r) algorithm presented by Sugden et al.3 Genome-wide scans, such as SWIF(r),3 
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can predict SNPs that are adaptive within populations but interpreting why these SNPs are adaptive is 

difficult.  

METHODS 

 After completing a comprehensive literature review to identify available RNA folding algorithms 

and quantitative metrics capable of describing RNA three-dimensional structure, the SNPs contained 

within 5’UTRs and 3’UTRs that were tagged by SWIF(r) 3 as being potentially under selective pressure 

were isolated. Using the UCSC Genome Browser 12 with the hg19 build of the human genome, the 

genomic coordinates of the region bounding the SNP were calculated with consideration for the sign of 

the DNA strand containing that SNP. Using those coordinates, the RNA sequences corresponding to the 

UTRs were extracted from the UCSC Human Genome Browser.12 Two RNA sequences were saved for 

each UTR, one with the wild-type sequence and another with the mutant sequence defined by the 

substitution of the SNP. 

 The RNA sequences for each UTR were passed into the SNPfold 2 algorithm to obtain a 

preliminary assessment of the potential conformational change induced by the SNP. SNPs that elicited 

significant structural change were marked by a significant p-Value.2 The RNA sequences for any UTRs 

containing an SNP found to significantly alter the conformation of the RNA molecule were passed into 

the RNAfold Webserver,4-6 MutaRNA,13-15 and IPKnots 16-21 in order to examine the specific structural 

differences predicted between the wild-type and the mutant.  
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RESULTS 

SNP of Interest 

The preliminary passage of RNA sequences containing SNPs tagged by SWIF(r) 3 through the 

SNPfold 2 algorithm identified one SNP that significantly altered the conformation of the RNA molecule 

corresponding to the UTR. This research examines one SNP, rs12477830, which is a mutation that 

substitutes an adenine with a guanine at the 42nd position (Table 1).12 This SNP is found within the 5- 

prime UTR of a pseudogene.12 SWIF(r) identified this SNP as harboring signatures of positive selection 

with a probability that the site contains an adaptive mutation of approximately 40%.3 

SNP of Interest 

SNP Identifier 12 rs12477830 

SNP 12 A42G 

SNP Position in Genome 12 Chromosome 2 ; 108938735 

Population 3 CHB + JPT 

Gene 12 SULT1C2P1 

SNP Type 3,12 5’ UTR 

Strand 12 Positive 

Genomic Coordinates of UTR 12 108938694 – 108938839 

Length of UTR 12 145 

SNP Position within UTR 12 42 

SWIF(r) Calibrated P(sweep)* 3 0.40095325 

* Value can be “interpreted directly as the probability that a site contains an adaptive mutation.” 3 

Table 1. Details of SNP rs12477830.3,12 
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SNPfold 2 Algorithm  

The RNA sequence of interest was initially passed into the SNPfold 2 algorithm to assess the 

significance of any conformational changes to the RNA introduced by the SNP. This algorithm generates 

partition function matrices where the color of each point within the plot represents the base-pairing 

probability according to the heatmap legend (Figure 1).2 The summary statistics outputted by the 

algorithm are presented in Table 2.2 

 

 

Correlation Coefficient 2 0.3852074 

Rank 2 2/450 

p-Value 2 0.0044 

  Table 2. Summary statistics from SNPfold algorithm.2 

 

 

 

 

 

  

1 

0 

A 1 

0 

B 

Figure 1. Partition function matrices. Point color represents the base-pairing probability according 
to the heatmap.2 (A) Wild-type RNA molecule.2 (B) Mutant RNA molecule.2 
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RNAfold Webserver 4-6 

The RNA sequence of interest was passed into the RNAfold Webserver.4-6 This algorithm predicts 

minimum free energy (MFE) secondary structures (Figure 2) for RNA sequences.4-6 The color of each 

nucleotide corresponds to its base-pairing probability.4-6  

The RNAfold Webserver also outputs mountain plots for RNA molecules (Figure 3).4-6 According 

to the supporting documentation for the algorithm, “These plots represent a secondary structure in a plot 

of height versus position where height is a function of the number of base pairs enclosing a base. Loops 

are represented by plateaus, hairpin loops are represented by peaks, and helices are represented by 

slopes.” 4-6 The summary statistics outputted by the algorithm are presented in Table 3.4-6 

 

 

 

 

 

 

 

 

 

 

 

A B 

Figure 2. Predicted MFE secondary structures for RNA.4-6 Nucleotide color corresponds to the base-
pairing probability according to the heatmap.4-6 (A) Wild-type RNA molecule.4-6 (B) Mutant RNA 
molecule.4-6 

A B 

Figure 3. Mountain plots of RNA three-dimensional structures.4-6 (A) Wild-type RNA molecule.4-6  
(B) Mutant RNA molecule.4-6 
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 Free Energy of 

Thermodynamic Ensemble 

(kcal/mol) 

Frequency of MFE 

Structure (%) 

Ensemble Diversity 

Wild-type 4-6 -38.68 1.53 26.73 

Mutant 4-6 -42.13 6.00 14.02 

Table 3. Summary statistics from RNAfold Webserver.4-6 

 
MutaRNA 13-15  

The RNA sequence of interest was passed into MutaRNA to display another form of representing 

RNA folding and the changes potentially elicited by a mutation.13-15 This algorithm utilizes circular plots 

(Figure 4) to graphically represent the conformation of an RNA molecule.13-15 In this plot-type, darker 

lines correlate to higher base pairing probabilities.13-15 Additionally, the red rectangle in (B) designates the 

genomic position of the SNP.13-15 

MutaRNA also outputs an arc plot (Figure 5) that describes the change in base-pairing 

probabilities elicited by the SNP mutation with weakened interactions on the top and strengthened 

interactions on the bottom.13-15  

 

 

 

 

 

 

A B 

Figure 4. (A and B) Circular plots of wild-type RNA and mutant RNA molecules, respectively.13-15 
Higher base pairing probabilities are represented by darker lines.13-15 The red rectangle in (B) 
designates the SNP’s position.13-15 
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IPKnots 16-21 

In recognizing that many algorithms prohibit pseudoknots, the RNA sequence was passed into 

IPKnots, which is a folding algorithm that allows for this specific type of structural motif.16-21 The results 

are shown in Figure 6.16-21  
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Figure 5. Arc plot describing the change in base-pairing probabilities elicited by the SNP mutation with 
weakened interactions on the top of the plot and strengthened interactions on the bottom of the plot.13-15 

Figure 6. Predicted RNA secondary structures generated with consideration for pseudoknots.16-21        
(A) Wild-type RNA molecule.16-21 (B) Mutant RNA molecule.16-21 
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ANALYSIS 

Looking at the overall statistics outputted by the RNAfold Webserver, it is apparent that this 

mutation is predicted to make the RNA more stable, as the free energy decreases and the MFE structure 

represents a larger percentage of the ensemble, thus decreasing the ensemble diversity.4-6 Note the 

differences in the predicted conformation; specifically the lengthening of the stem-loop motif inferior to 

the central loop. 

To better understand the results presented in the partition matrices of SNPfold, we can look to the 

algorithm’s summary statistics.2 This algorithm yields a small p-Value,2 which can be interpreted as a 

significant change in the structure was elicited by the mutation. Moreover, the correlation coefficient 

supports this finding, as a lower value corresponds to a greater disruption in folding.2 

Overall, MutaRNA offers a unique means of visualizing and understanding RNA three-

dimensional structure,13-15 and IPKnots reveals that the pseudoknot predicted is relatively constant 

between the WT and mutant.16-21  

CONCLUSION 

The SNP, rs12477830, harbors signatures of positive selection according to SWIF(r) 3 and 

significantly alters the structural ensemble of RNA secondary structures as evidenced by the p-Value < 

0.05 calculated by SNPfold.2 The significance of the structural change elicited by the SNP offers a 

potential explanation of SWIF(r)’s result.2,3 The RNAfold Webserver reveals that the mutant RNA 

molecule is more stable than the wild-type with a more negative free energy and a higher frequency.4-6 

The SNP of interest is located within the sulfotransferase family 1C member 2 pseudogene 1, 

SULT1C2P1, which is responsible for the phenotype of eyebrow thickness 22 and has been implicated in 

the development of a primitive neuroectodermal tumor/medulloblastoma in the central nervous system 

post translocations.23-26 An understanding of the RNA structural change elicited by an SNP can further 

medical knowledge and offer insight into potential treatment approaches.  
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FUTURE WORK 

Investigative efforts are ongoing to explore whether SNPs that were previously found to not 

significantly alter the structural ensemble of an RNA molecule will have different predicted effects when 

considered in the context of the appropriate ancestral reference genome. Given that the “background” 

genome of an individual from Africa, for example, can vary from that of an individual from Europe, the 

influence of an SNP could be much more pronounced when the locus is surrounded by varying 

nucleotides.  
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