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ABSTRACT

ACCOUNTING FOR CORRELATION IN THE ANALYSIS OF RANDOMIZED
CONTROLLED TRIALS WITH MULTIPLE LAYERS OF CLUSTERING

By
Adam Baumgardner

May 2016

Thesis supervised by Dr. Frank D’Amico.
A common goal in medical research is to determine the effect that a treatment has
on subjects over time. Unfortunately, the analysis of data from such clinical trials
often omits several aspects of the study design, leading to incorrect or misleading
conclusions. In this paper, a major objective is to show via case studies that ran-
domized controlled trials with longitudinal designs must account for correlation
and clustering among observations in order to make proper statistical inference.
Further, the effects of outliers in a multi-center, randomized controlled trial with
multiple layers of clustering are examined and strategies for detecting and dealing

with outlying observations and clusters are discussed.
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1 Introduction and Background

A common goal in medical research is to determine the effect that a treatment has on
subjects over time. Repeated measurements taken on the same subjects over time are
often positively correlated, creating a cluster of observations for each subject. Cor-
relation among observations brings about a few analytical challenges that must be
taken into consideration. Unfortunately, statistical analysis of data from such trials
often fails to take into account the clustering, which leads to incorrect inference. In
this paper, a few techniques for properly accounting for this correlation in clusters will
be presented and implemented. Additionally, a few approaches to detecting outlying
observations in clustered data are introduced. Then, the information and techniques
presented will culminate in a case study analysis of a multi-center, randomized con-
trolled trial with a longitudinal design. First, a few basic concepts must be discussed

to provide a foundation for understanding the statistical analysis that follows.

1.1 Clinical Trials and Experimental Design

When testing the efficacy of a new treatment or drug, drawing conclusions based on
anecdotal evidence alone is ill-advised. For example, before the 19th century it was
commonly believed that patients could be cured of illnesses by blood letting. This
typically entailed applying leeches to the bodies of sick patients to suck out the bad
blood. There was no scientific evidence of the efficacy or safety of this approach
because methods for testing hypotheses through systematic data collection and sta-
tistical analysis had not been developed.[17] In this example, not only was there a lack
of evidence that blood letting worked, it was dangerous and likely caused many peo-
ple harm. This illustrates the importance of having appropriately designed research
studies along with correct analysis when determining whether or not a treatment is

safe and effective.



Research in medicine can be characterized as pre-clinical and clinical. Pre-clinical
studies occur before the treatment of interest is given to human subjects. The main
objective of pre-clinical research is typically to identify a safety profile for the treat-
ment and to determine a safe dosage for initial human testing. A clinical trial, on
the other hand, involves experimentation using human subjects and can be classified
into four phases. In a Phase I clinical trial, investigators are primarily interested in
exploring the potential side-effects of the treatment or drug being tested. Once a
tolerable dosage is established and side-effects have been documented, investigators
begin to examine the efficacy of the drug in a Phase II clinical trial. This phase typ-
ically consists of smaller-scale studies designed to determine whether the drug seems
to be effective enough to warrant more costly, larger-scale Phase III clinical trials.
During a Phase III clinical trial the new treatment or drug is compared either to
the current standard of treatment or to a placebo. Finally, after the treatment has
been deemed safe and effective, it either goes to market or becomes the new standard
treatment. However, there is still a possibility of side-effects surfacing that had not
been discovered during prior testing. Phase IV trials are observational studies that

are implemented to monitor these potential issues.[17]

While each of the four phases of clinical trials plays a critical role in medical re-
search, the focus of this paper will be primarily on Phase III trials. Approval of a
new treatment by regulatory agencies typically depends on the results of Phase III
testing. That being said, since Phase III clinical trials help dictate whether a drug
should be made available to the general population, it is crucial that care is taken in

both the design and analysis of such trials. As was stated previously, the objective



of this type of clinical trial is to compare a new treatment to the current standard of
treatment or to a placebo. To accomplish this, investigators must design the exper-
iment according to statistical principles so results can be properly interpreted. Two
key principles of experimental design that will be discussed are randomization and

sample size determination.

Comparing groups of subjects receiving different treatments introduces a few tech-
nical issues. If the groups being compared are fundamentally different from one an-
other, bias is introduced and the effect of the treatment may be confounded. In other
words, a difference in the response variable between treatment groups may be due
to variables unrelated to the treatment itself. This dilemma establishes the need for
randomization. Randomly assigning subjects to different treatment groups is consid-
ered the gold standard for Phase III clinical trials. This type of study is generally
referred to as a randomized controlled trial. The goal of randomization is to ensure
all subjects within treatment groups in the trial are alike in all aspects except the
treatment they receive. When this is the case, it can be assumed that any difference
in the response variable between treatment groups can be credited directly to the
difference in treatment. This causal relationship allows researchers to make proper
statistical inference about the effect of the treatment(s) of interest.[1] Figure 1.1 gives

a visual representation of a basic randomization scheme.
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Figure 1.1: a simple randomization scheme

It is worth noting that both the treatment and control groups have two green sub-
jects and two blue subjects. This is a trivial visualization of an important aspect of
randomization: ensuring homogeneity. In the hypothetical example depicted in Fig-
ure 1.1, imagine that a blue subject represents a male and a green subject represents
a female. If the randomization instead resulted in a treatment group of four males
and a control group of four females, differences in response may have been due to
sex rather than the treatment. As was stated earlier, this introduces bias and makes
inference about the effect of the treatment misleading. Thus, if the randomization
worked, there should be homogeneity among treatment groups. This can mean check-
ing for relatively equal distributions of several variables such as sex, race, weight, etc.

among treatment groups.

Another critical aspect of experimental design is determining an appropriate sam-
ple size to be used in randomized controlled trials. Recruiting too many subjects to
participate in the experiment may be costly while recruiting too few subjects will
result in the inability to draw any statistically significant conclusions. Researchers

must find a proper balance between an experiment that is cost efficient and one that



allows for meaningful analysis. The appropriate sample size to use for a particular
experiment (usually denoted by n) is typically determined by the desired Type I and
Type II error rates. The Type I error rate or significance level, «, is the probability
of rejecting the null hypothesis, Hy, when it is true. On the other hand, the Type II
error rate, 3, is the probability of failing to reject Hy when it is false. Another way
of thinking about a Type II error is in terms of the power of an experiment. The
power, 1 — 3, is the probability of rejecting Hy in favor of the alternative hypothesis,
H,, when Hj, is true. It is rather intuitive that one would like for an experiment to
have a low Type I error rate, «, along with high power, 1 — 5. However, a and [
are inversely related when n is fixed. That is, choosing a lower value for « directly
leads to a higher value for 8. If instead a value for « is chosen and fixed, increasing n
generally leads to a decrease in [ (and an increase in power). Thus, researchers can
first choose a significance level and then determine the minimum sample size that is
needed to achieve the desired power. As was mentioned earlier, one barrier that may
arise when determining the sample size is cost. If the minimum sample size needed
to maintain the desired values of a and f is too large to be financially feasible, con-
cessions must be made. It is up to the researcher to determine whether it is more
important to protect against Type I errors or against Type II errors, which is highly
dependent on the context of the experiment. The idea of statistical power will be

important in this paper and will be revisited in a future section.[6]

1.2 Longitudinal and Clustered Data

In a longitudinal design of a randomized controlled trial the main objective is to
characterize the change in response to a treatment over time and to study the factors
that influence the change. The identifying feature of a longitudinal study is that
measurements of the response variable of interest are taken on the same subject

repeatedly over time. With repeated measures, both within-subject and between-



subject change can be captured using statistical models, allowing for a direct study
of the change over time. Figure 1.2 shows an example of a longitudinal study that

measures how the concentration of a substance changes over time in eight subjects.
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Figure 1.2: a basic longitudinal study involving eight subjects

Since the same individuals are being examined over time, the repeated measures
for each individual form a cluster. In randomized controlled trials, the word “cluster”
can have various meanings. In this paper, a cluster refers to a group of observations
that are not independent from one another. In longitudinal studies, observations
within these clusters have a natural ordering by time and will often be positively
correlated. The correlation between two variables is the degree to which they are
related in a linear fashion. The correlation is a standardized statistic usually denoted
by p and is bounded between -1 and 1. If two variables are highly correlated (p ~ 1
or p &~ —1), then an almost direct linear relationship exists between them. Positive
values for correlation imply that, as one variable increases (decreases), the other vari-
able also increases (decreases). Conversely, a negative correlation implies that, as
one variable increases (decreases), the second variable decreases (increases). In the
longitudinal case with repeated measures taken on the same subjects, the clustering
arises because observations taken on one individual are more likely to be similar to

each other than to the measurements taken on a different individual. These effects



of clustering will be important in the analysis and will be discussed at length in
this paper. In non-longitudinal studies, clusters can still form either intentionally
or naturally. For example, if an experiment is designed to determine if a new in-
structional technique is effective for improving math scores on a standardized test, a
natural approach would be to compare the results from a class that did receive the
new instructional technique to the results from a class that did not receive the new
instructional technique. However, it is quite possible that the students within those
classes should not be treated as statistically independent. For example, students en-
rolled in an honors math course are probably more similar to each other than they
are to students in a standard math course. Thus, the honor students’ test scores
may change one way while the non-honors students’ scores change in a different way.
This lack of independence must be accounted for in the analysis before any meaning-

ful conclusions can be made regarding the effect of the new instructional technique.[4]

Now that it has been mentioned that observations within clusters in longitudinal
studies tend to be positively correlated, it is worth considering the potential sources
of this correlation. According to Fitzmaurice[4], this correlation is generally impacted
by three different sources of variation: between-subject heterogeneity, within-subject
biological variation, and measurement error. The first source of variation, between-
subject heterogeneity, arises due to the natural variation in humans’ propensity to
respond. In other words, in any longitudinal study, some subjects will be high re-
spondents and others will be low respondents. High respondents will have consistently
higher responses than average while low respondents will be consistently lower. Thus,
a pair of repeated measures on one subject is likely to be more similar than a pair of
measurements from two different subjects. The second source of variation that im-
pacts correlation is within-subject biological variation. The idea behind this source of

variation is that there are some underlying biological processes that cause a subject’s



response to deviate from their response trajectory. These deviations are likely to
be more similar when the time between measurements is small. The third source of
variation that impacts the correlation of clustered data that will be discussed is mea-
surement error. Measurement error is a component of nearly all scientific studies and
is often quantified as reliability. This reliability acts as a constraint for how closely
correlated repeated measures can be. Now that we have seen the potential sources of
correlation within clusters of repeated measures in longitudinal studies, we consider

the consequences of ignoring this correlation in the analysis.



2 Correlation in Longitudinal Data: The Simple

Case

In scientific research, investigators are often interested in whether or not a difference
exists between two groups. This is usually examined by comparing the means of the
two groups using a statistical test. Sometimes, the two groups under experimentation
are simply pre- and post-intervention measurements on the same subjects. In this
case, we can consider the study to be longitudinally designed with just two repeated

measures (baseline and post-intervention).

As an example, consider the data found in Table 2.1 below. This data comes from a
hypothetical study of n = 5 subjects where the response variable of interest Y is heart
rate measured in beats per minute (BPM). Each subject’s heart rate was measured

at rest (time ¢p) and then again after performing a physical activity (time ¢1).

Subject | Resting HR (¢y) | Post-Activity HR (¢;)

1 68 74

2 80 96

3 82 92

4 76 80

) 74 82

mean: X; 76 84.8
variance: s; 30.03 81.18

Table 2.1: heart rates measured on 5 subjects at 2 time points

The investigators are interested in determining if the mean resting heart rate
is significantly different than the mean heart rate after activity. This is a simple

example of a common situation that arises in scientific research. In this situation, the



hypothesis of interest is given by

Hy : po =

Ha : po # 11

where pg and pq represent the mean response at time ty and ¢, respectively. A typical
approach to this problem is to perform a Student’s t-test (One-way linear models
approach). Unfortunately, investigators often fail to account for the correlation in
the data by using this approach and often publish incorrect results. In this section,
it will be shown how ignoring the correlation impacts the statistical inference being

made.

2.1 Unpaired t-test: Ignoring the Correlation

An approach to testing the hypothesis of equal means between two time points that
is commonly used by investigators is the unpaired Student’s t-test. This is a very
simple test that is taught in many introductory statistics courses. However, this
test assumes that the two groups under experimentation are independent and, when
dealing with repeated measures on the same subjects, this assumption is violated.
This will be shown using both a traditional approach and a linear models approach.
A linear model is a statistical model that describes a continuous random variable as

a linear function of a set of predictor variables.

2.1.1 Traditional Approach to Unpaired Analysis

The traditional approach to performing the unpaired t-test is to calculate a test

statistic, £, and then compare it to a Student’s t-distribution with n; + ny — 2 degrees

10



of freedom. First, the test statistic must be calculated:

X - X
=12 (2.1)

where X; and X, are the means at time 1 and time 2, respectively, and n; and n,
are the sample sizes at both times. In this equation, the denominator represents the
standard error estimate for the difference in means. One component of the standard
error is the pooled standard deviation of the two time points, s,, which is calculated

as follows:

. \/(n1 —1)s2 + (g — 1)s2 22

ny+ng — 2
In effect, this equation yields a weighted average of the two sample variances which
relies on the assumption that the population variances of the two time points are
equal (07 = 02). Using the data from the heart rate study, the following is obtained:

~ [(5-1)(30.03) + (5 — 1)(81.18) _ B
sp_\/ - = /55.6 = 7.46 (2.3)

which yields a test statistic of

t=—— 2 — 187 (2.4)

When compared to a t-distribution with 8 degrees of freedom, this test statistic proves
to be significant (p < 0.05), allowing for the rejection of Hy in favor of Hy. However,
the pooled variance term used in the standard error does not account for correlation
because it relies on the assumption of independence between the two time points.
Since a longitudinal study almost always results in correlated data, this analysis is
basically incorrect. Using this test would only be appropriate if the two time points

were independent, which, in this case, they are not. This introduces the need for

11



pairing the data and performing the analysis on the pairs.

2.1.2 Linear Models Approach: One-way ANOVA

An analagous approach to performing an unpaired t-test is the use of a One-way
Analysis of Variance (ANOVA) model. In a One-way ANOVA, the goal is to model
the difference between two or more independent groups. For the heart rate study, the

model can be expressed mathematically as

Yij=p+o;+e;withi=1,2andj=1,---,5 (2.5)

where g is the overall mean of the observations, «; is the effect of time group i,
and e;; ~ N(0,0?) is the random error term. Here, «; is considered the only effect
in the model; ;1 is a constant and e;; is the random error. Using JMP® statistical

software[13], the following output is produced:

ASummary of Fit
RSquare 0.303258
RSquare Adj 0.216165
Root Mean Square Error 7.456541
Mean of Response 804
Observations (or Sum Wagts) 10
4 Analysis of Variance
Sum of
Source DF Squares Mean Square  F Ratio
Maodel 1 193.60000 193,600  3.4820
Error 8 44480000 55.600 Prob > F
C. Total 9 £38.40000 0.0990

4 Parameter Estimates
Term Estimate Std Error tRatio Prob> |t]
Intercept &04 2357965 3410 <0001
time[1] -44 2357965 -1.87 0.0990

4 Effect Tests
Sum of
Source MNparm DF Squares FRatic Prob>F
time il 1 193.60000 34820 0.0990

Figure 2.1: JMP: One-way ANOVA table, parameter estimates, and summary statis-

tics
In the ANOVA table, the mean square column shows the amount of variation in

12



the data that is due to the groups (model) and the amount that is due to the error
(error). In fact, the mean square error of 55.6 is exactly the same value that was
used for the pooled variance following the traditional approach, verifying that the
correlation has still been ignored using this approach. The ratio of the mean squares
gives the F-statistic, which is used to test the same hypothesis as in the traditional
approach. When there is only 1 degree of freedom in the model, F' = 2, which is the
case here (3.482 = (—1.87)?). Thus, whether the traditional unpaired Student’s t-test
approach or the linear models approach using a One-way ANOVA is used to test the
null hypothesis of equal group means, any correlation in the data will be ignored as

both of these approaches rely on the assumption of independence.

2.2 Paired t-test: Accounting for the Correlation

To appropriately account for correlation, the analysis of this study must take into
account the pairing of data (i.e., clustering). To do so, a few simple adjustments
must be made when calculating the test statistic. As with the unpaired t-test, two
analagous approaches will be shown: the traditional approach and the linear models

approach.

2.2.1 Traditional Approach to Paired Analysis

Similar to the unpaired case, the traditional approach to performing a paired t-test
is to calculate a test statistic, ¢, and compare it to a Student’s t-distribution with
n — 1 degrees of freedom where n is the number of pairs of observations. Here, the
test statistic is given by

_Xa—po

Sd

vn

; (2.6)

where Xy is the mean of the paired differences between time 1 and time 2, puq is

a hypothesized value for the mean difference (in this example, 0), and s4 is the

13



standard deviation of the differences. The major difference between this method and
the unpaired method is that calculations are based on the difference between the two
time points as opposed to the pooling of the data. This allows the correlation to be
accounted for in the analysis by calculating an appropriate standard error estimate.

Specifically, the standard deviation of the differences between time 1 and time 2 is

Sd = \/ 8% -+ S% - 20'12 (27)

where 015 is the covariance of the measurements at time 1 and time 2. It is through

calculated as follows:

this term that the correlation enters the picture, i.e., 015 = p12 * $152 Where p1o =
0.9117 is the correlation coefficient for the two time groups. Thus, the test statistic

for this example is
~ —88-0

t=—15
V5

= 427 (2.8)

which is different than the test statistic that was found using an unpaired test. In
this case, the test statistic found using paired samples is more extreme than that
found with unpaired samples. Even though both tests lead to the rejection of the null
hypothesis in this particular example, this is not always the case. Failing to account
for correlation could be the difference between rejecting the null hypothesis or failing
to do so. If the correlation is positive, the power of the study is lower than anticipated

while if the correlation is negative, the study is not as significant as anticipated.

2.2.2 Linear Models Approach: Two-way ANOVA

An analagous approach to the paired t-test is the use of a Two-way Analysis of
Variance model. In a Two-way ANOVA, the goal is to determine the effect of two
factors on a continuous response variable. Similar to the One-way ANOVA, one of
the factors in this model will be the time group. However, this model will also include

a second factor: the subject. This helps account for the correlation in the data and

14



allows for the direct study of the change in heart rate from time 1 to time 2. Written

mathematically, the univariate form of the model is given by

Yik=p+o;+s;+ejpwithi=1,2and j=1,--- ,5and k=1 (2.9)

where s; represents the subject effect. Again using JMP to run the model, the

following output is produced:

4 Summary of Fit
RSquare 0.933584
RSquare Adj 0.850564
Root Mean Square Error 3.255764
Mean of Response B0A4
Observations (or Sum Wagts) 10
£ Analysis of Variance
Sum of
Source DF Squares Mean Square  F Ratio
Medel 5 596.00000 119.200 11.2453
Error 4 4240000 10,600 Prob > F
C. Total 9 638.40000 0.0180*
4 Parameter Estimates
Term Estimate 5td Error t Ratic Prob:|t|
Intercept 804 1029563 7800 <0001
Subject[1] -94 2059126 -4.57 0.010¥
Subject[2] 76 2.059126 3.69 0.0210%
Subject[3] 66 2059126 3.21 0.0327
Subject[4] -24 2059126 -1.17 0.3086
time[1] -44 1029563 -4.27 00129

Figure 2.2: JMP: Two-way ANOVA table, parameter estimates, and summary statis-

tics

In the parameter estimates, the t ratio for the variable time is -4.27, which is
exactly the test statistic that was calculated using the traditional approach. This
shows that both approaches will yield the same result. The advantage of using the
Two-way ANOVA approach is being able to examine the source of variation in the
ANOVA table. In the One-way ANOVA table produced earlier, the model only had
one degree of freedom and the majority of the variation was due to random error. In
the Two-way situation here, the model has five degrees of freedom and accounts for
more of the variation. This shows how including the subject effect in the model allows

for a more accurate examination of the variance and a direct study of the change in

15



heart rate over time.
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3 Correlation in Longitudinal Data with Multiple
Repeated Measures

In the previous section, the effect of correlation was examined when the study was
longitudinal with measurements taken at two points in time. In this section, a more
complex study with four repeated measures will be examined. The data used in this
section is taken from Fitzmaurice[4] and is a study of the level of lead in the blood of
50 exposed children at four different times. A snapshot of the data is shown in Table

3.1 below.

Subject | time0 | timel | time2 | time3

1] 26.5 14.8 19.5 21

2] 258 23 19.1 23.2

31 204 2.8 3.2 9.4

41 204 5.4 4.5 11.9

5| 248 23.1 24.6 30.9

mean: X; | 26.54 | 13.522 | 15.514 | 20.762

variance: s? | 25.21 | 58.867 | 61.657 | 85.495

i

Table 3.1: lead levels in blood of exposed children

With this data, the hypothesis of primary interest is

Ho:pio =11 = po = p3

H 4 : At least one of the population means differs.

where p; is the population mean of the blood lead level at time 7. As in the previous

section, this data set will be analyzed using a few different techniques. First, the
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familiar One-way and Two-way ANOVA approaches will be implemented. Then,

random effects will be introduced to develop a mixed effects model.

3.1 One-Way Analysis of Variance

The simplest and probably most common approach to analyzing the difference be-
tween groups is to use a One-way ANOVA model. In a One-way ANOVA, the effect
of one nominal factor on a continuous dependent variable is examined. In the context
of the lead-exposure study, the nominal factor is time and the dependent variable
is lead level. Mathematically, the univariate form of the model for this data can be

expressed as

Y}jzu—i-ozi—i—ej(i) Wlth@zl, ,4andj:1,--- ,50 (31)

where 4 is the mean of all 200 observations, «; is the effect at time ¢, and e;;) ~

N(0,0?) is the random error. Using JMP to run the model, the following output is

obtained:

4 Summary of Fit
RSquare 0.310589
RSquare Adj 0.300037
Root Mean Square Error 7.603102
Mean of Response 19.0845
Cbservations (or Sum Wagts) 200

4 Analysis of Variance

Sum of

Source DF Squares Mean S5quare  F Ratio
Maodel 3 5104418 170147 29.4336

Error 196 11330.204 57.81 Prob> F
C. Total 199  1g434.622 <0001

4 Parameter Estimates

Term Estimate Std Error t Ratio Prob>|t|
Intercept  19.0845 0.537621 3550 <0001
time[0] 7.4555 0.831186  8.01 <.0001*
time[1] -5.5625 0.831186 -5.97 <0001
time[2] -3.5705 0.931186 -3.83

Figure 3.1: JMP: One-way ANOVA table, parameter estimates, and summary statis-

tics

18



A careless analyst may look at the F-statistic of 29.4336 in the ANOVA table and
immediately conclude that a difference in means exists among the four time points
(reject Hp) and begin performing multiple comparisons tests to pinpoint the source
of the difference. However, it was shown in the previous section that the One-way
ANOVA approach does not account for correlation in the data, so one must be careful
before making hasty conclusions. Since there is only one nominal factor with four
levels, the model only has three degrees of freedom while the random error term gets
the remaining 196 degrees of freedom. This implies that the model only accounts
for the variation between groups (i.e., time points) and any other deviation from
the group mean is due to random error alone. When there is correlation among
the groups, this is a misclassification because the model is ignoring the variation
between subjects. Additionally, an R? value of 0.310589 implies only about 31% of
the variation in the data is accounted for in the model. This is another indication
that, even though the F-statistic proved to be significant (p < 0.001), there is still a
large portion of the variation in the data that has not been modelled. To determine if
there is correlation between the time points that needs to be modelled, the correlation

matrix can be examined. Figure 3.2 below shows the correlation matrix produced by

JMP.
4 Correlations
time0 timel time2 time3
timel 1.0000 0.4015 0.3840 0.4951
timel 0.4015 1.0000 0.7308 0.5070
time2 0.3840 0.7308 1.0000 0.4548
time3 04951 0.5070 0.4548 1.0000

Figure 3.2: JMP: correlation matrix for lead-exposure data

Each entry in Figure 3.2 is the correlation between the group in the row and the
group in the column. In this matrix, it appears that a positive correlation exists
between each pair of the four time points. This correlation must be accounted for

in the analysis, meaning the One-way ANOVA approach is incorrect. To account for
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the correlation, a Two-way ANOVA model may be more appropriate.

3.2 Two-Way Analysis of Variance

In a Two-way ANOVA model, a second nominal factor is included in the model to
help explain the variance in the continuous dependent variable. In the lead-exposure
example, the second factor to be added is the subject effect. For this example, subject
will be treated as a fixed effect. Entering this term in the model acknowledges the
fact that a possible source of variation is between the subjects in the study. In its

univariate form, the model is

Yiik =p+o;+5;+ ey withi=1,--- 4and j=1,--- ,50 and k =1 (3.2)

where s; represents the subject effect. The output produced by JMP is shown below

in Figure 3.3.

ASummary of Fit
RSquare 0731311
RSquare Adj 0.636264
Root Mean Square Error 5480832
Mean of Response 19.0845
Chbservations (or Sum Wagts) 200
A Analysis of Variance
Sum of
Source DF Squares Mean Square  F Ratio
Model 52 12018813 231131 7.6%42

Error 147 4415809 30.040 Prob> F
C. Total 199 16434622 <,0001*

[> Parameter Estimates

4 Effect Tests
Sum of
Source Nparm DF Squares FRatio Prob=F
subject 40 49 §9143044 46975 <0001
time 3 3 51044181 56.6411

Figure 3.3: JMP: ANOVA table, effect tests, and summary statistics

When the One-way ANOVA model was used previously, it was stated that the
only variation accounted for in the model was due to the difference in time point. The

remaining variation in the data was attributed to random error. In the Two-way case
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here, the model accounts for the variance between time points and between subjects.
This is most clearly seen in the ANOVA table in Figure 3.3. Now, the model has 52
degrees of freedom (3 due to the four levels of o and 49 due to the fifty subjects in
the study) and accounts for about 73% of the variance in the data (R? = 0.731311).
The F-statistic used for testing the null hypothesis Hy : pg = py = pe = pg is still
significant (p < 0.0001), but the variance has been more accurately modelled than it

was using a One-way ANOVA model.

3.3 Linear Mixed Effects Model

In both the One-way and Two-way ANOVA models, the factors were treated as fixed
effects. Here, the lead-exposure study will be analyzed using a linear mixed effects
model, treating subject as a random effect. In other words, subject represents a
random sample from all subjects who satisfy the inclusion criteria for the trial. By
considering subject a random effect, the lead level is assumed to vary randomly from
one subject to another, meaning that each subject in the study has their own mean
response trajectory over time.[4] In contrast, subject was treated as a fized effect in
the previous examples. When subject is a fixed effect, it is assumed that the 50
subjects in the study are the only subjects of interest.[6] The general linear mixed

effects model is most easily expressed in matrix form as

Y = XB+2ZU +e (3.3)

where 3 is a vector of fixed effects, U is a vector of random effects, X and Z are de-
sign matrices of covariates, and e is a vector of residuals. The random effects U are
assumed to vary following a multivariate normal distribution with mean 0 and covari-
ance matrix V(U)=G while the random error vector e is assumed to vary following a

multivariate normal distribution with mean 0 and covariance matrix V(e)=R. Thus,

21



the covariance structure of Y can be expressed explicitly as

S=V(Y)=Z2GZ +R (3.4)

where Z is the transpose of the matrix Z. In longitudinal applications, ZGZ' is con-
sidered to represent the between-subject portion of the covariance matrix while R
represents the within-subject portion. The proper specification of G and R is crucial
to obtaining correct estimates of standard error and will be discussed at length in
this section. Additionally, it is assumed that U and e are independent.[8] The matrix
B of fixed regression parameters is the same for all subjects and can be interpreted
as population-averaged estimates. On the other hand, the matrix of random regres-
sion coefficients U is subject-specific and creates separate mean trajectories for each
subject.[4] Before further discussing the specification of the covariance matrix, JMP
will be used to run the model for the lead-exposure data, with subject specified as a

random effect. Figure 3.4 shows the output produced by JMP.

4 Summary of Fit
RSquare 0.712244
RSquare Adj 0.70784
Root Mean Square Error 5.480832
Mean of Response 19,0845
Observations (or Sum Wagts) 200
AlCc BIC

1329777 1349132

4 Parameter Estimates
Term Estimate S5td Error DFDen t Ratio Prob:|t|
Intercept 19,0845 0.839971 49 2272 <0001

time[0] 7.4555 0.671262 147 1111 <0001
time[1] -5.5625 0.671262 147  -8.29 <.000I
time[2] -3.5705 0.671262 147 -5.32 <0001

"/ Random Effect Predictions
4 REML Variance Component Estimates

Random Var

Effect Var Ratic Component 5Std Error 95% Lower 95% Upper Pct of Total
subject  0.9243704 27767643 7.1807632 13.693602 41.841684 48.035
Residual 30.039519 3.5038807 24.201677 38.289776 51.965
Total 57.807162 7.5961819 45392504 76.144899 100.000

-2 Leglikelihood = 1317.3415966
Mote: Total is the sum of the positive variance components,
Total including negative estimates = 57807162

Figure 3.4: JMP: Summary Statistics and REML Variance Components Estimates
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The major difference between the output produced for a mixed model and a fixed
effects model is the inclusion of the Variance Components Estimates. Here, the
Restricted Maximum Likelihood method (REML) was used to produce the estimates
found in the table. This information shows how the variance is partitioned between
the random effects in the model (in this case, subject) and the random error term
(residual). In particular, 48.035% of the variation in the model is due to the clustering
of data by subject. This value is known as the intra-class correlation or ICC and is
calculated as follows:

% (3.5)

P= S5 5
T+ o2

where 0% is the variance due to subject and ¢? is the variance due to random error.
If p is close to 1, then the majority of the variance in the model can be explained
by the effect of clustering. In the lead-exposure example, clustering occurs within
each subject, i.e., each subject’s set of four observations forms a cluster. The ICC
is also crucial in determining an appropriate sample size for a randomized controlled
trial that involves clustering. For example, in a trial to determine if a difference in
outcome exists between two treatment groups, the number of observations required

in each treatment group is given by

2202 + 28)0%[1 + (m = 1))
(Ml - M2)2

N = (3.6)

where « is the desired level of significance, 1 — 3 is the desired power, o2 is the
variance of the outcome, m is the number of observations per cluster, p again is the
ICC, and p; — po is the minimum difference considered to be clinically significant.
Thus, when designing the trial, failing to account for correlation within clusters leads
to setting p = 0 in this equation. This will result in recruiting fewer subjects than is
necessary to maintain the desired statistical power. In effect, the term [1 + (m — 1)p]

is the factor by which the sample size must be increased in order for the trial to have
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the same power as it would if no clustering were present. This term is often referred
to as the Variance Inflation Factor (VIF) or the design effect.[15] Since the sample
size calculation for a Phase III clinical trial must be done before the trial begins, the
value of p is typically estimated. The estimate can be obtained from prior testing,
like from a Phase II trial, or from empirical evidence. This again shows how failing

to account for clustering of data can lead to incorrect inference.[5]

3.3.1 A Brief Overview of PROC MIXED using the SAS® System

Up to this point, JMP has been used to run all models and produce outputs. To
provide a little more flexibility when specifying covariance structures in mixed effects
models, the SAS System will be used.[12] In particular, programs will be written
using the PROC MIXED procedure in SAS. Since JMP is simply a program that
implements SAS, the SAS code used to run models in JMP can easily be produced.
The SAS code for the mixed effects model created by default in JMP (Figure 3.4)
is listed below. This will be used as a starting point from which other mixed effects

models can be written.

PROC MIXED DATA=lead _exposure ALPHA=0.05;
CLASS subject time;

MODEL lead_level = time / SOLUTION;
RANDOM subject / SOLUTION;

RUN;

Explanations for the important statements and options in the code are listed below.
In addition to the statements already included in the code, a few more statements

and options that will be crucial when modelling covariance structures are discussed.
e CLASS - declares certain variables as nominal

e MODEL - specifies the response variable on the left-hand side of the equal sign
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and the fixed effects portion of the model, X 3, on the right-hand side
e RANDOM - specifies the random effects portion of the model, ZU and G
e REPEATED - specifies the structure of R
e TYPE - option for specifying the type of covariance structure to be used

e R, G, and V - options to print the R, G, and V = ZGZ' + R matrices in

covariance form

e RCORR, GCORR, and VCORR - options to print the R, G, and V = ZGZ' +

R matrices in correlation form

e SUBJECT - specifies variables whose levels are used in defining G and R

3.3.2 Modelling the Covariance

In the initial analysis of the lead-exposure data using a linear mixed effects model,
JMP was used to run the model. As was shown in the SAS code produced by JMP, the
structure of the covariance matrix V was not explicitly specified. In this section, a few
options for modelling the covariance structure to fit the data will be presented. Then,
the lead-exposure data will be analyzed by altering the linear mixed effects model to
include the specification of the covariance structure. Before continuing, it is important
to recall that observations on different patients are assumed to be independent. The
correlation within each subject, which has been the theme of this paper, arises because
the observations are taken at different times on the same subject. Thus, the structures
that will be discussed refer to the covariance pattern of measurements on the same
subject.[8] It is for this reason that the REPEATED statement will be used rather
than the RANDOM statement. In the following examples, let o2 be the variance at
the ith time point and let o;; be the covariance between the ith and jth time points.

Also, recall that o;; = p;;0;0, where p;; is the correlation between time 7 and j and
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0, is the standard deviation of time i. Thus, the covariance structures listed below

can be analagously expressed in terms of correlation.

3.3.2.1 Independent

When no covariance structure is specified in SAS for a linear mixed effects model,
an independent structure is assumed. This is the simplest form of the covariance
structure because it assumes that all observations are independent of each other.
This creates a matrix consisting of the variance terms along the main diagonal and
zeroes in all entries off the diagonal. When assuming homoscedasticity among time
points, only one parameter for the structure must be estimated: the variance. Thus,

the Independent Covariance Structure can be written as

o 1 2 3

0fc2 0 0 0

vaND) _ 2y 1|0 o 0 0
210 0 o* 0

where I is the identity matrix. The SAS code for running this model is shown below.[6]

PROC MIXED ASYCOV NOBOUND DATA=lead _exposure ALPHA=0.05;
CLASS subject time;

MODEL lead _level = time / SOLUTION DDFM=EKENWARDROGER;
REPEATED / SUBJECT=subject R RCORR;

RUN;

3.3.2.2 Compound Symmetric

When the covariance is assumed to be the same for any pair of observations on the

same subject, a compound symmetric covariance structure is appropriate. In other
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words, o0;; = oy for all ¢,j,k and [. For simplicity, let v represent the covariance
between any two time points. Then, in a compound symmetric covariance matrix
that assumes homoscedasticity among time points, the off-diagonal elements are all
v while the main diagonal elements are o2. Thus, there are 2 covariance parameters

to be estimated when choosing the compound symmetric structure.

In a compound symmetric structure, the terms along the diagonal can be thought of
as the between-subject variance and the terms off the main diagonal are the within-
subject variance. Below is the SAS code for running a model of the lead-exposure

data using a compound symmetric covariance structure.[6]

PROC MIXED ASYCOV NOBOUND DATA=lead _exposure ALPHA=0.05;

CLASS subject time;
MODEL lead _level = time / SOLUTION DDFMEKENWARDROGER;

REPEATED / TYPE=cs SUBJECT=subject R RCORR;
RUN;

3.3.2.3 Autoregressive (order 1)

The third structure that will be discussed in this paper is the autoregressive covariance
matrix. When using this approach, it is assumed that observations on a subject that
happen closer together are more highly correlated than observations that happen far
apart. In terms of the correlation, p;; = pli—tl where t; and t; are the times at

which observations ¢ and j were taken. So, since |p| < 1, the correlation between
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observations at two time points decreases exponentially as the time between them

increases. Here, only the variance o and the correlation p need to be estimated.

0 1 2 3

0/ o2 o2 o2 o2
VvArRW) — 1| o o  o?p o?p?
2| a2 o*p o o

3\o2p® o2 o2p o2

The SAS code for running the lead-exposure data using an autoregressive (order 1)

covariance structure is given below.

PROC MIXED ASYCOV NOBOUND DATA=lead _exposure ALPHA=0.05;
CLASS subject time;

MODEL lead _level = time / SOLUTION DDFMEKENWARDROGER;
REPEATED / TYPE=ar (1) SUBJECT=subject R RCORR;

RUN;

The SAS code for the autoregressive structure is very similar to the code for the
compound symmetric structure. The only thing that has changed is the argument for

the TYPE option. 6]

3.3.2.4 Unstructured

The final covariance structure that will be discussed is the unstructured matrix. This
is probably the simplest covariance structure to understand because it places no
structure on the covariance matrix at all. In other words, all values for pairwise

covariances are allowed.
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0 1 2 3

0 0(2) 0001Po1  0002P02 0003003

vUN) — 1| 0go1po1 o3 0102012 0103013
2 | o0o2p02  O102p12 Ug 0203023
3 \0003p03  0103p13 0203023 o3

While the unstructured covariance matrix is easy to understand, it is difficult to
model because there is a parameter to estimate for every pairwise relationship in the
data. When the number of observations (and subjects if homoscedasticity is violated)
gets large, using the unstructured covariance matrix is inefficient. Thus, it is often
used as a starting point when determining if a simpler structure can be used.[6] The
SAS code for running a mixed effects model with an unstructured covariance matrix

is given below.

PROC MIXED ASYCOV NOBOUND DATA=lead _exposure ALPHA=0.05;
CLASS subject time;

MODEL lead _level = time / SOLUTION DDFM=EKENWARDROGER;
REPEATED / TYPE=un SUBJECT=subject R RCORR;

RUN;

3.3.3 Comparison of Covariance Structures

Now that several covariance structures have been presented, a method for determining
which structure best fits the data under examination. Littell asserts that either
Akaike’s Information Criterion (AIC) or the Bayesian Information Criterion (BIC)
can be used to compare models with the same fixed effects but different covariance

structures.[8] These criteria provide an idea of relative goodness-of-fit for the models
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produced. The equations for calculating the AIC and BIC of a model are given by

AIC = 2k — 2In(L) (3.7)

BIC = —2In(L) + kin(n) (3.8)

where k is the number of parameters in the covariance matrix, {n(L) is the maximized
log-likelihood, and n is the number of subjects. Using these equations, a model with
a smaller AIC and BIC indicates a better fit and is considered preferable. The two
models will not always agree on the best model and, in fact, the BIC is often preferred
because it carries a harsher penalty for increasing the number of parameters than does
the AIC. By default, when using SAS to run the models with different covariance
structures, k, —2In(L), AIC, and BIC are all included in the output. Running a
linear mixed effects model for the lead-exposure data using each of the four covariance

structures discussed above yields the following results in Table 3.2.

Structure | Cov. Parameters | —2In(L) | AIC | BIC
Independent 1 1367.1 | 1369.1 | 1371.0
Compound Symmetry 2 1314.6 | 1318.6 | 1322.4
Autoregressive 2 1319.4 | 1323.4 | 1327.3
Unstructured 10 1280.3 | 1300.3 | 1319.5

Table 3.2: goodness-of-fit statistics for lead-exposure data

With the lead-exposure data, it appears that the unstructured covariance matrix
is the best choice when comparing the values for either BIC or AIC. Since there are
only n = 50 subjects in the study and k£ = 10 covariance parameters that must be
modelled, the AIC and BIC for the unstructured covariance matrix did not carry
enough of a penalty to make a simpler covariance structure preferable. Thus, it has

been shown that, even with a simple example of fifty subjects being observed at four
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different points in time, the default independent covariance structure was not consid-

ered the best fit for the data.

Additionally, it was stated previously that modelling the covariance appropriately
has a major impact on the standard errors used in parameter estimates of fixed effects.
Using an incorrect covariance structure can lead to using incorrect standard errors.
When this happens, conclusions made using statistical inference are often incorrect.
To illustrate this effect, Table 3.3 contains the standard error term for the parameter
estimates of the fixed effects in the lead-exposure data. Since time is a nominal fixed
effect, dummy variables were used to distinguish the four different time points where

the reference cell was time 3.

Time | IND| CS|AR(1)| UN

01]1.0962 | 1.0962 | 1.4131 | 1.1378

1] 1.0962 | 1.0962 | 1.3022 | 1.2036

2 11.0962 | 1.0962 | 1.0549 | 1.2736

3 (INTERCEPT) | 1.0962 | 1.0962 | 1.0717 | 1.3076

Table 3.3: standard errors of fixed effects parameter estimates
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4 Detecting Outliers

One of the objectives of this paper is to examine various strategies for identifying
outliers in clustered data. Before discussing different outlier detection techniques and
applying them to a case study, it is important to have a strong understanding of what
it means for an observation to be an outlier. In the simplest sense, an outlier is an
extreme observation. When performing data analysis, data sets are assumed to have
been generated by a particular probability model. This assumption is what allows
statisticians to perform hypothesis tests and make statistical inferences about the
data. When a subset of observations within a data set appear to be inconsistent with
the assumed probability model, they are considered suspect values. Then, statistical
tests can be carried out to determine if it is statistically unreasonable to assume that
the suspect values belong to the assumed probability model. Observations that are
deemed to have been generated from a different probability model are then referred
to as outliers.[7] There are many different techniques for determining whether or not
a particular observation is an outlier. Most of these techniques involve quantifying
an observation’s standardized distance from either a sample mean or predicted value
or determining the influence the observation has on the overall fit of a statistical
model. In this section, a few approaches to detecting outliers will be introduced and
discussed. In the proceeding section, these techniques will be applied to real data

from a multi-center, randomized controlled trial.

4.1 Outlier Detection in Models with a Univariate Response

When working with one variable within a data set, it is quite simple to determine
which observations can be suspected of being outliers. A general rule of thumb for
identifying suspect values that is introduced in many basic statistics courses is the

1.5 % IQR rule or the interquartile range rule. The interquartile range (IQR) for a
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data set is found by calculating the difference between the upper and lower quartile
of the data. Any points that are farther than 1.5 * IQR from the median of the data
set (in either direction) are considered suspect values. For example, consider the data

set of commute times (in minutes) for 12 people shown in Table 4.1.

5| 1712122
2412912930

311311]33]36

Table 4.1: commute times (in minutes)

For this data set, the median is 29, the upper quartile is 31, and the lower quartile
is 20.5. Thus, the interquartile range is calculated as IQR = @3 — Q1 = 31 — 20.5 =
10.5, which means any observation greater than 29 4 1.5 % 10.5 = 44.75 or less than
29 — 1.5 % 10.5 = 13.25 will be considered a suspect value. It is clear that the first
observation of 5 is the only suspected value. This is most clearly seen visually with
the boxplot shown in Figure 4.1. Here, the ”whiskers“ of the boxplot extend in either
direction to the maximum or minimum data point that is within 1.5 % IQR of the
median. The outlying observation with a value of 5 is the lone point that falls outside

of the box and whiskers.
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Figure 4.1: boxplot of commute times

While this approach for finding suspect values is very easy to implement, it is
simply a rule of thumb and cannot be used as the only method for detecting outliers.
Additionally, it is only applicable when analyzing the distribution of each variable
separately. When modelling the relationship between a univariate response variable

and a set of independent variables, this technique will not be of much use.

A more statistically sound, yet simple method for detecting outliers in the uni-
variate case is through the examination of studentized residuals. When modelling a
relationship between a univariate response variable and a set of explanatory variables,
a restdual is defined as the difference between the expected value and the observed
value for a particular input of each explanatory variable in the model. This essen-
tially gives an idea of how far off the model is at a given point. Since different data
sets often have different variance, it is often useful to standardize residuals for easier
interpretation. One method of standardization is to studentize the residuals; that

is, convert each residual so that it follows a Student’s t-distribution with n — k — 1
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degrees of freedom (where k is the number of explanatory variables in the model).
Thus, if the residual falls within the rejection range of the Student’s t-distribution,
the corresponding observation is considered an outlier. The studentized residual for

the 7th observation in a data set can be calculated using the following equation:

~

Yi — Yi

= 4.1
RMSEv1 — h; (4.1)

T

where y; is the predicted value of Y at observation 7, y; is the observed value of Y at
observation 7, RMSE is the root of the mean square error, and h; is the leverage of
the observation.[6] Rather than calculating the studentized residual for each obser-
vation by hand, most software packages will provide the values for all observations
at once. This makes outlier detection in the univariate case fairly straightforward.
However, the central focus of this paper has been on clustered data arising from lon-
gitudinal studies. Now, a few techniques for detecting outliers from such studies will

be introduced.

4.2 OQOutlier Detection in Clustered Data

When dealing with clusters of data, an investigator is often interested in learning
which clusters are outliers in addition to which observations are outliers. To find single
outlying observations, analysis of studentized residuals or similar approaches may be
used. However, identifying outlying clusters introduces a new challenge since multiple
observations make up a cluster. A graphical representation of how observations form
clusters is shown in Figure 4.2 to help make this idea a bit more clear. Here, three
clusters of observations are shown in 3-dimensional space. This figure represents
fictitious data, but is shown for purposes of illustration. The main point that Figure
4.2 aims to illustrate is that comparing clusters of observations is similar to comparing

collections of points.
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Figure 4.2: three clusters in 3-dimensional space

In a longitudinal study each subject is its own cluster of observations, so identifying
outlying clusters equates to identifying outlying subjects. The first three approaches
to detecting outlying clusters use the restricted likelihood distance, Cook’s Distance,
and the predicted residual sum of squares (PRESS). Each of these three approaches
revolves around determining how the fit of a model is affected by removing a partic-
ular cluster from the data set and are available using the PROC MIXED procedure

in the SAS System.

For each subject in the data set, the restricted likelihood distance (LD) is calculated
by finding the difference between the maximized log likelihood functions of a model

that includes the subject and one that does not. Mathematically, the restricted
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likelihood distance for the ith subject can be expressed as
LD; = 2[L(0) — L(0))] (4.2)

where L(f) is the maximized log likelihood function of the full model and L(é(i)) is
the maximized log likelihood function of the model with the ith cluster removed. In
effect, this statistic yields the influence the ith subject has on the likelihood function.

Subjects with large values for LD are considered to be suspect.[16]

A second measure of influence that can be utilized in the analysis of clustered data
is Cook’s Distance or, more commonly, Cook’s D. As with the restricted likelihood
distance, Cook’s D measures the effect of removing a particular cluster of observations
on the fit of the model. The calculation for Cook’s D is given by

. efhz
~ MSE * p(1 — h;)?

D; (4.3)
where e; is the residual vector of the ith cluster, h; is the leverage vector of the ith
cluster, p is the number of observations within the cluster, and MSE is the mean
squared error. Again, a large value for Cook’s D typically indicates a suspect cluster.
A general rule of thumb is that if D; > % where n is the number of clusters in the

data set, then the subject can be considered an outlier.[3]

Another method that is useful in detecting outliers in clustered data is the pre-
dicted residual sum of squares (PRESS) statistic. The PRESS statistic is a measure
of fit of a model based on how removing a particular subject from the data set im-
pacts the residual sum of squares of the predicted values. To see the influence the
1th subject has on the fit of the model, it is first removed from the data set. A new

model is then fit using the remaining subjects. Finally, predicted values are found for
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the subject that was removed using on the newly fit model. This residual is referred
to as the PRESS residual and is the figure of interest when determining the influence

of each subject individually.

where y;; is the observed value of Y for the i¢th subject at the jth time point and
Uij (i) is the predicted value of Y for the ith subject at the jth time point obtained
from the model that was fit excluding the sth subject. When interested in deter-
mining the overall fit of a model or the influence of multiple subjects, this process is
performed iteratively and the PRESS statistic is the sum of the squared residuals of

the excluded subjects’ predicted values and their observed values.|[14]

The final approach to detecting outlying clusters that will be discussed is using
the Mahalanobis distance. Simply put, the Mahalanobis distance is a measure of
standardized distance between two points in multiple dimensions. This can be viewed
as a multivariate generalization of finding the standardized difference between two
points that was discussed previously with studentized residuals. The equation for the
Mahalanobis distance between two k-dimensional points x; and o from a data set

D is given by

M(@y,@5) = \/ (@1 — 22)7S " (@1 — @2) (4.5)

where 7! is the k x k inverse of the covariance matrix of D.[10] When the data
set under examination is clustered, the Mahalanobis distance between two clusters
can be found with this equation. For example, in the lead-exposure data, the two
points would be 4 dimensional vectors, representing the four measurements from two
different subjects. To determine if a particular subject is an outlier, the Mahalanobis

distance between that subject’s vector of observations and the vector of means must
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first be found. The square of the Mahalanobis distance follows a y? distribution with
k degrees of freedom, so a critical value can be obtained to test whether or not the
subject is an outlier.[9] A computational implementation of the Mahalanobis distance

will be shown in the next section when analyzing real data.

It is worth reiterating the difference between the Mahalanobis distance approach
and the first three approaches discussed. As was mentioned earlier, the first three
approaches aim to quantify how the fit of a model changes when the subject or cluster
under examination is removed. These calculations rely on the residuals between
predicted values and observed values. To get predicted values, a model must be fit.
On the other hand, the Mahalanobis distance in the context presented here considers
only the observed values for a particular subject. These values are then compared
to the vector of mean values. Thus, using the Mahalanobis distance in this way can

help identify suspect subjects before a model is even fit.
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5 Linear Mixed Effects Models: A Case Study

In this section, the topics introduced in the previous sections will be implemented to
perform an in-depth analysis of the data from a multi-center, randomized controlled
trial with a longitudinal design. The aim of this particular study was to determine if
introducing a probiotic to babies with colic decreases the amount of time they spend
crying. There had been prior Phase II randomized controlled trials that favored pro-
biotics as a potential aid in reducing crying time. According to Mayo Clinic, colic is
a condition identified by predictable periods of distress in an otherwise healthy baby.
Babies with colic often cry for over three hours a day, three days per week for several
weeks but tends to end after a few weeks or months. During the time when a baby

has colic, however, it is very difficult to bring him or her any relief.[2]

This study was conducted at four different centers on a total of 292 babies with
colic. At each center, babies were randomized into either the probiotic treatment
group or to the placebo group. The amount of time each baby spent crying was
reported by the baby’s mother in a daily journal. Investigators then averaged the
crying times for each baby by week at baseline, after one week, after two weeks, and
after three weeks. The primary objective of the study was to determine if the crying
time of the probiotic group decreased over time significantly more than the placebo
group. Table 5.1 contains the raw mean daily crying time (in minutes) for the two

treatment groups at each time point.
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Treatment Group Time (Days)

0 7 14 21

Placebo | 201.95 | 155.80 | 127.89 | 110.71

Probiotic | 215.20 | 127.39 | 101.32 | 77.51

Table 5.1: mean crying times at each time point

5.1 Developing the Model

Before proceeding with model development and analysis, it should be noted that this
data set poses a couple of major analytical challenges. First, the data are longitudi-
nal; each subject has four repeated measures for the response. This creates a cluster
for each subject and introduces the need for modelling the correlation between obser-
vations. Overcoming this particular hurdle has been the primary focus of this paper
up to this point. However, the subjects in this study were randomized into one of
two treatment groups (probiotic or placebo) at one of four centers, which creates a
nesting effect for the subjects. While the primary goal of this analysis is to deter-
mine whether or not there is a difference in response between the probiotic group
and the placebo group over time, the challenges mentioned here must be taken into

account in order to make proper statistical inference and draw meaningful conclusions.

In this analysis, the data will be examined using a linear mixed effects model
with a random subject effect. The univariate form of the model can be expressed

mathematically as

Yijktm = ft+ ai + 95 + (@ % 7)ij + 7o+ (@ * T)ir + (V% T)jk =+ Sigijn) + €megkry  (5.1)

Each of these terms is outlined in Table 5.2 for clarity. The primary goal will be to

make inference about v *7 and ~ in order to determine if there is a difference between
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treatment groups over time.

Symbol Variable
Y | crying duration (response)

« center

Y trt_gp

Qo y center*trt_gp interaction

T time

QT center*time interaction
vET trt_gp*time interaction

S random subject effect

e random error term

Table 5.2: linear mixed effects model variables

As was shown in section 4, modelling the covariance structure is a crucial aspect of
making proper statistical inference when random effects are involved. In this analysis,
subject is a random effect and hence the covariance must be modelled. First, the SAS
code for the basic structure of the mixed effects model is shown below. Here, a random

intercept is estimated for each subject to give each subject its own mean trajectory.

PROC MIXED DATA=multi _center ALPHA=0.05;

CLASS center ID trt_gp time;

MODEL crying _duration = center trt_gp time trt_gpktime
centerxtrt _gp centerxtime;

RANDOM intercept / SUBJECT=ID(center trt_gp );

RUN;

Here, no covariance strucure has been declared, so the independent structure is chosen
by default. This structure assumes observations at different times for the same subject

are pairwise independent. Since the observations are taken over time on the same
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subject, this is not likely to be the proper structure but is the most conservative
approach. Nonetheless, it provides a starting point from which other models can be
built. In Table 5.3, the Akaike Information Criterion (AIC) and Bayesian Information

Criterion (BIC) are shown for the model using a few different covariance structures.

Structure | Cov. Parameters | —2In (L) AIC BIC
Independent 2 12639.8 | 12643.8 | 12651.2
Compound Symmetry 3 12639.8 | 12645.8 | 12656.9
Autoregressive 3 12606.4 | 12612.4 | 12623.4
Unstructured 11 12556.8 | 12578.8 | 12619.2

Table 5.3: goodness-of-fit statistics (lower values indicate better fit)

With this model, the values for the BIC and AIC agree that the unstructured
covariance matrix best suits the data. It is important to keep in mind that this is not
always the case. Asthe number of repeated measures grows, so too does the number of
covariance parameters in the unstructured covariance matrix, driving up the values for
AIC and BIC. This is because an unstructured covariance matrix requires a covariance
parameter to be estimated for each entry in the matrix. Simpler structures, such as
the autoregressive or compound symmetric structures, require fewer parameters to be
estimated. However, in this case with four repeated measures, there are not enough
covariance parameters to make a simpler structure preferable. Thus, the analysis will
proceed assuming an unstructured covariance matrix for the subjects. The SAS code

for the model is given below followed by the covariance matrix V.

PROC MIXED DATA=multi _center ALPHA=0.05;
CLASS center ID trt_gp time;
MODEL crying _duration = center trt_gp time trt_gpktime

centerstrt _gp centerxtime / S;

RANDOM intercept / SUBJECT=ID(center trt_gp ) G GOORR
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V VCORR;
REPEATED / SUBJECT=ID (center trt_gp ) TYPE=un R RCORR;
RUN;

1 2 3 4
1 (6594.52 3310.38 2686.41 2500.29
V =ZGZ + R= 2]3310.38 4946.56 3166.80 2648.51
2686.41 3166.80 4762.72 3087.14

~ W

2500.29 2648.51 3087.14 4025.80

Appropriately modelling the covariance leads to obtaining correct estimates of the
standard error terms which ultimately results in making correct inference. Had this
step been skipped, standard errors for testing various hypotheses would have been
incorrect. In the context of medical research, this can have serious consequences.
If a standard of treatment is changed (or fails to change) due to research that was
analyzed incorrectly, patients may end up receiving suboptimal care. To see this,
consider the table shown below. Table 5.4 shows a subset of the solutions for the
fixed effect parameters obtained when assuming the independent covariance matrix
and the unstructured covariance matrix. Each row in the table is a test of whether or
not the coefficient of the corresponding parameter is statistically different from zero.
It is quite clear from Table 5.4 that the standard error estimates do change. Since
the statistic used in the hypothesis test of each row is simply the estimate divided
by the standard error estimate, changes in the standard error can lead to changes in

conclusions of statistical significance.
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Unstructured Independent

Effect | Estimate | St. Error | p-value || Estimate | St. Error | p-value

Intercept | 68.8263 12.4486 | < .0001 68.0902 13.4738 | < .0001

center[1] | 10.4374 15.6274 | 0.5047 12.2577 | 16.7818 | 0.4657

center|2] -4.9703 | 17.3396 | 0.7746 -2.2496 | 18.6694 | 0.9042

center[3] | 16.8045 14.6569 | 0.2525 16.2641 15.7439 | 0.3025

trt_gp[placebo| | 36.6082 16.3544 0.026 37.9753 17.0015 | 0.0263

time[0] | 53.5867 | 11.4216 | < .0001 53.5867 | 10.0692 | < .0001

time[7] | 19.2648 9.2367 | 0.0373 19.2648 | 10.0692 0.056

time[14] 8.665 7.7953 | 0.2666 8.496 10.0747 | 0.3993

Table 5.4: fixed effect solutions using different covariance structures

Now that the covariance structure has been modelled, proper inference can be
made. Since the primary objective of the study is to determine the effect of the
probiotic over time, the variables of primary interest are tri_gp and trt_gp *time. To
determine whether or not trt_gp has a significant effect on crying time, the Type 3
test of the fixed effect can be used. Figure 5.1 the SAS output for performing the
Type 3 Tests of Fixed Effects. With a p-value of .0017, it is clear that the treatment
group does seem to have an effect on crying time. Also, since the estimate for the
effect the placebo group has on crying time is 36.61 (shown in Table 5.4 above), it

appears the probiotic did lead to a reduction in crying time.
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Type 3 Tests of Fixed Effects

Effect Num DF | Den DF | F Value
center 3 284 17.44
trt_gp 1 284 10.00
time 3 858 24642
trt_gp*time 3 858 8.77
center’trt_gp 3 284 158
center*time 9 858 34.89

Pr=F
<.0001
0.0017
=.0001
<.0001
0.1947
<.0001

Figure 5.1: type 3 tests of fixed effects

An effective way to study the effect of the treatment group over time is to consider
the least squares means at each level of trt_gp*time and how they differ from each
other. If the probiotic is effective in reducing crying time, one would expect to see
the difference in least squares means between the treatment groups be small at time 0
and then grow over time. The manner in which this difference changes over time will
give a reasonable picture of what effect the probiotic has on crying time. In the three
figures that follow, the least squares mean estimates will be explored. In Figure 5.2,
the least squares mean estimates for each level of trt_gp*time are shown. Figure 5.3
graphs the least squares means by treatment group. This gives an intuitive visual for
how crying duration changes over time in each treatment group. Finally, Figure 5.4

shows the estimated difference in least squares means between levels of trt_gp*time

along with corresponding 95% confidence intervals.
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trt_gp*time Least Squares Means

trt gp | time | Estimate | Standard Error | DF | t Value Pr = ||

placebo 0 216.56 71055 | 858 | 3048 <0001
placebo 7 156.51 6.1866 858 2529 <0001
placebo 14 12518 6.0803 | 858 | 2059 <0001
placebo 21 11057 56111 | 858 19.71 <.0001
probioti | 0 22165 7.0270 858 3154 <0001
probioti | 7 12411 6.1192 858  20.28 =<.0001
probicti | 14 959877 6.0161 | 858 15.96 <.0001
probicti | 21 74.3933 5.8473 | 858 13.41 <0001

Figure 5.2: least squares means estimates for each level of trt_gp*time
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Figure 5.3: least squares means plot for trt_gp*time
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Differences of Least Squares Means

Effect trt_ gp | time _trt_gp _time Estimate Standard Error DF  tValue Pr= |t| | Alpha  Lower  Upper
trt_gp*time | placebo | 0 placebo | 7 60.0509 6.0349 858 9.95 <0001 005 482060 718953
trt_gp*time | placebo 0 placebo | 14 91.3804 6.6610 858 1372 <0001 005 78.3065 10445
trt_gp*time | placebo | 0 placebo | 21 105.99 6.4496 858 1643 <0001 005 933311 11565
trt_gp*time | placebo 0 probioti | 0 -5.0910 98442 858 052 06052 005 -244125 142305
trt_gp*time | placebo | 0 probioti | 7 92 4505 9.3789 858 9.86 <0001 005 740423 11086
trt_gp*time | placebo 0 probioti | 14 12057 9.3437 888 1290 <0001 005 10223 138.91
trt_gp*time | placebo | 0 probioti | 21 14217 9.0571 858 1570 <0001 005 12439 15994
trt_gp*time | placebo | 7 placebo | 14 31.3294 5.0059 858 6.26 <0001 005 215041 411548
trt_gp*time | placebo | 7 placebo | 21 45,9390 £.2153 858 8.81 <0001 005 357017 561763
trt_gp*time | placebo | 7 probioti | 0 -65.1419 9.3653 858 -6.96 | <.0001 0.05 -83.5235 -46.7604
trt_gp*time | placebo | 7 probioti | 7 32.3996 8.6181 858 376 00002 005 154846 493146
trt_gp*time | placebo | 7 probioti | 14 605215 8.6411 858 7.00 <0001 005 435613 774816
trt_gp*time | placebo | 7 probioti | 21 821161 8.3485 858 9.84 <0001 005 657303 985019
trt_gp*time | placebo 14 | placebo 21 14.6096 44072 858 331 0.0010 | 005 59595 232597
trt_gp*time | placebo | 14 | probioti | 0 -96.4714 93261 858 -10.34 <0001 005 -11478 -78.1668
trt_gp*time | placebo | 14 | probioti | 7 1.0702 8.6363 858 012 09014 0.05 -15.8815 18.021%9
trt_gp*time | placebo | 14 | probioti | 14 291921 8.4847 858 344 0.0006 005 125389 458452
trt_gp*time | placebo 14 | probioti | 21 50.7866 8.2458 858 6.16 <0001 005 346022 669710
trt_gp*time | placebo | 21 probioti | 0 -111.08 9.0351 858 -12.29 <0001 005 -128.81 -93.3475
trt_gp*time | placebo 21 probioti | 7 13,5394 8.3399 858 -162 | 0.1049 005 -29.9084 28296
trt_gp*time | placebo 21 probioti | 14 14.5825 8.2417 858 177 00772 0.05 -1.5937  30.7587
trt_gp*time | placebo | 21 probioti | 21 361771 7.8501 858 461 <0001 005 207695 515847
trt_gp*time | probioti | 0 probioti | 7 97 5415 59714 858 16.33 <0001 005 858212 109.26
trt_gp*time | probioti | 0 probioti | 14 125.66 6.5950 858  19.05 <0001 005 1272 138.61
trt_gp*time | probioti | 0 probioti | 21 147.26 6.3817 858 23.07 <0001 005 13473 159.78
trt_gp*time | probioti | 7 probioti | 14 281219 49587 858 567 <0001 005 183893 378545
trt_gp*time | probioti | 7 probioti | 21 49.7165 51610 858 963 <0001| 0.05 39.5869 59.8461
trt_gp*time | probioti 14 | probioti | 21 21.5946 43670 858 494 <0001 005 13.0234 301658

Figure 5.4: differences in least squares estimates for levels of trt_gp*time

Using these three figures, a few conclusions can be made. First, there is no
significant difference in least squares means between the placebo group and probiotic
group at time 0. This provides some evidence that the randomization of subjects
worked as intended because there was no statistical difference in crying times between
the two groups when the trial started. Then, at each of the next three time points,

there are significant differences in crying time between the two groups, hinting that
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the probiotic did in fact reduce crying time. From the graph in Figure 5.3, it appears
the major change in crying time between the two groups occurred from time 0 to time
7. Both groups saw a decrease in crying time, but the decrease was more drastic in
the probiotic group. After time 7, the lines for the two groups are almost parallel,
meaning both decreased at a fairly similar rate. This gives some evidence that the
probiotic was most effective in reducing crying when first introduced. Then, both
groups saw similar decreases in crying which can be attributed to time. This is
consistent with the information provided by Mayo Clinic[2] on babies with colic that
was mentioned earlier. After a few weeks or months, colic tends to go away. This
gradual decrease over time seen in both groups may have been due to certain babies

growing out of the colic stage.

5.2 Checking the Assumptions

Now that a model has been chosen and fit for the data, it is important to check that
the assumptions for linear mixed effects models hold. The three major assumptions
that are relevant to this model are normality of residuals, homoscedasticity, and in-
dependence. If the assumption of normality holds, the studentized residuals from the
model will follow a (roughly) normal distribution. In Figure 5.5 below, the studen-
tized residuals from the model are shown in a Residual vs. Predicted plot (top left),
a histogram (top right), and a Q-Q plot (bottom left). All three plots show sufficient
evidence of normality among the studentized residuals, which allow the assumption

to be confirmed.
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Studentized Residuals for crying_duration
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Figure 5.5: studentized residual statistics for colic study

To check for homoscedasticity, plots of the studentized residuals can be used again.
However, for this assumption to hold, the residuals will have roughly the same spread
for each center. This will show that the variance is approximately equal across centers.
Figure 5.6 shows the histograms for the studentized residuals for each center. It
appears that the four centers have roughly the same spread of residuals, which allows

the assumption of homoscedasticity to be confirmed.
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Figure 5.6: histograms for studentized residuals for each center

The assumption of independence is more difficult to confirm for this study. The
fact that the observations for one subject are not independent of one another has
already been discussed and accounted for through the modelling of the covariance
structure. However, the linear models assumption of independence refers to the as-
sumption that the order in which subjects were randomized and received treatment
has no impact on the distribution of residuals. In other words, the residual error
from one subject should not affect the residual error for the next subject.[1] Checking
this assumption boils down to ensuring the randomization scheme was effective and
the order of entry into the study had no impact on crying duration. To allow for
this assumption to be checked, the order in which subjects are randomized should be
recorded and included as a variable in the data set to be analyzed. Then a simple plot

of studentized residuals vs. order could be produced to determine if any patterns or
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trends appear. Unfortunately, this information was not included in this study which
means the assumption of independence can not be unequivocally confirmed at this
time. For the sake of this analysis, it will be assumed without further justification that
the randomization scheme used in the study was effective in preventing experimental

dependence.

5.3 Detecting Outliers

At this point, the model has been fit, the covariance structure has been modelled,
and inference about the effect of the probiotic over time has been made. To complete
the analysis, any outliers will be determined. In this case study, outliers can be
found at the observation level or at the subject level. At the observation level, the
distribution of studentized residuals can be used to find any observations that fall
far enough from the mean to be considered outliers. This method was discussed
in Section 4 and will be skipped here because the focus of this paper has been on
the clusters of observations that form for each subject. To find subjects that are
outlying, the other influence diagnostics discussed in Section 4 can be implemented.
Using SAS PROC MIXED, the restricted likelihood distance, Cook’s Distance, and
PRESS statistic can be found for each subject. The code is shown below. The major
statement to make note of in the code is INFLUENCE. Including this option provides
the relevant influence statistics as well as intuitive visuals. Here, the effect of interest
is subject or ID(center trt_gp). The ITER statement accounts for how removing a
subject impacts the covariance structure used in the model by performing a specified

number of additional iterations to recompute the structure.[12]

PROC MIXED DATA=multi _center ALPHA=0.05;
CLASS center ID trt_gp time;
MODEL crying _duration = center trt_gp time trt_gpktime

centerstrt _gp centerxtime /
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INFLUENCE (EFFECT=ID ( center trt_gp) ITER=5);
RANDOM intercept / SUBJECT=ID(center trt_gp );
REPEATED / SUBJECT=ID(center trt_gp ) TYPE=un;
RUN;

It is important to remember that these methods are used for determining the influence
certain subjects have on the fit of the model. Their calculations are based on residuals
that can only be obtained after a model is fit. The figures below show graphs for the
restricted likelihood distance and Cook’s D. Then, the tables that follow show the
subjects with the largest values for the three measures of influence.

Restricted Likelihood Distance
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Figure 5.7: restricted likelihood distance for each subject
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Cook's D Fixed Effects
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Figure 5.8: Cook’s D for each subject

center | id trt_gp | restricted likelihood distance
3 | 7 | probiotic 3.1152
3 | b4 | probiotic 2.2934
3 | 13 | probiotic 1.9421
3 | 17 | probiotic 1.7819
3 | 12 | probiotic 1.6468
2 | 40 | probiotic 1.4282
3 | 22 | probiotic 1.3568
3 | 38 | probiotic 1.1075
2| 15| placebo 1.0882
3123 ]| placebo 1.063

Table 5.5: subjects with greatest restricted likelihood distance
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center | id trt_gp | Cook’s D

3| 7| probiotic 0.02604

2 | 40 | probiotic 0.02456

2115 | placebo 0.0215

2 | 25 | probiotic 0.02059

3 | 13 | probiotic 0.01879

3 | 54 | probiotic 0.01651

3 | 17 | probiotic 0.01536

4|18 | placebo 0.01477

3 | 22 | probiotic 0.01467

3 | 12 | probiotic 0.01409

Table 5.6: subjects with greatest Cook’s D; D > % = .014 considered outlier

center | id trt_gp | PRESS Statistic
3| 7 | probiotic 262878
3 | 13 | probiotic 261239
3 | 17 | probiotic 160234
3 | 22 | probiotic 142293
3| 8| probiotic 134210
3143 | placebo 116723
3| 1 | probiotic 102010
1] 1| placebo 88543
2 | 28 | probiotic 84836
3 | 12 | probiotic 81078

Table 5.7: subjects with greatest PRESS

If more information had been recorded for each subject (e.g., height, weight, age,
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etc.), the distribution of outliers could have been examined in more detail to pinpoint
the underlying cause for their status as outliers. Here, however, the only factor that
can be considered is the center to which the subject belonged. As a demonstration of
how one could analyze these outliers further, the distributions of the Cook’s Distances
are shown by center in Figure 5.9. It appears that center 3 has more subjects with
extreme values for Cook’s D than the other three centers. This may indicate that the
model does not predict crying times for subjects from center 3 particularly well. This
could be due to some natural heterogeneity between the four centers, which could be
due to the clustering of subjects within each center. More information on the subjects

within the centers would be needed before considering this a red flag.

4 [=|Distributions center=1 4 |=|Distributions center=3

4= Cook's D 4 =|Cook's D

n u—

E . D§|

0 0.005 0.01 0.015 002 0025 0 0005 0.0l 0015 002 0025

4 [=|Distributions center=2 4 [~ | Distributions center=4
4= Cook's D A= Cook's D
/ [ |
|_|_| ]
0 0.005 ©0.01 0.015 002 0025 0 0.005 0.0 0015 002 0025

Figure 5.9: distribution of Cook’s D for each center

In Section 4, it was also shown how the Mahalanobis distance can be used to

identify suspicious subjects before even running a model. This will be implemented for
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the colic study using R software.[11] The objective is to find the Mahalanobis distance
between each subject’s vector of observations (time 0, time 7, time 14, time 21) and
the vector of mean crying times at the four time points for each treatment group.
Then, any subjects whose squared Mahalanobis distance falls in the rejection region
of a x? distribution with 4 degrees of freedom at the a = .025 level of significance will
be considered a suspect value. Then, these subjects will be examined to determine if
there are any underlying causes for their large deviations. The relevant parts of the

R code is shown below.

M_pro <—matrix(c(time0 ,time7 ,timel4 time21) nrow=148 ncol=4,
byrow=TRUE)

center _pro <— c(mean(time0 ) ,mean(time7) ,mean(timeld),
mean(time21))

##return squared mahalanobis distance##

mahal _pro <— mahalanobis(M_pro, center _pro,cov(M_pro))

id _pro <— ID

center _pro <— center

M_plac <— matrix(c(time0 ,time7 ,timel4 ,time21) nrow=144 ncol=4,
byrow=TRUE)

center _plac <— c(mean(time0 ) ,mean(time7) mean(timeld),
mean(time21))

##return squared mahalanobis distance##

mahal _plac <— mahalanobis(M_plac ,center _plac,cov(M_plac))

id _plac <— ID

study _plac <— center

chi_stat <— qchisq (.975,df=4) #finds critical value of chi—sq
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##save suspect observations in table##

suspect .id <— NULL
center.s <— NULL
trt.s <— NULL
mahal.s <— NULL

for (i in 1:length(mahal_pro)){
if (mahal _pro[i]>chi_stat){
suspect .id <— c¢(suspect.id ,id_pro[i])
center.s <— c(center.s,center_pro[i])
trt.s <— c(trt.s,”pro”)

mahal.s <— c(mahal.s ,mahal _pro[i])

}

for (i in 1:length(mahal_plac)){
if (mahal_plac[i]>chi_stat){
suspect .id <— c(suspect.id,id_plac[i])
center.s <— c(center.s,center_plac[i])
trt.s <— c(trt.s,” plac”)

mahal.s <— c(mahal.s ,mahal_plac[i])

Running the program produces the following table which contains the subjects identi-

fied as suspects. Of the 36 subjects identified as suspects based on their Mahalanobis
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distance from the vector of means, 16 come from center 1, 6 come from center 2, 9
come from center 3, and 5 come from center 4. The number of outlying subjects in
center 1 is of particular interest because there are only 80 subjects in center 1, mean-
ing about 20% of the subjects are considered suspects. This is a rather large portion
of the subjects within the center, indicating that some heterogeneity may exist be-
tween the centers. Further examination of each of these points would be required in

order to fully understand their impact.
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center trt_gp | ID | Mahal Dist || center trt_gp | ID | Mahal Dist
1 | probiotic | 11 | 13.64980207 3 | probiotic | 30 | 20.0792489
1 | probiotic | 12 | 22.85530468 4 | probiotic | 8 | 15.66687714
1 | probiotic | 13 | 11.29542303 4 | probiotic | 9 | 21.76780725
1 | probiotic | 14 | 14.34232228 4 | probiotic | 13 | 13.0016703
1 | probiotic | 17 | 17.90265271 1| placebo | 11 | 25.02539749
1 | probiotic | 18 | 20.91496731 1| placebo | 13 | 20.17655287
1 | probiotic | 20 | 15.85138331 1| placebo | 15 | 17.70247995
1 | probiotic | 22 | 20.87020304 1| placebo | 16 | 12.62205258
1 | probiotic | 23 | 12.03937911 1| placebo | 17 | 20.4659725
1 | probiotic | 24 | 13.18695421 1| placebo | 19 | 12.08646477
2 | probiotic | 8 | 14.83340416 2 | placebo | 10 | 13.60564029
2 | probiotic | 12 | 12.20388722 3| placebo | 1| 12.81123194
2 | probiotic | 14 | 14.79821831 3| placebo | 3| 11.80528215
2 | probiotic | 15 | 33.59425923 3| placebo | 28 | 14.22762295
2 | probiotic | 17 | 15.3933404 3| placebo | 37 | 14.61781584
3 | probiotic | 26 | 16.4418664 3| placebo | 40 | 14.97477905
3 | probiotic | 27 | 12.40911079 4 | placebo | 9 | 12.94907788
3 | probiotic | 29 | 14.24526802 4 | placebo | 18 | 15.09555628

Table 5.8: suspect subjects with Mahalanobis distances
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6 Summary

Clustered data arise naturally in several situations. One of the most common sources
of clustering is longitudinal data. When repeated measures are taken on the same
subject over time, a positive correlation often exists among the measurements and
must be considered when performing data analysis. This paper has shown that clus-
tered data needs to be treated with care when making statistical inferences, as failing
to account for correlation leads to misleading conclusions. In the simple case where
observations were paired (Section 2), adding a factor for subject to the Analysis of
Variance model allowed the correlation to be included in the calculations of standard
errors. Failing to account for the correlation led to obtaining incorrect standard er-
rors, which ultimately led to making incorrect statistical inferences. In Section 3,
a more complex example was shown where repeated measurements were taken on
subjects at four different points in time. Here, subject was included in the model
as a random effect which introduced the need for properly modelling the covariance
structure. It is important to note that introducing random effects into the model
changes the scope of inference. When using only fixed effects, regression models are
used to make predictions of a response variable based on the values of explanatory
variables. These predictions are simply expected values of Y conditional on the in-
put values for X. Any variance in the prediction is attributed to random error alone.
Introducing random effects, however, allows the variance to be modelled by adding
to the prediction a random component that can be thought of as a draw from a
population that follows a multivariate normal distribution. Correctly modelling the
covariance structure provided correct standard error estimates. Although it was not
discussed at length previously, correctly specifying the covariance matrix also can
have a major impact on the fixed parameter estimates themselves. For example, in

a model with response vector Y and design matrix X of fixed effects, the vector of
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parameter estimates ,é is given by

B=(X'S X)'X'T Y (6.1)

where 3 is the estimated covariance matrix. When the covariance structure is left
unaccounted for, 3 = T .[6] This again shows how crucial modelling the covariance
structure can be in statistical inference. Obtaining incorrect estimates for the param-
eters and standard errors leads to incorrect inference. Conclusions based on incorrect
inference are misleading and can have serious consequences, especially in medical re-
search. After stressing the importance of accounting for and modelling the correlation,
a few techniques for detecting outliers in clustered data were discussed. In particular,
it was shown how the Mahalanobis distance can be calculated to identify outlying
clusters before even testing a statistical model. Finally, the concepts discussed in
the paper were implemented in a case study analysis of a multi-center, randomized
controlled trial for examining the effect of introducing a probiotic treatment to babies
with colic. The objective of this paper was to show how proper statistical methods for
accounting for correlation among observations within a cluster must be implemented

in order to make correct statistical inference and draw conclusions.
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