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The major weakness of implicit solvation methods used in these calculations is that they cannot 

properly account for strong solute-solvent interactions. The hydrogen atoms of the methyl group 

in methyl hydrogen phosphate stabilize the charge present on the anionic oxygens.  

Table 5.2. Test set results for 2nd pKa of CP 

Acid 
Experimental 

pKa 

DFT 

Calculated 

pKa 

Error 

CCSD(T) 

Scaled 

pKa 

Error 

2-PG  

(2nd deprotonation) 
3.55 1.89 1.66 2.94 0.61 

carbonic acid 3.60 2.43 1.17 3.69 0.09 

acetic acid 4.76 6.16 1.40 7.44 2.68 

formic acid 3.77 4.41 0.64 5.87 2.10 

  MAE = 1.22/1.42*   MAE = 1.23/0.35* 
*Values calculated from 2-PG and carbonic acid only 

 
Results for the test sets selected to represent the second pKa of CP, loss of the second 

proton from the carboxylic acid to give a dianion were mixed. The method of using scaled M06-

2X/jul-cc-pVTZ free energy corrections with CCSD(T)/jul-cc-pVTZ single point calculations for 

gas phase values produced pKa values in very close agreement with experiment for the second 

deprotonation of 2-PG and carbonic acid. The pKa values calculated with this method for the 

second deprotonation of 2-PG and carbonic acid only deviated from experiment by 0.61 and 

0.09, respectively. The values calculated using the M06-2X/jul-cc-pVTZ method for acetic acid 

and formic acid yielded errors consistent with those previously seen for this method at 1.40 and 

0.64 respectively. However, the error for these systems rises dramatically (>2) when higher-level 

calculations (CCSD(T)/jul-cc-pVTZ) are used for the gas phase. Comparing each of these 

systems, there is a noticeable difference in functionality for these two molecules. For example, in 

carbonic acid the 𝐻𝑃𝑂3
− group of CP is replaced by⁡𝐻, but in acetic acid and formic acid, 𝐻𝑃𝑂4

− 
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is replaced with 𝐶𝐻3 and 𝐻, respectively. The elimination of the bridging oxygen appears to 

have a large impact on calculation of pKa and indicates that these are inappropriate references for 

this system. While the errors for these systems are in the typical range for other test molecules 

when only the M06-2X/jul-cc-pVTZ method is used, it is likely just a convenient cancellation of 

errors that leads to this value and the fact that they no longer follow the trend seen in the other 

test sets when CCSD(T)/jul-cc-pVTZ computations are included indicates that they are not 

appropriate references for this system. 

The results for the last test set, which represents the loss of a second proton from 

dianionic CP to produce a trianion are given in Table 5.3. As expected, the use of implicit 

solvation is not sufficient to represent the strong solute solvent interactions that occur in the 

highly charged anions produced for this last pKa value.  

Table 5.3. Test set results for 3rd pKa of CP. 

Acid 
Experimental 

pKa 

DFT Calculated 

pKa 
Error 

CCSD(T) 

Scaled 

pKa 

Error 

2-PG 

(3rd deprotonation) 
7.10 14.44 7.34 14.29 7.19 

methyl hydrogen 

phosphate 
6.31 11.51 5.20 11.88 5.57 

dihydrogen phosphate 7.21 12.35 5.14 12.40 5.19 

                       MAE = 5.89                 MAE = 5.98 
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5.4.1 Cluster continuum method 

To improve pKa predictions for the last value of CP, explicit waters must be introduced to 

account for strong solute-solvent interactions not properly described by the SMD implicit 

solvation method.254 It is of interest to calculate accurate pKa values at the lowest possible 

computational cost. Therefore, the accuracy of the calculated pKa values as a function of 

increasing the number of explicit water molecules was systematically investigated for the 

following acid dissociation reaction: 

𝐻2𝑃𝑂4
− ⇌ 𝐻𝑃𝑂4

2− + 𝐻+⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑝𝐾𝑎 = 7.21     (5.5) 

For explicit solvation, the cluster continuum model is used and the acid dissociation reaction 

given is altered from Equation 5.1 to incorporate explicit water molecules as follows: 

𝐴𝐻(𝑎𝑞) + 𝑛𝐻2𝑂(𝑎𝑞) ⇌ (𝐻2𝑂)𝑛 ∙ 𝐴(𝑎𝑞)
− + 𝐻(𝑎𝑞)

+    (5.6) 

which gives rise to the thermodynamic cycle shown in Scheme 5.6 

 

Scheme 5.6. Thermodynamic cycle for the cluster continuum model. 

From the thermodynamic cycle given in Scheme 5.6.  pKa is now calculated according to 

Equation 5.7. 
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𝑝𝐾𝑎 =
𝐺𝑔𝑎𝑠
° (𝐴−) − 𝐺𝑔𝑎𝑠

° (𝐴𝐻) + Δ𝐺𝐵𝐸
° [(𝐻2𝑂)𝑛 ∙ 𝐴

−] + ∆𝐺𝑠𝑜𝑙
° [(𝐻2𝑂)𝑛 ∙ 𝐴

−] − ∆𝐺𝑠𝑜𝑙
° (𝐴𝐻) − 𝑛∆𝐺𝑠𝑜𝑙

° (𝐻2𝑂) − 270.3⁡

1.36449⁡
 

(5.7) 

where Δ𝐺𝐵𝐸
° [(𝐻2𝑂)𝑛 ∙ 𝐴

−] = 𝐺𝑔𝑎𝑠
° [(𝐻2𝑂)𝑛 ∙ 𝐴

−] − 𝐺𝑔𝑎𝑠
° (𝐻2𝑂)𝑛 − 𝐺𝑔𝑎𝑠

° (𝐴−).  This term represents the 

specific interaction energy associated with the binding of the cluster (water) molecules to the 

anion. 

  

Figure 5.5. Plots of absolute error (left) and computed pKa values (right) as a function of increasing explicit water 

molecules for the dissociation of dihydrogen phosphate to hydrogen phosphate. The curve for M06-2X indicates that 

all values were calculated with the M06-2X level of theory. The curve for MP2 represents the effect of calculation 

of gas phase values with MP2/jul-cc-pVQZ. The curve marked CCSD(T) gives the effect utilizing CCSD(T)/jul-cc-

pVTZ for gas phase calculations. The curve marked scaled indicates that single point CCSD(T)/jul-cc-pVTZ single 

point energies were combined with M06-2X/jul-cc-pVTZ free energy corrections scaled by a factor of 0.94. 

 

Figure 5.6 shows the convergence of calculated pKa values to the experimental value of 

7.21 as a function of increasing cluster molecules for the dissociation of dihydrogen phosphate to 

hydrogen phosphate. Along with testing the effects of increasing cluster molecules, different 

variations of the inclusion of higher-level computations for gas phase free energies were tested. 

Specifically, the use of MP2/jul-cc-pVQZ, CCSD(T)/jul-cc-pVTZ and CCSD(T)/jul-cc-pVTZ 

single point energies combined with free energy corrections scaled by 0.94 and calculated at 

M06-2X/jul-cc-pVTZ. It is clear that complete frequency analysis at the CCSD(T)/jul-cc-pVTZ 

level of theory gives results in closest agreement with the experimental value, followed closely 
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by MP2/jul-cc-pVQZ. However, these calculations require a significant amount of additional 

computational time for only a modest increase in accuracy.  

The effect of adding of a single, explicit water is minimal, reducing the error from 

approximately 5 pKa units to only about 4.5 pKa units across all methods. However,  addition of 

a second molecule, allows the formation of a cluster, the interaction between the two molecules 

reduces the energy thereby significantly reducing the error to only ca. 1.5 pKa units.  

  

   

Figure 5.6. Hydrogen phosphate with one, two, three, four, and five waters bound (right to left). 

The addition of three water molecules gives the best results. This can be easily 

rationalized by considering the structure of hydrogen phosphate. Due to resonance there will be 

three anionic oxygen atoms. Therefore three explicit water molecules is the minimum required to 

provide stabilization for each anionic oxygen atom.  

 

  
 

Figure 5.7. Water clusters used to calculate Δ𝐺𝐵𝐸
° [(𝐻2𝑂)𝑛 ∙ 𝐴

−] where n = 2, 3, 4, and 5 (left to right). 
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When four explicit waters are used, the error rises because a cluster of four water molecules is 

known to be less stable, than those formed with 2, 3, or 5.255  

Table 5.4. Calculated pKa values for the deprotonation of dihydrogen phosphate to hydrogen phosphate as a 

function of increasing explicit water molecules. 

Number of 

explicit waters 

Experimental 

pKa 

DFT 

Calculated 

pKa 

Error 

CCSD(T) 

Scaled  

pKa 

Error 

0 

7.21 

12.35 5.14 12.40 5.19 

1 11.89 4.68 11.94 4.73 

2 8.80 1.59 8.85 1.64 

3 7.77 0.56 7.83 0.62 

4 8.75 1.54 8.80 1.59 

5 6.25 0.96 7.94 0.73 

 

The observation that including one explicit water molecule per anionic oxygen is 

adequate for description of strong-solute interactions was followed for the other two molecules 

in this test set, the third deprotonation of 2-PG and methyl phosphate. However for the third 

deprotonation of 2-PG, it was unclear whether four or five water molecules should be included 

since one of the five anionic oxygen atoms present forms an intramolecular hydrogen bond, 

which may reduce its need for additional stabilization from explicit water molecules. The results 

for adding zero, four, and five explicit water molecules are listed in Table 5.5.  

Table 5.5. Calculated pKa values for the 3rd deprotonation of 2-PG for 0, 4, and 5 explicit waters. 

Number of 

explicit 

waters 

Experimental 

pKa 

DFT 

Calculated 

pKa 

Error 

CCSD(T) 

Scaled  

pKa 

Error 

0 

7.10 

14.44 7.34 14.29 7.19 

4 10.02 3.65 9.87 3.60 

5 9.55 3.48 9.26 3.43 
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It is clear that including five cluster molecules gives a slightly more accurate result than four 

with errors of 3.60 and 3.43, respectively. However, the error involved in these calculations is 

still much higher than those seen in hydrogen phosphate. This could be due to a number of 

reasons. First and foremost, 2-PG is a much larger system containing more than double the 

number of heavy atoms relative to hydrogen phosphate. The error could be the result of small 

errors compounding in a larger system.122,141,204 However, it is more likely that the larger error in 

this calculation is an indication that there is a more stable arrangement of 2-PG bound to 4 and 5 

water molecules. Because the molecule is much larger, there are more possible arrangements for 

both 2-PG and 2-PG bound to the explicit water molecules. Ideally, a systematic analysis of 

different possible arrangements and conformations would identify the most stable arrangement 

and reduce the errors seen for this system, but is beyond the scope of this study. 

  
 

Figure 5.8. Geometric comparison of 2-PG (3rd deprotonation) bound to four (left) and five (right) explicit water 

molecules computed at M06-2X/jul-cc-pVTZ. 
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Table 5.6. Test set results for 3rd pKa of CP utilizing the cluster continuum method where 1 cluster molecule is 

added for each anionic oxygen present. 

Acid 
Experimental 

pKa 

DFT Calculated 

pKa 
Error 

CCSD(T) 

Scaled 

pKa 

Error 

2-PG 

(3rd deprotonation) 
7.10 9.55 3.48 9.40 3.43 

methyl hydrogen 

phosphate 
6.31 7.64 1.33 8.01 1.70 

dihydrogen phosphate 

acid 
7.21 7.77 0.56 7.83 0.62 

  MAE = 1.64             MAE = 1.92 
 

The results for the cluster continuum method are summarized in Table 5.6. Although the error 

has been reduced to by more than half what it was when only implicit solvation was used, it is 

noticeably higher for these test sets than any of the others.  In contrast to the other 2 systems, 

computations for dihydrogen phosphate are in very close agreement with experiment with errors 

of only 0.56 and 0.62 pKa units for M06-2X/jul-cc-pVTZ and CCSD(T)/jul-cc-pVTZ single 

point energies with scaled M06-2X/jul-cc-pVTZ free energy corrections, respectively. This is 

logical because dihydrogen phosphate was more thoroughly investigated than the other two 

molecules in this test set. More work may be required to optimize the calculation of pKa for these 

other test sets. An energetic error of 1.36 kcal/mol corresponds to an error of 1 pKa unit therefore 

small energetic errors can quickly contribute to large errors in pKa estimates. As mentioned 

previously regarding 2-PG, these errors are probably due to the non-ideal placement of explicit 

water molecules and could be minimized with a thorough evaluation of the stability of different 

possible arrangements. It should also be noted that for all calculations using only the DFT 

method yields better results. Based on previous results and knowledge of the expected accuracy 
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of each of these methods, this is likely due to a convenient cancellation of errors that occurs 

when the cluster continuum method is used.  

5.4.2 Carboxyphosphate 

Results from test sets used to model each pKa of CP have indicated that using the 

SMD/M06-2X/jul-cc-pVTZ method with CCSD(T)/jul-cc-pVTZ single point energies and scaled 

M06-2X free energy corrections for gas phase quantities consistently produces results within ca. 

1 pKa unit of experimental values. For the third pKa, explicit water molecules must be included 

via the cluster continuum method to achieve similar accuracy. Accordingly, pKa values have 

been calculated for CP using these methods and are listed in Table 5.7. 

Table 5.7. Calculated pKa values for the 1st, 2nd, and 3rd acid dissociation constants of carboxyphosphate. 

pKa 
DFT Calculated 

pKa 

pKa 

range 

CCSD(T) Scaled 

pKa 

pKa 

range 

1st -4.95±1.08 -6.03 to -3.87 -3.43±0.81 -4.24 to -2.62 

2nd 3.29±1.42 1.87 to 4.71 4.04±0.35 3.69 to 4.39 

3rd 7.85±1.64 6.21 to 9.49 8.14±1.92 6.22 to 10.06 
  

Following the observation that one explicit water per anionic oxygen is sufficient to 

account for strong solute-solvent effects, five explicit water molecules were bound to trianionic 

carboxyphosphate for the calculation of the specific interaction energy associated with the 

binding of the cluster (water) molecules to the anion and free energy of solvation.  
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Figure 5.9. Trianionic carboxyphosphate with 5 explicit water molecules bound, geometry optimized at M06-

2X/jul-cc-pVTZ. 

 

5.5 Conclusions 

Prediction of pKa values for test sets representative of CP reveal that the first two values 

can be calculated within 1 pKa unit using only implicit solvation. It is also clear that the M06-

2X/jul-cc-pVTZ method paired with CCSD(T)/jul-cc-pVTZ scaled and corrected energies for 

gas phase computations gives results in good agreement with experiment at modest 

computational cost. For more basic systems with pKa values near 7 that involve highly charged 

anions, a cluster continuum approach must be used. Accurate pKa values have been achieved 

with this method by including one explicit water molecule for each anionic oxygen atom present. 

The predicted pKa values for CP indicate that it most likely be present as a dianion but 

may also be stable as a trianion in aqueous solution. Unfortunately, the calculated value for the 

last pKa of CP has the largest uncertainty with a computed range between ca. 6-10. However, a 

more detailed investigation of the most stable binding modes of explicit water molecules would 

reduce this uncertainty. Additionally, it is of interest to investigate how these values may shift 
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when CP is located in the active site in order to distinguish between different proposed 

mechanisms. 
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Chapter 6 

6 Conclusions and Future Directions 
 

This dissertation has identified and characterized many important structural features of 

carboxyphosphate in vacuum and aqueous solution. The finding that M062X/jul-cc-pVTZ 

consistently produces values in close agreement with CCSD(T) and MP2 computations provides 

the necessary foundation for more complex calculations involving carboxyphosphate and its role 

in the mechanism of ATP-grasp enzymes. The identification of a unique pseudochair 

conformation that features a short, strong CAHB is believed to be an important mechanistic 

feature of the six ATP-grasp enzymes previously discussed. We propose a possible mechanism 

for the reactions catalyzed by biotin carboxylase based on our findings. 

6.1 Proposed Mechanism for Biotin Carboxylase 

 Structural analysis for dianion CP reveals that CP is ca. 20 kcal/mol more stable when the 

phosphate side is protonated rather than the carboxy. However, the formation of CP is most 

likely to occur through reaction of bicarbonate and ATP, which would result in a CP 

intermediate where the carboxy side is protonated. Structural analysis indicates that the proton is 

not stable and will instantaneously transfer if oriented in position to form a CAHB to generate 

the low energy PC structure where the HBD is the phosphate. The shuttling of the proton across 

a CAHB in this manner is referred to as charge-assisted proton shuttling (CAPS).  
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Scheme 6.1. Formation of carboxyphosphate as a dianion followed by deprotonation of biotin to give monoanionaic 

carboxyphosphate the enolate form of biotin. 

This could allow for the deprotonation of biotin by the carboxy group of CP, a previously 

unconsidered avenue for one of the longstanding mechanistic problems of the biotin-dependent 

ATP-grasp enzymes. Although, it has been previously suggested that the phosphate group is the 

catalytic base responsible for deprotonating biotin, bicarbonate is positioned closest to biotin. 

One of the obstacles to identifying a base to deprotonate biotin is the estimated pKa value for 

biotin that has been estimated to be 17.4. However, the interaction of the carbonyl with arginine 

338 reduces this value considerably, making deprotonation by the carboxy group of CP feasible. 

This step would generate the PC7 conformation of CP whose energy could be lowered through 

rotation of the HBD and HBA to give PC4. Further rotation of the phosphate group to reform a 

CAHB leads to either the PC1 or PC2 conformation. 
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Scheme 6.2. Rotation of hydrogen bond donor and acceptor of PC7 to PC4 followed by further rotation to give PC1 

which then becomes PC3 through the CAPS mechanism. 

CAPS can now take place for a second time leading to PC3. The concentration of both protons on 

the phosphate makes it an ideal leaving group and initiates the collapse of 1 into carbonate and 

inorganic phosphate. The N1 of biotin can then attack the carbonate during or after this collapse 

to yield carboxybiotin as shown in Scheme 6.3. 

 

Scheme 6.3. Collapse of carboxyphosphate into carboxybiotin and inorganic phosphate. 

6.2 Future Work 

 The discovery of several stable states of carboxyphosphate has allowed us to propose a 

possible mechanism by which they are connected in order to produce carboxybiotin and 

inorganic phosphate from bicarbonate and ATP. The identification of an appropriate level of 

theory allows future researchers to explore the energetics of the mechanism proposed in this 

work versus that proposed by Chou et al. Energetic comparison of these different possible 
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pathways will yield a better understanding of the how CP is involved in the mechanisms of ATP-

grasp enzymes which is critical in the development of new treatments for many serious human 

diseases.  

 Additionally, we have made a great deal of progress in predicting the charge state of CP. 

However, several issues need to be addressed. First, a more detailed assessment of the ideal 

binding modes for explicit water molecules needs to be developed for the cluster continuum 

method in order to reduce the uncertainty in the prediction of pKa values near 7.  There are many 

well-established methods available to sample different possible configurations that range from 

standard statistical methods to quantum or molecular dynamics.  

The other major goal of pKa prediction for CP that has yet to be addressed is how these 

values will shift from those calculated for aqueous solution in the enzymatic pocket. While our 

estimates indicate that CP is most likely to exist as a dianion in aqueous solution, pKa values 

have been shown to shift by several units, depending on their interaction with key residues in the 

enzymatic pocket.256,257 This is an issue of great interest in the field of biochemistry. Therefore, 

many possible methods have been used to estimate this shift to varying degrees of 

success.87,258,259 While a thorough investigation to assess the accuracy of different possible 

methods should be performed, it seems most logical to explore a method that builds upon the 

calculations used for aqueous solution. 
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Figure 6.1. Representation of the enzymatic environment modeled with explicit representations of the functional 

groups for selected amino acids and the SMD solvation method using a dielectric constant representative of the 

enzyme. 

 Previous work suggests that only the residues that directly interact with a ligand need to 

be represented explicitly in order to estimate accurate pKa values.256,259,260 The rest of the protein 

can therefore be represented as a dielectric constant. This is the same concept that we have 

utilized in the cluster continuum approach so it follows that a modified version of this approach 

can produce accurate pKa shifts for the enzymatic environment. Recently, NMR chemical shift 

perturbations have been used to directly determine the optimal protein dielectric constant, εp, and 

found a range of 2-5 with an optimum of 3.257 This range is consistent with the εp measured from 

protein powder giving confidence that it is an appropriate value to use in further calculations. 

The residues Lys238, Asn290, Arg292, Glu296, and Arg338 of the biotin carboxylase 

component of ACC are all in position to interact with carboxyphosphate and have been identified 

as playing key roles in this mechanism from mutagenic studies.20,26,58,66,102 Thus, a first step in 

estimating the pKa shifts should be to utilize a cluster continuum type method where the 

functional groups of the previously named residues are treated at the quantum level and the bulk 
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protein environment is represented as a dielectric constant of 3. The accuracy of this method can 

then be compared to other possible methods for validation. 
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