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ABSTRACT

ACCOUNTING FOR CORRELATION IN THE ANALYSIS OF RANDOMIZED

CONTROLLED TRIALS WITH MULTIPLE LAYERS OF CLUSTERING

By

Adam Baumgardner

May 2016

Thesis supervised by Dr. Frank D’Amico.

A common goal in medical research is to determine the effect that a treatment has

on subjects over time. Unfortunately, the analysis of data from such clinical trials

often omits several aspects of the study design, leading to incorrect or misleading

conclusions. In this paper, a major objective is to show via case studies that ran-

domized controlled trials with longitudinal designs must account for correlation

and clustering among observations in order to make proper statistical inference.

Further, the effects of outliers in a multi-center, randomized controlled trial with

multiple layers of clustering are examined and strategies for detecting and dealing

with outlying observations and clusters are discussed.
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1 Introduction and Background

A common goal in medical research is to determine the effect that a treatment has on

subjects over time. Repeated measurements taken on the same subjects over time are

often positively correlated, creating a cluster of observations for each subject. Cor-

relation among observations brings about a few analytical challenges that must be

taken into consideration. Unfortunately, statistical analysis of data from such trials

often fails to take into account the clustering, which leads to incorrect inference. In

this paper, a few techniques for properly accounting for this correlation in clusters will

be presented and implemented. Additionally, a few approaches to detecting outlying

observations in clustered data are introduced. Then, the information and techniques

presented will culminate in a case study analysis of a multi-center, randomized con-

trolled trial with a longitudinal design. First, a few basic concepts must be discussed

to provide a foundation for understanding the statistical analysis that follows.

1.1 Clinical Trials and Experimental Design

When testing the efficacy of a new treatment or drug, drawing conclusions based on

anecdotal evidence alone is ill-advised. For example, before the 19th century it was

commonly believed that patients could be cured of illnesses by blood letting. This

typically entailed applying leeches to the bodies of sick patients to suck out the bad

blood. There was no scientific evidence of the efficacy or safety of this approach

because methods for testing hypotheses through systematic data collection and sta-

tistical analysis had not been developed.[17] In this example, not only was there a lack

of evidence that blood letting worked, it was dangerous and likely caused many peo-

ple harm. This illustrates the importance of having appropriately designed research

studies along with correct analysis when determining whether or not a treatment is

safe and effective.
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Research in medicine can be characterized as pre-clinical and clinical. Pre-clinical

studies occur before the treatment of interest is given to human subjects. The main

objective of pre-clinical research is typically to identify a safety profile for the treat-

ment and to determine a safe dosage for initial human testing. A clinical trial, on

the other hand, involves experimentation using human subjects and can be classified

into four phases. In a Phase I clinical trial, investigators are primarily interested in

exploring the potential side-effects of the treatment or drug being tested. Once a

tolerable dosage is established and side-effects have been documented, investigators

begin to examine the efficacy of the drug in a Phase II clinical trial. This phase typ-

ically consists of smaller-scale studies designed to determine whether the drug seems

to be effective enough to warrant more costly, larger-scale Phase III clinical trials.

During a Phase III clinical trial the new treatment or drug is compared either to

the current standard of treatment or to a placebo. Finally, after the treatment has

been deemed safe and effective, it either goes to market or becomes the new standard

treatment. However, there is still a possibility of side-effects surfacing that had not

been discovered during prior testing. Phase IV trials are observational studies that

are implemented to monitor these potential issues.[17]

While each of the four phases of clinical trials plays a critical role in medical re-

search, the focus of this paper will be primarily on Phase III trials. Approval of a

new treatment by regulatory agencies typically depends on the results of Phase III

testing. That being said, since Phase III clinical trials help dictate whether a drug

should be made available to the general population, it is crucial that care is taken in

both the design and analysis of such trials. As was stated previously, the objective
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of this type of clinical trial is to compare a new treatment to the current standard of

treatment or to a placebo. To accomplish this, investigators must design the exper-

iment according to statistical principles so results can be properly interpreted. Two

key principles of experimental design that will be discussed are randomization and

sample size determination.

Comparing groups of subjects receiving different treatments introduces a few tech-

nical issues. If the groups being compared are fundamentally different from one an-

other, bias is introduced and the effect of the treatment may be confounded. In other

words, a difference in the response variable between treatment groups may be due

to variables unrelated to the treatment itself. This dilemma establishes the need for

randomization. Randomly assigning subjects to different treatment groups is consid-

ered the gold standard for Phase III clinical trials. This type of study is generally

referred to as a randomized controlled trial. The goal of randomization is to ensure

all subjects within treatment groups in the trial are alike in all aspects except the

treatment they receive. When this is the case, it can be assumed that any difference

in the response variable between treatment groups can be credited directly to the

difference in treatment. This causal relationship allows researchers to make proper

statistical inference about the effect of the treatment(s) of interest.[1] Figure 1.1 gives

a visual representation of a basic randomization scheme.

3



Figure 1.1: a simple randomization scheme

It is worth noting that both the treatment and control groups have two green sub-

jects and two blue subjects. This is a trivial visualization of an important aspect of

randomization: ensuring homogeneity. In the hypothetical example depicted in Fig-

ure 1.1, imagine that a blue subject represents a male and a green subject represents

a female. If the randomization instead resulted in a treatment group of four males

and a control group of four females, differences in response may have been due to

sex rather than the treatment. As was stated earlier, this introduces bias and makes

inference about the effect of the treatment misleading. Thus, if the randomization

worked, there should be homogeneity among treatment groups. This can mean check-

ing for relatively equal distributions of several variables such as sex, race, weight, etc.

among treatment groups.

Another critical aspect of experimental design is determining an appropriate sam-

ple size to be used in randomized controlled trials. Recruiting too many subjects to

participate in the experiment may be costly while recruiting too few subjects will

result in the inability to draw any statistically significant conclusions. Researchers

must find a proper balance between an experiment that is cost efficient and one that
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allows for meaningful analysis. The appropriate sample size to use for a particular

experiment (usually denoted by n) is typically determined by the desired Type I and

Type II error rates. The Type I error rate or significance level, α, is the probability

of rejecting the null hypothesis, H0, when it is true. On the other hand, the Type II

error rate, β, is the probability of failing to reject H0 when it is false. Another way

of thinking about a Type II error is in terms of the power of an experiment. The

power, 1− β, is the probability of rejecting H0 in favor of the alternative hypothesis,

HA, when HA is true. It is rather intuitive that one would like for an experiment to

have a low Type I error rate, α, along with high power, 1 − β. However, α and β

are inversely related when n is fixed. That is, choosing a lower value for α directly

leads to a higher value for β. If instead a value for α is chosen and fixed, increasing n

generally leads to a decrease in β (and an increase in power). Thus, researchers can

first choose a significance level and then determine the minimum sample size that is

needed to achieve the desired power. As was mentioned earlier, one barrier that may

arise when determining the sample size is cost. If the minimum sample size needed

to maintain the desired values of α and β is too large to be financially feasible, con-

cessions must be made. It is up to the researcher to determine whether it is more

important to protect against Type I errors or against Type II errors, which is highly

dependent on the context of the experiment. The idea of statistical power will be

important in this paper and will be revisited in a future section.[6]

1.2 Longitudinal and Clustered Data

In a longitudinal design of a randomized controlled trial the main objective is to

characterize the change in response to a treatment over time and to study the factors

that influence the change. The identifying feature of a longitudinal study is that

measurements of the response variable of interest are taken on the same subject

repeatedly over time. With repeated measures, both within-subject and between-
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subject change can be captured using statistical models, allowing for a direct study

of the change over time. Figure 1.2 shows an example of a longitudinal study that

measures how the concentration of a substance changes over time in eight subjects.

Figure 1.2: a basic longitudinal study involving eight subjects

Since the same individuals are being examined over time, the repeated measures

for each individual form a cluster. In randomized controlled trials, the word “cluster”

can have various meanings. In this paper, a cluster refers to a group of observations

that are not independent from one another. In longitudinal studies, observations

within these clusters have a natural ordering by time and will often be positively

correlated. The correlation between two variables is the degree to which they are

related in a linear fashion. The correlation is a standardized statistic usually denoted

by ρ and is bounded between -1 and 1. If two variables are highly correlated (ρ ≈ 1

or ρ ≈ −1), then an almost direct linear relationship exists between them. Positive

values for correlation imply that, as one variable increases (decreases), the other vari-

able also increases (decreases). Conversely, a negative correlation implies that, as

one variable increases (decreases), the second variable decreases (increases). In the

longitudinal case with repeated measures taken on the same subjects, the clustering

arises because observations taken on one individual are more likely to be similar to

each other than to the measurements taken on a different individual. These effects
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of clustering will be important in the analysis and will be discussed at length in

this paper. In non-longitudinal studies, clusters can still form either intentionally

or naturally. For example, if an experiment is designed to determine if a new in-

structional technique is effective for improving math scores on a standardized test, a

natural approach would be to compare the results from a class that did receive the

new instructional technique to the results from a class that did not receive the new

instructional technique. However, it is quite possible that the students within those

classes should not be treated as statistically independent. For example, students en-

rolled in an honors math course are probably more similar to each other than they

are to students in a standard math course. Thus, the honor students’ test scores

may change one way while the non-honors students’ scores change in a different way.

This lack of independence must be accounted for in the analysis before any meaning-

ful conclusions can be made regarding the effect of the new instructional technique.[4]

Now that it has been mentioned that observations within clusters in longitudinal

studies tend to be positively correlated, it is worth considering the potential sources

of this correlation. According to Fitzmaurice[4], this correlation is generally impacted

by three different sources of variation: between-subject heterogeneity, within-subject

biological variation, and measurement error. The first source of variation, between-

subject heterogeneity, arises due to the natural variation in humans’ propensity to

respond. In other words, in any longitudinal study, some subjects will be high re-

spondents and others will be low respondents. High respondents will have consistently

higher responses than average while low respondents will be consistently lower. Thus,

a pair of repeated measures on one subject is likely to be more similar than a pair of

measurements from two different subjects. The second source of variation that im-

pacts correlation is within-subject biological variation. The idea behind this source of

variation is that there are some underlying biological processes that cause a subject’s
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response to deviate from their response trajectory. These deviations are likely to

be more similar when the time between measurements is small. The third source of

variation that impacts the correlation of clustered data that will be discussed is mea-

surement error. Measurement error is a component of nearly all scientific studies and

is often quantified as reliability. This reliability acts as a constraint for how closely

correlated repeated measures can be. Now that we have seen the potential sources of

correlation within clusters of repeated measures in longitudinal studies, we consider

the consequences of ignoring this correlation in the analysis.
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2 Correlation in Longitudinal Data: The Simple

Case

In scientific research, investigators are often interested in whether or not a difference

exists between two groups. This is usually examined by comparing the means of the

two groups using a statistical test. Sometimes, the two groups under experimentation

are simply pre- and post-intervention measurements on the same subjects. In this

case, we can consider the study to be longitudinally designed with just two repeated

measures (baseline and post-intervention).

As an example, consider the data found in Table 2.1 below. This data comes from a

hypothetical study of n = 5 subjects where the response variable of interest Y is heart

rate measured in beats per minute (BPM). Each subject’s heart rate was measured

at rest (time t0) and then again after performing a physical activity (time t1).

Subject Resting HR (t0) Post-Activity HR (t1)

1 68 74

2 80 96

3 82 92

4 76 80

5 74 82

mean: X̄i 76 84.8

variance: s2i 30.03 81.18

Table 2.1: heart rates measured on 5 subjects at 2 time points

The investigators are interested in determining if the mean resting heart rate

is significantly different than the mean heart rate after activity. This is a simple

example of a common situation that arises in scientific research. In this situation, the
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hypothesis of interest is given by

H0 : µ0 = µ1

HA : µ0 6= µ1

where µ0 and µ1 represent the mean response at time t0 and t1, respectively. A typical

approach to this problem is to perform a Student’s t-test (One-way linear models

approach). Unfortunately, investigators often fail to account for the correlation in

the data by using this approach and often publish incorrect results. In this section,

it will be shown how ignoring the correlation impacts the statistical inference being

made.

2.1 Unpaired t-test: Ignoring the Correlation

An approach to testing the hypothesis of equal means between two time points that

is commonly used by investigators is the unpaired Student’s t-test. This is a very

simple test that is taught in many introductory statistics courses. However, this

test assumes that the two groups under experimentation are independent and, when

dealing with repeated measures on the same subjects, this assumption is violated.

This will be shown using both a traditional approach and a linear models approach.

A linear model is a statistical model that describes a continuous random variable as

a linear function of a set of predictor variables.

2.1.1 Traditional Approach to Unpaired Analysis

The traditional approach to performing the unpaired t-test is to calculate a test

statistic, t, and then compare it to a Student’s t-distribution with n1 +n2−2 degrees
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of freedom. First, the test statistic must be calculated:

t =
X̄1 − X̄2

sp
√

1
n1

+ 1
n2

(2.1)

where X̄1 and X̄2 are the means at time 1 and time 2, respectively, and n1 and n2

are the sample sizes at both times. In this equation, the denominator represents the

standard error estimate for the difference in means. One component of the standard

error is the pooled standard deviation of the two time points, sp, which is calculated

as follows:

sp =

√
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
(2.2)

In effect, this equation yields a weighted average of the two sample variances which

relies on the assumption that the population variances of the two time points are

equal (σ2
1 = σ2

2). Using the data from the heart rate study, the following is obtained:

sp =

√
(5− 1)(30.03) + (5− 1)(81.18)

5 + 5− 2
=
√

55.6 = 7.46 (2.3)

which yields a test statistic of

t =
76− 84.8

7.46
√

1
5

+ 1
5

= −1.87 (2.4)

When compared to a t-distribution with 8 degrees of freedom, this test statistic proves

to be significant (p < 0.05), allowing for the rejection of H0 in favor of HA. However,

the pooled variance term used in the standard error does not account for correlation

because it relies on the assumption of independence between the two time points.

Since a longitudinal study almost always results in correlated data, this analysis is

basically incorrect. Using this test would only be appropriate if the two time points

were independent, which, in this case, they are not. This introduces the need for
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pairing the data and performing the analysis on the pairs.

2.1.2 Linear Models Approach: One-way ANOVA

An analagous approach to performing an unpaired t-test is the use of a One-way

Analysis of Variance (ANOVA) model. In a One-way ANOVA, the goal is to model

the difference between two or more independent groups. For the heart rate study, the

model can be expressed mathematically as

Yij = µ+ αi + eij with i = 1, 2 and j = 1, · · · , 5 (2.5)

where µ is the overall mean of the observations, αi is the effect of time group i,

and eij ∼ N(0, σ2) is the random error term. Here, αi is considered the only effect

in the model; µ is a constant and eij is the random error. Using JMP® statistical

software[13], the following output is produced:

Figure 2.1: JMP: One-way ANOVA table, parameter estimates, and summary statis-

tics

In the ANOVA table, the mean square column shows the amount of variation in

12



the data that is due to the groups (model) and the amount that is due to the error

(error). In fact, the mean square error of 55.6 is exactly the same value that was

used for the pooled variance following the traditional approach, verifying that the

correlation has still been ignored using this approach. The ratio of the mean squares

gives the F-statistic, which is used to test the same hypothesis as in the traditional

approach. When there is only 1 degree of freedom in the model, F = t2, which is the

case here (3.482 = (−1.87)2). Thus, whether the traditional unpaired Student’s t-test

approach or the linear models approach using a One-way ANOVA is used to test the

null hypothesis of equal group means, any correlation in the data will be ignored as

both of these approaches rely on the assumption of independence.

2.2 Paired t-test: Accounting for the Correlation

To appropriately account for correlation, the analysis of this study must take into

account the pairing of data (i.e., clustering). To do so, a few simple adjustments

must be made when calculating the test statistic. As with the unpaired t-test, two

analagous approaches will be shown: the traditional approach and the linear models

approach.

2.2.1 Traditional Approach to Paired Analysis

Similar to the unpaired case, the traditional approach to performing a paired t-test

is to calculate a test statistic, t, and compare it to a Student’s t-distribution with

n − 1 degrees of freedom where n is the number of pairs of observations. Here, the

test statistic is given by

t =
X̄d − µ0

sd√
n

(2.6)

where X̄d is the mean of the paired differences between time 1 and time 2, µ0 is

a hypothesized value for the mean difference (in this example, 0), and sd is the
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standard deviation of the differences. The major difference between this method and

the unpaired method is that calculations are based on the difference between the two

time points as opposed to the pooling of the data. This allows the correlation to be

accounted for in the analysis by calculating an appropriate standard error estimate.

Specifically, the standard deviation of the differences between time 1 and time 2 is

calculated as follows:

sd =
√
s21 + s22 − 2σ12 (2.7)

where σ12 is the covariance of the measurements at time 1 and time 2. It is through

this term that the correlation enters the picture, i.e., σ12 = ρ12 ∗ s1s2 where ρ12 =

0.9117 is the correlation coefficient for the two time groups. Thus, the test statistic

for this example is

t =
−8.8− 0

4.6√
5

= −4.27 (2.8)

which is different than the test statistic that was found using an unpaired test. In

this case, the test statistic found using paired samples is more extreme than that

found with unpaired samples. Even though both tests lead to the rejection of the null

hypothesis in this particular example, this is not always the case. Failing to account

for correlation could be the difference between rejecting the null hypothesis or failing

to do so. If the correlation is positive, the power of the study is lower than anticipated

while if the correlation is negative, the study is not as significant as anticipated.

2.2.2 Linear Models Approach: Two-way ANOVA

An analagous approach to the paired t-test is the use of a Two-way Analysis of

Variance model. In a Two-way ANOVA, the goal is to determine the effect of two

factors on a continuous response variable. Similar to the One-way ANOVA, one of

the factors in this model will be the time group. However, this model will also include

a second factor: the subject. This helps account for the correlation in the data and
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allows for the direct study of the change in heart rate from time 1 to time 2. Written

mathematically, the univariate form of the model is given by

Yijk = µ+ αi + sj + eijk with i = 1, 2 and j = 1, · · · , 5 and k = 1 (2.9)

where sj represents the subject effect. Again using JMP to run the model, the

following output is produced:

Figure 2.2: JMP: Two-way ANOVA table, parameter estimates, and summary statis-

tics

In the parameter estimates, the t ratio for the variable time is -4.27, which is

exactly the test statistic that was calculated using the traditional approach. This

shows that both approaches will yield the same result. The advantage of using the

Two-way ANOVA approach is being able to examine the source of variation in the

ANOVA table. In the One-way ANOVA table produced earlier, the model only had

one degree of freedom and the majority of the variation was due to random error. In

the Two-way situation here, the model has five degrees of freedom and accounts for

more of the variation. This shows how including the subject effect in the model allows

for a more accurate examination of the variance and a direct study of the change in
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heart rate over time.
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3 Correlation in Longitudinal Data with Multiple

Repeated Measures

In the previous section, the effect of correlation was examined when the study was

longitudinal with measurements taken at two points in time. In this section, a more

complex study with four repeated measures will be examined. The data used in this

section is taken from Fitzmaurice[4] and is a study of the level of lead in the blood of

50 exposed children at four different times. A snapshot of the data is shown in Table

3.1 below.

Subject time0 time1 time2 time3

1 26.5 14.8 19.5 21

2 25.8 23 19.1 23.2

3 20.4 2.8 3.2 9.4

4 20.4 5.4 4.5 11.9

5 24.8 23.1 24.6 30.9

...
...

...
...

...

mean: X̄i 26.54 13.522 15.514 20.762

variance: s2i 25.21 58.867 61.657 85.495

Table 3.1: lead levels in blood of exposed children

With this data, the hypothesis of primary interest is

H0 : µ0 = µ1 = µ2 = µ3

HA : At least one of the population means differs.

where µi is the population mean of the blood lead level at time i. As in the previous

section, this data set will be analyzed using a few different techniques. First, the
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familiar One-way and Two-way ANOVA approaches will be implemented. Then,

random effects will be introduced to develop a mixed effects model.

3.1 One-Way Analysis of Variance

The simplest and probably most common approach to analyzing the difference be-

tween groups is to use a One-way ANOVA model. In a One-way ANOVA, the effect

of one nominal factor on a continuous dependent variable is examined. In the context

of the lead-exposure study, the nominal factor is time and the dependent variable

is lead level. Mathematically, the univariate form of the model for this data can be

expressed as

Yij = µ+ αi + ej(i) with i = 1, · · · , 4 and j = 1, · · · , 50 (3.1)

where µ is the mean of all 200 observations, αi is the effect at time i, and ej(i) ∼

N(0, σ2) is the random error. Using JMP to run the model, the following output is

obtained:

Figure 3.1: JMP: One-way ANOVA table, parameter estimates, and summary statis-

tics
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A careless analyst may look at the F-statistic of 29.4336 in the ANOVA table and

immediately conclude that a difference in means exists among the four time points

(reject H0) and begin performing multiple comparisons tests to pinpoint the source

of the difference. However, it was shown in the previous section that the One-way

ANOVA approach does not account for correlation in the data, so one must be careful

before making hasty conclusions. Since there is only one nominal factor with four

levels, the model only has three degrees of freedom while the random error term gets

the remaining 196 degrees of freedom. This implies that the model only accounts

for the variation between groups (i.e., time points) and any other deviation from

the group mean is due to random error alone. When there is correlation among

the groups, this is a misclassification because the model is ignoring the variation

between subjects. Additionally, an R2 value of 0.310589 implies only about 31% of

the variation in the data is accounted for in the model. This is another indication

that, even though the F-statistic proved to be significant (p < 0.001), there is still a

large portion of the variation in the data that has not been modelled. To determine if

there is correlation between the time points that needs to be modelled, the correlation

matrix can be examined. Figure 3.2 below shows the correlation matrix produced by

JMP.

Figure 3.2: JMP: correlation matrix for lead-exposure data

Each entry in Figure 3.2 is the correlation between the group in the row and the

group in the column. In this matrix, it appears that a positive correlation exists

between each pair of the four time points. This correlation must be accounted for

in the analysis, meaning the One-way ANOVA approach is incorrect. To account for
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the correlation, a Two-way ANOVA model may be more appropriate.

3.2 Two-Way Analysis of Variance

In a Two-way ANOVA model, a second nominal factor is included in the model to

help explain the variance in the continuous dependent variable. In the lead-exposure

example, the second factor to be added is the subject effect. For this example, subject

will be treated as a fixed effect. Entering this term in the model acknowledges the

fact that a possible source of variation is between the subjects in the study. In its

univariate form, the model is

Yijk = µ+ αi + sj + ek(ij) with i = 1, · · · , 4 and j = 1, · · · , 50 and k = 1 (3.2)

where sj represents the subject effect. The output produced by JMP is shown below

in Figure 3.3.

Figure 3.3: JMP: ANOVA table, effect tests, and summary statistics

When the One-way ANOVA model was used previously, it was stated that the

only variation accounted for in the model was due to the difference in time point. The

remaining variation in the data was attributed to random error. In the Two-way case

20



here, the model accounts for the variance between time points and between subjects.

This is most clearly seen in the ANOVA table in Figure 3.3. Now, the model has 52

degrees of freedom (3 due to the four levels of α and 49 due to the fifty subjects in

the study) and accounts for about 73% of the variance in the data (R2 = 0.731311).

The F-statistic used for testing the null hypothesis H0 : µ0 = µ1 = µ2 = µ3 is still

significant (p < 0.0001), but the variance has been more accurately modelled than it

was using a One-way ANOVA model.

3.3 Linear Mixed Effects Model

In both the One-way and Two-way ANOVA models, the factors were treated as fixed

effects. Here, the lead-exposure study will be analyzed using a linear mixed effects

model, treating subject as a random effect. In other words, subject represents a

random sample from all subjects who satisfy the inclusion criteria for the trial. By

considering subject a random effect, the lead level is assumed to vary randomly from

one subject to another, meaning that each subject in the study has their own mean

response trajectory over time.[4] In contrast, subject was treated as a fixed effect in

the previous examples. When subject is a fixed effect, it is assumed that the 50

subjects in the study are the only subjects of interest.[6] The general linear mixed

effects model is most easily expressed in matrix form as

Y = Xβ +ZU + e (3.3)

where β is a vector of fixed effects, U is a vector of random effects, X and Z are de-

sign matrices of covariates, and e is a vector of residuals. The random effects U are

assumed to vary following a multivariate normal distribution with mean 0 and covari-

ance matrix V(U)=G while the random error vector e is assumed to vary following a

multivariate normal distribution with mean 0 and covariance matrix V(e)=R. Thus,
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the covariance structure of Y can be expressed explicitly as

Σ = V(Y ) = ZGZ ′ +R (3.4)

where Z′ is the transpose of the matrix Z. In longitudinal applications, ZGZ′ is con-

sidered to represent the between-subject portion of the covariance matrix while R

represents the within-subject portion. The proper specification of G and R is crucial

to obtaining correct estimates of standard error and will be discussed at length in

this section. Additionally, it is assumed that U and e are independent.[8] The matrix

β of fixed regression parameters is the same for all subjects and can be interpreted

as population-averaged estimates. On the other hand, the matrix of random regres-

sion coefficients U is subject-specific and creates separate mean trajectories for each

subject.[4] Before further discussing the specification of the covariance matrix, JMP

will be used to run the model for the lead-exposure data, with subject specified as a

random effect. Figure 3.4 shows the output produced by JMP.

Figure 3.4: JMP: Summary Statistics and REML Variance Components Estimates
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The major difference between the output produced for a mixed model and a fixed

effects model is the inclusion of the Variance Components Estimates. Here, the

Restricted Maximum Likelihood method (REML) was used to produce the estimates

found in the table. This information shows how the variance is partitioned between

the random effects in the model (in this case, subject) and the random error term

(residual). In particular, 48.035% of the variation in the model is due to the clustering

of data by subject. This value is known as the intra-class correlation or ICC and is

calculated as follows:

ρ =
σ2
S

σ2
S + σ2

e

(3.5)

where σ2
S is the variance due to subject and σ2

e is the variance due to random error.

If ρ is close to 1, then the majority of the variance in the model can be explained

by the effect of clustering. In the lead-exposure example, clustering occurs within

each subject, i.e., each subject’s set of four observations forms a cluster. The ICC

is also crucial in determining an appropriate sample size for a randomized controlled

trial that involves clustering. For example, in a trial to determine if a difference in

outcome exists between two treatment groups, the number of observations required

in each treatment group is given by

N =
2(zα/2 + zβ)2σ2[1 + (m− 1)ρ]

(µ1 − µ2)2
(3.6)

where α is the desired level of significance, 1 − β is the desired power, σ2 is the

variance of the outcome, m is the number of observations per cluster, ρ again is the

ICC, and µ1 − µ2 is the minimum difference considered to be clinically significant.

Thus, when designing the trial, failing to account for correlation within clusters leads

to setting ρ = 0 in this equation. This will result in recruiting fewer subjects than is

necessary to maintain the desired statistical power. In effect, the term [1 + (m− 1)ρ]

is the factor by which the sample size must be increased in order for the trial to have
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the same power as it would if no clustering were present. This term is often referred

to as the Variance Inflation Factor (VIF) or the design effect.[15] Since the sample

size calculation for a Phase III clinical trial must be done before the trial begins, the

value of ρ is typically estimated. The estimate can be obtained from prior testing,

like from a Phase II trial, or from empirical evidence. This again shows how failing

to account for clustering of data can lead to incorrect inference.[5]

3.3.1 A Brief Overview of PROC MIXED using the SAS® System

Up to this point, JMP has been used to run all models and produce outputs. To

provide a little more flexibility when specifying covariance structures in mixed effects

models, the SAS System will be used.[12] In particular, programs will be written

using the PROC MIXED procedure in SAS. Since JMP is simply a program that

implements SAS, the SAS code used to run models in JMP can easily be produced.

The SAS code for the mixed effects model created by default in JMP (Figure 3.4)

is listed below. This will be used as a starting point from which other mixed effects

models can be written.

PROC MIXED DATA=lead exposure ALPHA=0.05;

CLASS sub j e c t time ;

MODEL lead l e v e l = time / SOLUTION;

RANDOM sub j e c t / SOLUTION;

RUN;

Explanations for the important statements and options in the code are listed below.

In addition to the statements already included in the code, a few more statements

and options that will be crucial when modelling covariance structures are discussed.

� CLASS - declares certain variables as nominal

� MODEL - specifies the response variable on the left-hand side of the equal sign
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and the fixed effects portion of the model, Xβ, on the right-hand side

� RANDOM - specifies the random effects portion of the model, ZU and G

� REPEATED - specifies the structure of R

� TYPE - option for specifying the type of covariance structure to be used

� R, G, and V - options to print the R, G, and V = ZGZ ′ + R matrices in

covariance form

� RCORR, GCORR, and VCORR - options to print the R, G, and V = ZGZ ′+

R matrices in correlation form

� SUBJECT - specifies variables whose levels are used in defining G and R

3.3.2 Modelling the Covariance

In the initial analysis of the lead-exposure data using a linear mixed effects model,

JMP was used to run the model. As was shown in the SAS code produced by JMP, the

structure of the covariance matrix V was not explicitly specified. In this section, a few

options for modelling the covariance structure to fit the data will be presented. Then,

the lead-exposure data will be analyzed by altering the linear mixed effects model to

include the specification of the covariance structure. Before continuing, it is important

to recall that observations on different patients are assumed to be independent. The

correlation within each subject, which has been the theme of this paper, arises because

the observations are taken at different times on the same subject. Thus, the structures

that will be discussed refer to the covariance pattern of measurements on the same

subject.[8] It is for this reason that the REPEATED statement will be used rather

than the RANDOM statement. In the following examples, let σ2
i be the variance at

the ith time point and let σij be the covariance between the ith and jth time points.

Also, recall that σij = ρijσiσj where ρij is the correlation between time i and j and
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σi is the standard deviation of time i. Thus, the covariance structures listed below

can be analagously expressed in terms of correlation.

3.3.2.1 Independent

When no covariance structure is specified in SAS for a linear mixed effects model,

an independent structure is assumed. This is the simplest form of the covariance

structure because it assumes that all observations are independent of each other.

This creates a matrix consisting of the variance terms along the main diagonal and

zeroes in all entries off the diagonal. When assuming homoscedasticity among time

points, only one parameter for the structure must be estimated: the variance. Thus,

the Independent Covariance Structure can be written as

V (IND) = σ2I =

0 1 2 3


0 σ2 0 0 0

1 0 σ2 0 0

2 0 0 σ2 0

3 0 0 0 σ2

where I is the identity matrix. The SAS code for running this model is shown below.[6]

PROC MIXED ASYCOV NOBOUND DATA=lead exposure ALPHA=0.05;

CLASS sub j e c t time ;

MODEL lead l e v e l = time / SOLUTION DDFM=KENWARDROGER;

REPEATED / SUBJECT=sub j e c t R RCORR;

RUN;

3.3.2.2 Compound Symmetric

When the covariance is assumed to be the same for any pair of observations on the

same subject, a compound symmetric covariance structure is appropriate. In other
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words, σij = σkl for all i, j, k and l. For simplicity, let v represent the covariance

between any two time points. Then, in a compound symmetric covariance matrix

that assumes homoscedasticity among time points, the off-diagonal elements are all

v while the main diagonal elements are σ2. Thus, there are 2 covariance parameters

to be estimated when choosing the compound symmetric structure.

V (CS) =

0 1 2 3


0 σ2 v v v

1 v σ2 v v

2 v v σ2 v

3 v v v σ2

In a compound symmetric structure, the terms along the diagonal can be thought of

as the between-subject variance and the terms off the main diagonal are the within-

subject variance. Below is the SAS code for running a model of the lead-exposure

data using a compound symmetric covariance structure.[6]

PROC MIXED ASYCOV NOBOUND DATA=lead exposure ALPHA=0.05;

CLASS sub j e c t time ;

MODEL lead l e v e l = time / SOLUTION DDFM=KENWARDROGER;

REPEATED / TYPE=cs SUBJECT=sub j e c t R RCORR;

RUN;

3.3.2.3 Autoregressive (order 1)

The third structure that will be discussed in this paper is the autoregressive covariance

matrix. When using this approach, it is assumed that observations on a subject that

happen closer together are more highly correlated than observations that happen far

apart. In terms of the correlation, ρij = ρ|tj−ti| where ti and tj are the times at

which observations i and j were taken. So, since |ρ| ≤ 1, the correlation between
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observations at two time points decreases exponentially as the time between them

increases. Here, only the variance σ2 and the correlation ρ need to be estimated.

V (AR(1)) =

0 1 2 3


0 σ2 σ2ρ σ2ρ2 σ2ρ3

1 σ2ρ σ2 σ2ρ σ2ρ2

2 σ2ρ2 σ2ρ σ2 σ2ρ

3 σ2ρ3 σ2ρ2 σ2ρ σ2

The SAS code for running the lead-exposure data using an autoregressive (order 1)

covariance structure is given below.

PROC MIXED ASYCOV NOBOUND DATA=lead exposure ALPHA=0.05;

CLASS sub j e c t time ;

MODEL lead l e v e l = time / SOLUTION DDFM=KENWARDROGER;

REPEATED / TYPE=ar (1 ) SUBJECT=sub j e c t R RCORR;

RUN;

The SAS code for the autoregressive structure is very similar to the code for the

compound symmetric structure. The only thing that has changed is the argument for

the TYPE option.[6]

3.3.2.4 Unstructured

The final covariance structure that will be discussed is the unstructured matrix. This

is probably the simplest covariance structure to understand because it places no

structure on the covariance matrix at all. In other words, all values for pairwise

covariances are allowed.
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V (UN) =

0 1 2 3


0 σ2

0 σ0σ1ρ01 σ0σ2ρ02 σ0σ3ρ03

1 σ0σ1ρ01 σ2
1 σ1σ2ρ12 σ1σ3ρ13

2 σ0σ2ρ02 σ1σ2ρ12 σ2
2 σ2σ3ρ23

3 σ0σ3ρ03 σ1σ3ρ13 σ2σ3ρ23 σ2
3

While the unstructured covariance matrix is easy to understand, it is difficult to

model because there is a parameter to estimate for every pairwise relationship in the

data. When the number of observations (and subjects if homoscedasticity is violated)

gets large, using the unstructured covariance matrix is inefficient. Thus, it is often

used as a starting point when determining if a simpler structure can be used.[6] The

SAS code for running a mixed effects model with an unstructured covariance matrix

is given below.

PROC MIXED ASYCOV NOBOUND DATA=lead exposure ALPHA=0.05;

CLASS sub j e c t time ;

MODEL lead l e v e l = time / SOLUTION DDFM=KENWARDROGER;

REPEATED / TYPE=un SUBJECT=sub j e c t R RCORR;

RUN;

3.3.3 Comparison of Covariance Structures

Now that several covariance structures have been presented, a method for determining

which structure best fits the data under examination. Littell asserts that either

Akaike’s Information Criterion (AIC) or the Bayesian Information Criterion (BIC)

can be used to compare models with the same fixed effects but different covariance

structures.[8] These criteria provide an idea of relative goodness-of-fit for the models
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produced. The equations for calculating the AIC and BIC of a model are given by

AIC = 2k − 2ln(L) (3.7)

BIC = −2ln(L) + kln(n) (3.8)

where k is the number of parameters in the covariance matrix, ln(L) is the maximized

log-likelihood, and n is the number of subjects. Using these equations, a model with

a smaller AIC and BIC indicates a better fit and is considered preferable. The two

models will not always agree on the best model and, in fact, the BIC is often preferred

because it carries a harsher penalty for increasing the number of parameters than does

the AIC. By default, when using SAS to run the models with different covariance

structures, k, −2ln(L), AIC, and BIC are all included in the output. Running a

linear mixed effects model for the lead-exposure data using each of the four covariance

structures discussed above yields the following results in Table 3.2.

Structure Cov. Parameters −2ln(L) AIC BIC

Independent 1 1367.1 1369.1 1371.0

Compound Symmetry 2 1314.6 1318.6 1322.4

Autoregressive 2 1319.4 1323.4 1327.3

Unstructured 10 1280.3 1300.3 1319.5

Table 3.2: goodness-of-fit statistics for lead-exposure data

With the lead-exposure data, it appears that the unstructured covariance matrix

is the best choice when comparing the values for either BIC or AIC. Since there are

only n = 50 subjects in the study and k = 10 covariance parameters that must be

modelled, the AIC and BIC for the unstructured covariance matrix did not carry

enough of a penalty to make a simpler covariance structure preferable. Thus, it has

been shown that, even with a simple example of fifty subjects being observed at four
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different points in time, the default independent covariance structure was not consid-

ered the best fit for the data.

Additionally, it was stated previously that modelling the covariance appropriately

has a major impact on the standard errors used in parameter estimates of fixed effects.

Using an incorrect covariance structure can lead to using incorrect standard errors.

When this happens, conclusions made using statistical inference are often incorrect.

To illustrate this effect, Table 3.3 contains the standard error term for the parameter

estimates of the fixed effects in the lead-exposure data. Since time is a nominal fixed

effect, dummy variables were used to distinguish the four different time points where

the reference cell was time 3.

Time IND CS AR(1) UN

0 1.0962 1.0962 1.4131 1.1378

1 1.0962 1.0962 1.3022 1.2036

2 1.0962 1.0962 1.0549 1.2736

3 (INTERCEPT) 1.0962 1.0962 1.0717 1.3076

Table 3.3: standard errors of fixed effects parameter estimates
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4 Detecting Outliers

One of the objectives of this paper is to examine various strategies for identifying

outliers in clustered data. Before discussing different outlier detection techniques and

applying them to a case study, it is important to have a strong understanding of what

it means for an observation to be an outlier. In the simplest sense, an outlier is an

extreme observation. When performing data analysis, data sets are assumed to have

been generated by a particular probability model. This assumption is what allows

statisticians to perform hypothesis tests and make statistical inferences about the

data. When a subset of observations within a data set appear to be inconsistent with

the assumed probability model, they are considered suspect values. Then, statistical

tests can be carried out to determine if it is statistically unreasonable to assume that

the suspect values belong to the assumed probability model. Observations that are

deemed to have been generated from a different probability model are then referred

to as outliers.[7] There are many different techniques for determining whether or not

a particular observation is an outlier. Most of these techniques involve quantifying

an observation’s standardized distance from either a sample mean or predicted value

or determining the influence the observation has on the overall fit of a statistical

model. In this section, a few approaches to detecting outliers will be introduced and

discussed. In the proceeding section, these techniques will be applied to real data

from a multi-center, randomized controlled trial.

4.1 Outlier Detection in Models with a Univariate Response

When working with one variable within a data set, it is quite simple to determine

which observations can be suspected of being outliers. A general rule of thumb for

identifying suspect values that is introduced in many basic statistics courses is the

1.5 ∗ IQR rule or the interquartile range rule. The interquartile range (IQR) for a
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data set is found by calculating the difference between the upper and lower quartile

of the data. Any points that are farther than 1.5 ∗ IQR from the median of the data

set (in either direction) are considered suspect values. For example, consider the data

set of commute times (in minutes) for 12 people shown in Table 4.1.

5 17 21 22

24 29 29 30

31 31 33 36

Table 4.1: commute times (in minutes)

For this data set, the median is 29, the upper quartile is 31, and the lower quartile

is 20.5. Thus, the interquartile range is calculated as IQR = Q3 −Q1 = 31− 20.5 =

10.5, which means any observation greater than 29 + 1.5 ∗ 10.5 = 44.75 or less than

29 − 1.5 ∗ 10.5 = 13.25 will be considered a suspect value. It is clear that the first

observation of 5 is the only suspected value. This is most clearly seen visually with

the boxplot shown in Figure 4.1. Here, the ”whiskers“ of the boxplot extend in either

direction to the maximum or minimum data point that is within 1.5 ∗ IQR of the

median. The outlying observation with a value of 5 is the lone point that falls outside

of the box and whiskers.
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Figure 4.1: boxplot of commute times

While this approach for finding suspect values is very easy to implement, it is

simply a rule of thumb and cannot be used as the only method for detecting outliers.

Additionally, it is only applicable when analyzing the distribution of each variable

separately. When modelling the relationship between a univariate response variable

and a set of independent variables, this technique will not be of much use.

A more statistically sound, yet simple method for detecting outliers in the uni-

variate case is through the examination of studentized residuals. When modelling a

relationship between a univariate response variable and a set of explanatory variables,

a residual is defined as the difference between the expected value and the observed

value for a particular input of each explanatory variable in the model. This essen-

tially gives an idea of how far off the model is at a given point. Since different data

sets often have different variance, it is often useful to standardize residuals for easier

interpretation. One method of standardization is to studentize the residuals; that

is, convert each residual so that it follows a Student’s t-distribution with n − k − 1
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degrees of freedom (where k is the number of explanatory variables in the model).

Thus, if the residual falls within the rejection range of the Student’s t-distribution,

the corresponding observation is considered an outlier. The studentized residual for

the ith observation in a data set can be calculated using the following equation:

ri =
ŷi − yi

RMSE
√

1− hi
(4.1)

where ŷi is the predicted value of Y at observation i, yi is the observed value of Y at

observation i, RMSE is the root of the mean square error, and hi is the leverage of

the observation.[6] Rather than calculating the studentized residual for each obser-

vation by hand, most software packages will provide the values for all observations

at once. This makes outlier detection in the univariate case fairly straightforward.

However, the central focus of this paper has been on clustered data arising from lon-

gitudinal studies. Now, a few techniques for detecting outliers from such studies will

be introduced.

4.2 Outlier Detection in Clustered Data

When dealing with clusters of data, an investigator is often interested in learning

which clusters are outliers in addition to which observations are outliers. To find single

outlying observations, analysis of studentized residuals or similar approaches may be

used. However, identifying outlying clusters introduces a new challenge since multiple

observations make up a cluster. A graphical representation of how observations form

clusters is shown in Figure 4.2 to help make this idea a bit more clear. Here, three

clusters of observations are shown in 3-dimensional space. This figure represents

fictitious data, but is shown for purposes of illustration. The main point that Figure

4.2 aims to illustrate is that comparing clusters of observations is similar to comparing

collections of points.
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Figure 4.2: three clusters in 3-dimensional space

In a longitudinal study each subject is its own cluster of observations, so identifying

outlying clusters equates to identifying outlying subjects. The first three approaches

to detecting outlying clusters use the restricted likelihood distance, Cook’s Distance,

and the predicted residual sum of squares (PRESS). Each of these three approaches

revolves around determining how the fit of a model is affected by removing a partic-

ular cluster from the data set and are available using the PROC MIXED procedure

in the SAS System.

For each subject in the data set, the restricted likelihood distance (LD) is calculated

by finding the difference between the maximized log likelihood functions of a model

that includes the subject and one that does not. Mathematically, the restricted
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likelihood distance for the ith subject can be expressed as

LDi = 2[L(θ̂)− L(θ̂(i))] (4.2)

where L(θ̂) is the maximized log likelihood function of the full model and L(θ̂(i)) is

the maximized log likelihood function of the model with the ith cluster removed. In

effect, this statistic yields the influence the ith subject has on the likelihood function.

Subjects with large values for LD are considered to be suspect.[16]

A second measure of influence that can be utilized in the analysis of clustered data

is Cook’s Distance or, more commonly, Cook’s D. As with the restricted likelihood

distance, Cook’s D measures the effect of removing a particular cluster of observations

on the fit of the model. The calculation for Cook’s D is given by

Di =
e2ihi

MSE ∗ p(1− hi)2
(4.3)

where ei is the residual vector of the ith cluster, hi is the leverage vector of the ith

cluster, p is the number of observations within the cluster, and MSE is the mean

squared error. Again, a large value for Cook’s D typically indicates a suspect cluster.

A general rule of thumb is that if Di >
4
n

where n is the number of clusters in the

data set, then the subject can be considered an outlier.[3]

Another method that is useful in detecting outliers in clustered data is the pre-

dicted residual sum of squares (PRESS) statistic. The PRESS statistic is a measure

of fit of a model based on how removing a particular subject from the data set im-

pacts the residual sum of squares of the predicted values. To see the influence the

ith subject has on the fit of the model, it is first removed from the data set. A new

model is then fit using the remaining subjects. Finally, predicted values are found for
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the subject that was removed using on the newly fit model. This residual is referred

to as the PRESS residual and is the figure of interest when determining the influence

of each subject individually.

PRESSi = yij − ŷij,(−i) (4.4)

where yij is the observed value of Y for the ith subject at the jth time point and

ŷij,(−i) is the predicted value of Y for the ith subject at the jth time point obtained

from the model that was fit excluding the ith subject. When interested in deter-

mining the overall fit of a model or the influence of multiple subjects, this process is

performed iteratively and the PRESS statistic is the sum of the squared residuals of

the excluded subjects’ predicted values and their observed values.[14]

The final approach to detecting outlying clusters that will be discussed is using

the Mahalanobis distance. Simply put, the Mahalanobis distance is a measure of

standardized distance between two points in multiple dimensions. This can be viewed

as a multivariate generalization of finding the standardized difference between two

points that was discussed previously with studentized residuals. The equation for the

Mahalanobis distance between two k-dimensional points x1 and x2 from a data set

D is given by

M(x1,x2) =

√
(x1 − x2)TΣ−1(x1 − x2) (4.5)

where Σ−1 is the k × k inverse of the covariance matrix of D.[10] When the data

set under examination is clustered, the Mahalanobis distance between two clusters

can be found with this equation. For example, in the lead-exposure data, the two

points would be 4 dimensional vectors, representing the four measurements from two

different subjects. To determine if a particular subject is an outlier, the Mahalanobis

distance between that subject’s vector of observations and the vector of means must
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first be found. The square of the Mahalanobis distance follows a χ2 distribution with

k degrees of freedom, so a critical value can be obtained to test whether or not the

subject is an outlier.[9] A computational implementation of the Mahalanobis distance

will be shown in the next section when analyzing real data.

It is worth reiterating the difference between the Mahalanobis distance approach

and the first three approaches discussed. As was mentioned earlier, the first three

approaches aim to quantify how the fit of a model changes when the subject or cluster

under examination is removed. These calculations rely on the residuals between

predicted values and observed values. To get predicted values, a model must be fit.

On the other hand, the Mahalanobis distance in the context presented here considers

only the observed values for a particular subject. These values are then compared

to the vector of mean values. Thus, using the Mahalanobis distance in this way can

help identify suspect subjects before a model is even fit.
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5 Linear Mixed Effects Models: A Case Study

In this section, the topics introduced in the previous sections will be implemented to

perform an in-depth analysis of the data from a multi-center, randomized controlled

trial with a longitudinal design. The aim of this particular study was to determine if

introducing a probiotic to babies with colic decreases the amount of time they spend

crying. There had been prior Phase II randomized controlled trials that favored pro-

biotics as a potential aid in reducing crying time. According to Mayo Clinic, colic is

a condition identified by predictable periods of distress in an otherwise healthy baby.

Babies with colic often cry for over three hours a day, three days per week for several

weeks but tends to end after a few weeks or months. During the time when a baby

has colic, however, it is very difficult to bring him or her any relief.[2]

This study was conducted at four different centers on a total of 292 babies with

colic. At each center, babies were randomized into either the probiotic treatment

group or to the placebo group. The amount of time each baby spent crying was

reported by the baby’s mother in a daily journal. Investigators then averaged the

crying times for each baby by week at baseline, after one week, after two weeks, and

after three weeks. The primary objective of the study was to determine if the crying

time of the probiotic group decreased over time significantly more than the placebo

group. Table 5.1 contains the raw mean daily crying time (in minutes) for the two

treatment groups at each time point.
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Treatment Group Time (Days)

0 7 14 21

Placebo 201.95 155.80 127.89 110.71

Probiotic 215.20 127.39 101.32 77.51

Table 5.1: mean crying times at each time point

5.1 Developing the Model

Before proceeding with model development and analysis, it should be noted that this

data set poses a couple of major analytical challenges. First, the data are longitudi-

nal; each subject has four repeated measures for the response. This creates a cluster

for each subject and introduces the need for modelling the correlation between obser-

vations. Overcoming this particular hurdle has been the primary focus of this paper

up to this point. However, the subjects in this study were randomized into one of

two treatment groups (probiotic or placebo) at one of four centers, which creates a

nesting effect for the subjects. While the primary goal of this analysis is to deter-

mine whether or not there is a difference in response between the probiotic group

and the placebo group over time, the challenges mentioned here must be taken into

account in order to make proper statistical inference and draw meaningful conclusions.

In this analysis, the data will be examined using a linear mixed effects model

with a random subject effect. The univariate form of the model can be expressed

mathematically as

Yijklm = µ+ αi + γj + (α ∗ γ)ij + τk + (α ∗ τ)ik + (γ ∗ τ)jk + sl(ijk) + em(ijkl) (5.1)

Each of these terms is outlined in Table 5.2 for clarity. The primary goal will be to

make inference about γ ∗τ and γ in order to determine if there is a difference between
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treatment groups over time.

Symbol Variable

Y crying duration (response)

α center

γ trt gp

α ∗ γ center*trt gp interaction

τ time

α ∗ τ center*time interaction

γ ∗ τ trt gp*time interaction

s random subject effect

e random error term

Table 5.2: linear mixed effects model variables

As was shown in section 4, modelling the covariance structure is a crucial aspect of

making proper statistical inference when random effects are involved. In this analysis,

subject is a random effect and hence the covariance must be modelled. First, the SAS

code for the basic structure of the mixed effects model is shown below. Here, a random

intercept is estimated for each subject to give each subject its own mean trajectory.

PROC MIXED DATA=mult i c en t e r ALPHA=0.05;

CLASS cente r ID t r t gp time ;

MODEL cry ing durat ion = cente r t r t gp time t r t gp*time

cente r* t r t gp cente r*time ;

RANDOM i n t e r c e p t / SUBJECT=ID( cente r t r t gp ) ;

RUN;

Here, no covariance strucure has been declared, so the independent structure is chosen

by default. This structure assumes observations at different times for the same subject

are pairwise independent. Since the observations are taken over time on the same
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subject, this is not likely to be the proper structure but is the most conservative

approach. Nonetheless, it provides a starting point from which other models can be

built. In Table 5.3, the Akaike Information Criterion (AIC) and Bayesian Information

Criterion (BIC) are shown for the model using a few different covariance structures.

Structure Cov. Parameters −2ln(L) AIC BIC

Independent 2 12639.8 12643.8 12651.2

Compound Symmetry 3 12639.8 12645.8 12656.9

Autoregressive 3 12606.4 12612.4 12623.4

Unstructured 11 12556.8 12578.8 12619.2

Table 5.3: goodness-of-fit statistics (lower values indicate better fit)

With this model, the values for the BIC and AIC agree that the unstructured

covariance matrix best suits the data. It is important to keep in mind that this is not

always the case. As the number of repeated measures grows, so too does the number of

covariance parameters in the unstructured covariance matrix, driving up the values for

AIC and BIC. This is because an unstructured covariance matrix requires a covariance

parameter to be estimated for each entry in the matrix. Simpler structures, such as

the autoregressive or compound symmetric structures, require fewer parameters to be

estimated. However, in this case with four repeated measures, there are not enough

covariance parameters to make a simpler structure preferable. Thus, the analysis will

proceed assuming an unstructured covariance matrix for the subjects. The SAS code

for the model is given below followed by the covariance matrix V .

PROC MIXED DATA=mult i c en t e r ALPHA=0.05;

CLASS cente r ID t r t gp time ;

MODEL cry ing durat ion = cente r t r t gp time t r t gp*time

cente r* t r t gp cente r*time / S ;

RANDOM i n t e r c e p t / SUBJECT=ID( cente r t r t gp ) G GCORR
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V VCORR;

REPEATED / SUBJECT=ID( cente r t r t gp ) TYPE=un R RCORR;

RUN;

V = ZGZ ′ +R =

1 2 3 4


1 6594.52 3310.38 2686.41 2500.29

2 3310.38 4946.56 3166.80 2648.51

3 2686.41 3166.80 4762.72 3087.14

4 2500.29 2648.51 3087.14 4025.80

Appropriately modelling the covariance leads to obtaining correct estimates of the

standard error terms which ultimately results in making correct inference. Had this

step been skipped, standard errors for testing various hypotheses would have been

incorrect. In the context of medical research, this can have serious consequences.

If a standard of treatment is changed (or fails to change) due to research that was

analyzed incorrectly, patients may end up receiving suboptimal care. To see this,

consider the table shown below. Table 5.4 shows a subset of the solutions for the

fixed effect parameters obtained when assuming the independent covariance matrix

and the unstructured covariance matrix. Each row in the table is a test of whether or

not the coefficient of the corresponding parameter is statistically different from zero.

It is quite clear from Table 5.4 that the standard error estimates do change. Since

the statistic used in the hypothesis test of each row is simply the estimate divided

by the standard error estimate, changes in the standard error can lead to changes in

conclusions of statistical significance.
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Unstructured Independent

Effect Estimate St. Error p-value Estimate St. Error p-value

Intercept 68.8263 12.4486 < .0001 68.0902 13.4738 < .0001

center[1] 10.4374 15.6274 0.5047 12.2577 16.7818 0.4657

center[2] -4.9703 17.3396 0.7746 -2.2496 18.6694 0.9042

center[3] 16.8045 14.6569 0.2525 16.2641 15.7439 0.3025

trt gp[placebo] 36.6082 16.3544 0.026 37.9753 17.0015 0.0263

time[0] 53.5867 11.4216 < .0001 53.5867 10.0692 < .0001

time[7] 19.2648 9.2367 0.0373 19.2648 10.0692 0.056

time[14] 8.665 7.7953 0.2666 8.496 10.0747 0.3993

Table 5.4: fixed effect solutions using different covariance structures

Now that the covariance structure has been modelled, proper inference can be

made. Since the primary objective of the study is to determine the effect of the

probiotic over time, the variables of primary interest are trt gp and trt gp*time. To

determine whether or not trt gp has a significant effect on crying time, the Type 3

test of the fixed effect can be used. Figure 5.1 the SAS output for performing the

Type 3 Tests of Fixed Effects. With a p-value of .0017, it is clear that the treatment

group does seem to have an effect on crying time. Also, since the estimate for the

effect the placebo group has on crying time is 36.61 (shown in Table 5.4 above), it

appears the probiotic did lead to a reduction in crying time.
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Figure 5.1: type 3 tests of fixed effects

An effective way to study the effect of the treatment group over time is to consider

the least squares means at each level of trt gp*time and how they differ from each

other. If the probiotic is effective in reducing crying time, one would expect to see

the difference in least squares means between the treatment groups be small at time 0

and then grow over time. The manner in which this difference changes over time will

give a reasonable picture of what effect the probiotic has on crying time. In the three

figures that follow, the least squares mean estimates will be explored. In Figure 5.2,

the least squares mean estimates for each level of trt gp*time are shown. Figure 5.3

graphs the least squares means by treatment group. This gives an intuitive visual for

how crying duration changes over time in each treatment group. Finally, Figure 5.4

shows the estimated difference in least squares means between levels of trt gp*time

along with corresponding 95% confidence intervals.
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Figure 5.2: least squares means estimates for each level of trt gp*time

Figure 5.3: least squares means plot for trt gp*time
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Figure 5.4: differences in least squares estimates for levels of trt gp*time

Using these three figures, a few conclusions can be made. First, there is no

significant difference in least squares means between the placebo group and probiotic

group at time 0. This provides some evidence that the randomization of subjects

worked as intended because there was no statistical difference in crying times between

the two groups when the trial started. Then, at each of the next three time points,

there are significant differences in crying time between the two groups, hinting that
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the probiotic did in fact reduce crying time. From the graph in Figure 5.3, it appears

the major change in crying time between the two groups occurred from time 0 to time

7. Both groups saw a decrease in crying time, but the decrease was more drastic in

the probiotic group. After time 7, the lines for the two groups are almost parallel,

meaning both decreased at a fairly similar rate. This gives some evidence that the

probiotic was most effective in reducing crying when first introduced. Then, both

groups saw similar decreases in crying which can be attributed to time. This is

consistent with the information provided by Mayo Clinic[2] on babies with colic that

was mentioned earlier. After a few weeks or months, colic tends to go away. This

gradual decrease over time seen in both groups may have been due to certain babies

growing out of the colic stage.

5.2 Checking the Assumptions

Now that a model has been chosen and fit for the data, it is important to check that

the assumptions for linear mixed effects models hold. The three major assumptions

that are relevant to this model are normality of residuals, homoscedasticity, and in-

dependence. If the assumption of normality holds, the studentized residuals from the

model will follow a (roughly) normal distribution. In Figure 5.5 below, the studen-

tized residuals from the model are shown in a Residual vs. Predicted plot (top left),

a histogram (top right), and a Q-Q plot (bottom left). All three plots show sufficient

evidence of normality among the studentized residuals, which allow the assumption

to be confirmed.
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Figure 5.5: studentized residual statistics for colic study

To check for homoscedasticity, plots of the studentized residuals can be used again.

However, for this assumption to hold, the residuals will have roughly the same spread

for each center. This will show that the variance is approximately equal across centers.

Figure 5.6 shows the histograms for the studentized residuals for each center. It

appears that the four centers have roughly the same spread of residuals, which allows

the assumption of homoscedasticity to be confirmed.
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Figure 5.6: histograms for studentized residuals for each center

The assumption of independence is more difficult to confirm for this study. The

fact that the observations for one subject are not independent of one another has

already been discussed and accounted for through the modelling of the covariance

structure. However, the linear models assumption of independence refers to the as-

sumption that the order in which subjects were randomized and received treatment

has no impact on the distribution of residuals. In other words, the residual error

from one subject should not affect the residual error for the next subject.[1] Checking

this assumption boils down to ensuring the randomization scheme was effective and

the order of entry into the study had no impact on crying duration. To allow for

this assumption to be checked, the order in which subjects are randomized should be

recorded and included as a variable in the data set to be analyzed. Then a simple plot

of studentized residuals vs. order could be produced to determine if any patterns or
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trends appear. Unfortunately, this information was not included in this study which

means the assumption of independence can not be unequivocally confirmed at this

time. For the sake of this analysis, it will be assumed without further justification that

the randomization scheme used in the study was effective in preventing experimental

dependence.

5.3 Detecting Outliers

At this point, the model has been fit, the covariance structure has been modelled,

and inference about the effect of the probiotic over time has been made. To complete

the analysis, any outliers will be determined. In this case study, outliers can be

found at the observation level or at the subject level. At the observation level, the

distribution of studentized residuals can be used to find any observations that fall

far enough from the mean to be considered outliers. This method was discussed

in Section 4 and will be skipped here because the focus of this paper has been on

the clusters of observations that form for each subject. To find subjects that are

outlying, the other influence diagnostics discussed in Section 4 can be implemented.

Using SAS PROC MIXED, the restricted likelihood distance, Cook’s Distance, and

PRESS statistic can be found for each subject. The code is shown below. The major

statement to make note of in the code is INFLUENCE. Including this option provides

the relevant influence statistics as well as intuitive visuals. Here, the effect of interest

is subject or ID(center trt gp). The ITER statement accounts for how removing a

subject impacts the covariance structure used in the model by performing a specified

number of additional iterations to recompute the structure.[12]

PROC MIXED DATA=mult i c en t e r ALPHA=0.05;

CLASS cente r ID t r t gp time ;

MODEL cry ing durat ion = cente r t r t gp time t r t gp*time

cente r* t r t gp cente r*time /
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INFLUENCE(EFFECT=ID( cente r t r t gp ) ITER=5);

RANDOM i n t e r c e p t / SUBJECT=ID( cente r t r t gp ) ;

REPEATED / SUBJECT=ID( cente r t r t gp ) TYPE=un ;

RUN;

It is important to remember that these methods are used for determining the influence

certain subjects have on the fit of the model. Their calculations are based on residuals

that can only be obtained after a model is fit. The figures below show graphs for the

restricted likelihood distance and Cook’s D. Then, the tables that follow show the

subjects with the largest values for the three measures of influence.

Figure 5.7: restricted likelihood distance for each subject
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Figure 5.8: Cook’s D for each subject

center id trt gp restricted likelihood distance

3 7 probiotic 3.1152

3 54 probiotic 2.2934

3 13 probiotic 1.9421

3 17 probiotic 1.7819

3 12 probiotic 1.6468

2 40 probiotic 1.4282

3 22 probiotic 1.3568

3 38 probiotic 1.1075

2 15 placebo 1.0882

3 23 placebo 1.063

Table 5.5: subjects with greatest restricted likelihood distance

54



center id trt gp Cook’s D

3 7 probiotic 0.02604

2 40 probiotic 0.02456

2 15 placebo 0.0215

2 25 probiotic 0.02059

3 13 probiotic 0.01879

3 54 probiotic 0.01651

3 17 probiotic 0.01536

4 18 placebo 0.01477

3 22 probiotic 0.01467

3 12 probiotic 0.01409

Table 5.6: subjects with greatest Cook’s D; D > 4
n

= .014 considered outlier

center id trt gp PRESS Statistic

3 7 probiotic 262878

3 13 probiotic 261239

3 17 probiotic 160234

3 22 probiotic 142293

3 8 probiotic 134210

3 43 placebo 116723

3 1 probiotic 102010

1 1 placebo 88543

2 28 probiotic 84836

3 12 probiotic 81078

Table 5.7: subjects with greatest PRESS

If more information had been recorded for each subject (e.g., height, weight, age,
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etc.), the distribution of outliers could have been examined in more detail to pinpoint

the underlying cause for their status as outliers. Here, however, the only factor that

can be considered is the center to which the subject belonged. As a demonstration of

how one could analyze these outliers further, the distributions of the Cook’s Distances

are shown by center in Figure 5.9. It appears that center 3 has more subjects with

extreme values for Cook’s D than the other three centers. This may indicate that the

model does not predict crying times for subjects from center 3 particularly well. This

could be due to some natural heterogeneity between the four centers, which could be

due to the clustering of subjects within each center. More information on the subjects

within the centers would be needed before considering this a red flag.

Figure 5.9: distribution of Cook’s D for each center

In Section 4, it was also shown how the Mahalanobis distance can be used to

identify suspicious subjects before even running a model. This will be implemented for
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the colic study using R software.[11] The objective is to find the Mahalanobis distance

between each subject’s vector of observations (time 0, time 7, time 14, time 21) and

the vector of mean crying times at the four time points for each treatment group.

Then, any subjects whose squared Mahalanobis distance falls in the rejection region

of a χ2 distribution with 4 degrees of freedom at the α = .025 level of significance will

be considered a suspect value. Then, these subjects will be examined to determine if

there are any underlying causes for their large deviations. The relevant parts of the

R code is shown below.

M pro <−matrix ( c ( time0 , time7 , time14 , time21 ) ,nrow=148 ,ncol=4,

byrow=TRUE)

cente r pro <− c (mean( time0 ) ,mean( time7 ) ,mean( time14 ) ,

mean( time21 ) )

##return squared mahalanobis d i s t a n c e##

mahal pro <− mahalanobis (M pro , c en t e r pro , cov (M pro ) )

id pro <− ID

cente r pro <− c en te r

M plac <− matrix ( c ( time0 , time7 , time14 , time21 ) ,nrow=144 ,ncol=4,

byrow=TRUE)

cente r p lac <− c (mean( time0 ) ,mean( time7 ) ,mean( time14 ) ,

mean( time21 ) )

##return squared mahalanobis d i s t a n c e##

mahal p lac <− mahalanobis (M plac , c en t e r plac , cov (M plac ) )

id p lac <− ID

study p lac <− c en te r

ch i stat <− qchisq ( . 9 7 5 , df=4) #f i n d s c r i t i c a l v a l u e o f chi−sq

57



##save s u s p e c t o b s e r v a t i o n s in t a b l e##

suspec t . id <− NULL

cente r . s <− NULL

t r t . s <− NULL

mahal . s <− NULL

for ( i in 1 : length ( mahal pro ) ){

i f ( mahal pro [ i ]> ch i stat ){

suspec t . id <− c ( suspec t . id , id pro [ i ] )

c en t e r . s <− c ( c en te r . s , c en t e r pro [ i ] )

t r t . s <− c ( t r t . s , ”pro” )

mahal . s <− c ( mahal . s , mahal pro [ i ] )

}

}

for ( i in 1 : length ( mahal p lac ) ){

i f ( mahal p lac [ i ]> ch i stat ){

suspec t . id <− c ( suspec t . id , id p lac [ i ] )

c en t e r . s <− c ( c en te r . s , c en t e r p lac [ i ] )

t r t . s <− c ( t r t . s , ” p lac ” )

mahal . s <− c ( mahal . s , mahal p lac [ i ] )

}

}

Running the program produces the following table which contains the subjects identi-

fied as suspects. Of the 36 subjects identified as suspects based on their Mahalanobis
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distance from the vector of means, 16 come from center 1, 6 come from center 2, 9

come from center 3, and 5 come from center 4. The number of outlying subjects in

center 1 is of particular interest because there are only 80 subjects in center 1, mean-

ing about 20% of the subjects are considered suspects. This is a rather large portion

of the subjects within the center, indicating that some heterogeneity may exist be-

tween the centers. Further examination of each of these points would be required in

order to fully understand their impact.
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center trt gp ID Mahal Dist center trt gp ID Mahal Dist

1 probiotic 11 13.64980207 3 probiotic 30 20.0792489

1 probiotic 12 22.85530468 4 probiotic 8 15.66687714

1 probiotic 13 11.29542303 4 probiotic 9 21.76780725

1 probiotic 14 14.34232228 4 probiotic 13 13.0016703

1 probiotic 17 17.90265271 1 placebo 11 25.02539749

1 probiotic 18 20.91496731 1 placebo 13 20.17655287

1 probiotic 20 15.85138331 1 placebo 15 17.70247995

1 probiotic 22 20.87020304 1 placebo 16 12.62205258

1 probiotic 23 12.03937911 1 placebo 17 20.4659725

1 probiotic 24 13.18695421 1 placebo 19 12.08646477

2 probiotic 8 14.83340416 2 placebo 10 13.60564029

2 probiotic 12 12.20388722 3 placebo 1 12.81123194

2 probiotic 14 14.79821831 3 placebo 3 11.80528215

2 probiotic 15 33.59425923 3 placebo 28 14.22762295

2 probiotic 17 15.3933404 3 placebo 37 14.61781584

3 probiotic 26 16.4418664 3 placebo 40 14.97477905

3 probiotic 27 12.40911079 4 placebo 9 12.94907788

3 probiotic 29 14.24526802 4 placebo 18 15.09555628

Table 5.8: suspect subjects with Mahalanobis distances
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6 Summary

Clustered data arise naturally in several situations. One of the most common sources

of clustering is longitudinal data. When repeated measures are taken on the same

subject over time, a positive correlation often exists among the measurements and

must be considered when performing data analysis. This paper has shown that clus-

tered data needs to be treated with care when making statistical inferences, as failing

to account for correlation leads to misleading conclusions. In the simple case where

observations were paired (Section 2), adding a factor for subject to the Analysis of

Variance model allowed the correlation to be included in the calculations of standard

errors. Failing to account for the correlation led to obtaining incorrect standard er-

rors, which ultimately led to making incorrect statistical inferences. In Section 3,

a more complex example was shown where repeated measurements were taken on

subjects at four different points in time. Here, subject was included in the model

as a random effect which introduced the need for properly modelling the covariance

structure. It is important to note that introducing random effects into the model

changes the scope of inference. When using only fixed effects, regression models are

used to make predictions of a response variable based on the values of explanatory

variables. These predictions are simply expected values of Y conditional on the in-

put values for X. Any variance in the prediction is attributed to random error alone.

Introducing random effects, however, allows the variance to be modelled by adding

to the prediction a random component that can be thought of as a draw from a

population that follows a multivariate normal distribution. Correctly modelling the

covariance structure provided correct standard error estimates. Although it was not

discussed at length previously, correctly specifying the covariance matrix also can

have a major impact on the fixed parameter estimates themselves. For example, in

a model with response vector Y and design matrix X of fixed effects, the vector of
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parameter estimates β̂ is given by

β̂ = (X ′Σ̂
−1
X)−1X ′Σ̂

−1
Y (6.1)

where Σ̂ is the estimated covariance matrix. When the covariance structure is left

unaccounted for, Σ̂ = I.[6] This again shows how crucial modelling the covariance

structure can be in statistical inference. Obtaining incorrect estimates for the param-

eters and standard errors leads to incorrect inference. Conclusions based on incorrect

inference are misleading and can have serious consequences, especially in medical re-

search. After stressing the importance of accounting for and modelling the correlation,

a few techniques for detecting outliers in clustered data were discussed. In particular,

it was shown how the Mahalanobis distance can be calculated to identify outlying

clusters before even testing a statistical model. Finally, the concepts discussed in

the paper were implemented in a case study analysis of a multi-center, randomized

controlled trial for examining the effect of introducing a probiotic treatment to babies

with colic. The objective of this paper was to show how proper statistical methods for

accounting for correlation among observations within a cluster must be implemented

in order to make correct statistical inference and draw conclusions.
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