Bayesian Regression Inference Using a Normal Mixture Model

Hernan Maldonado

Follow this and additional works at: https://dsc.duq.edu/etd

Recommended Citation

This Immediate Access is brought to you for free and open access by Duquesne Scholarship Collection. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Duquesne Scholarship Collection.
BAYESIAN REGRESSION INFERENCE USING A NORMAL MIXTURE MODEL

A Thesis
Submitted to McAnulty College
and Graduate School of Liberal Arts

Duquesne University

In partial fulfillment of the requirements for
the degree of Masters of Science

By
Hernan Maldonado
August 2011
ABSTRACT

BAYESIAN REGRESSION INFERENCE USING A NORMAL MIXTURE MODEL

By
Hernan Maldonado
August 2011

In this thesis we develop a two component mixture model to perform a Bayesian regression. We implement our model computationally using the Gibbs sampler algorithm and apply it to a dataset of differences in time measurement between two clocks. The dataset has “good” time measurements and “bad” time measurements that were associated with the two components of our mixture model. From our theoretical work we show that latent variables are a useful tool to implement our Bayesian normal mixture model with two components. After applying our model to the data we found that the model reasonably assigned probabilities of occurrence to the two states of the phenomenon of study; it also identified two processes with the same slope, different intercepts and different variances.
ACKNOWLEDGMENT

I would like to thank my advisor, Dr. John Kern II, for being an outstanding advisor, mentor and person. His ideas and guidance in the process of writing this thesis were essential to its completion. John’s enthusiasm and encouragement were an important part of my continued motivation to work and to complete this project. His personal warmth and helpfulness are invaluable. John has my wholehearted gratitude.

Special thanks to my committee and the entire Mathematics and Computer Science Department faculty, staff, and my fellow students. Yinz made my studies at Duquesne a wonderful experience. I want to thank my officemate of two great years Monir Sharker for his wise advice, for his patience and his never-ending understanding, a great man he is.

I would also like to thank Nicole Pernischova for providing me with the data for this thesis.

I want to mention that my studies at Duquesne were possible thanks to the financial support of the Mathematics and Computer Science Department. I’m very grateful to the institution and to the people that represent it and work on it. May God continue blessing this school and its people.

Finally, I would like to thank my wife Laura and my son Benjo for all their love and support in the process of completing this thesis and the Masters in Computational Mathematics degree. It has been a great and enriching experience.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>iv</td>
</tr>
<tr>
<td>Acknowledgment</td>
<td>v</td>
</tr>
<tr>
<td>List of Tables</td>
<td>viii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>ix</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2 The Statistical Model</td>
<td>4</td>
</tr>
<tr>
<td>2.1 The Gibbs Sampler Algorithm</td>
<td>7</td>
</tr>
<tr>
<td>2.1.1 Computing</td>
<td>8</td>
</tr>
<tr>
<td>3 The Experiment</td>
<td>10</td>
</tr>
<tr>
<td>3.1 The challenge</td>
<td>10</td>
</tr>
<tr>
<td>3.2 Data Description: The PC and RBox timing</td>
<td>13</td>
</tr>
<tr>
<td>4 Experiment Results</td>
<td>14</td>
</tr>
<tr>
<td>5 Conclusion and Future Work</td>
<td>20</td>
</tr>
<tr>
<td>Bibliography</td>
<td>22</td>
</tr>
<tr>
<td>A Two component Normal mixture distribution</td>
<td>24</td>
</tr>
<tr>
<td>A.0.1 Derivation of the Full Conditional Distributions for z_i</td>
<td>25</td>
</tr>
<tr>
<td>A.0.2 Derivation of the Full Conditional Distributions for β_{01} and β_{02}</td>
<td>26</td>
</tr>
<tr>
<td>A.0.3 Derivation of the Full Conditional Distributions for β_{11} and β_{12}</td>
<td>29</td>
</tr>
</tbody>
</table>
LIST OF TABLES

4.1 Prior values ... 16
4.2 Parameters Convergence ... 16
4.3 Quantiles for p .. 17
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Time recording process</td>
<td>12</td>
</tr>
<tr>
<td>3.2</td>
<td>Differences between Rbox time and PC time</td>
<td>13</td>
</tr>
<tr>
<td>4.1</td>
<td>Cluster separation for time differences between Rbox and PC</td>
<td>15</td>
</tr>
<tr>
<td>4.2</td>
<td>Differences between Rbox time and PC time</td>
<td>17</td>
</tr>
<tr>
<td>4.3</td>
<td>Histograms of the marginal posterior realizations for β_{01} and β_{02}</td>
<td>18</td>
</tr>
<tr>
<td>4.4</td>
<td>Convergence of the Parameters</td>
<td>19</td>
</tr>
<tr>
<td>4.5</td>
<td>ACF for the Parameters</td>
<td>19</td>
</tr>
<tr>
<td>A.1</td>
<td>Cluster separation for time differences between Rbox and PC</td>
<td>28</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction

Box and Tiao (1968) introduced a Bayesian procedure to analyze a phenomenon in which a given set of observations were considered to be generated by more than one specific stochastic model. In their paper it is assumed that a linear model generates data from two different processes of differing variance. It is assumed that one process has a variance of σ^2 while the other has a variance of $k^2\sigma^2$ and both processes share the same mean. This seminal paper was written to tackle the need to expand the common assumption that:

“Most statistical procedures are arrived under the assumption that each one of a given set of observations is generated by a specific stochastic model containing a modest number of adjustable parameters” Box and Tiao (1968).

Since the publication of the paper by Box and Tiao (1968) research on this topic has flourished and today mixture models are commonly used to solve problems of classification in heterogeneous populations. In this context heterogeneous population classification can be understood as the challenge to associate an event to its causing phenomenon. As Gelman et al. (2004) describe, the distribution of heights in a population of adults reflects the mixture of males and females in the population. Mixture models are a tool to model these heterogeneous populations (males and females) by using separate univariate
distributions, rather than a single bimodal distribution.

An application of mixture models is done by Ding (2006) who uses regression mixture models to analyze students’ performance in mathematics across races and gender. Ding’s paper studies whether the effects of independent variables on a dependent variable differ across groups, either in terms of intercept or slope. The author found evidence that is consistent with studies based on conventional regression analysis showing that child’s math self-concept would be a strong predictor of actual math performance, of social competence, and of approach to learning; however the author’s findings revealed that self-concept does not predict well average math performance for children. The differences between the results obtained with regression mixture models and the classical regression shows that using mixture models can present a different perspective on the results of an analysis.

In this thesis a mixture model with latent variables is developed and implemented. As pointed out by Muthén (2001), the goal of using latent variables is to identify items that indicate classes well, estimate class probabilities, relate class probabilities to covariates, and classify individuals into classes.

The data used in this thesis was obtained from timing differences between two clocks: a Windows clock and an Rbox clock. A Windows clock is the clock that comes with the Windows OS. An Rbox clock is another timing device that can be installed into a computer to increase the timing accuracy (over that of the Windows clock).

A Windows clock was the device in charge of recording time during the experiments. However, it sometimes records its time and waits several (crucial) milliseconds to ask and record Rbox’s time. This leads to large discrepancies between the two clocks when measuring the time of a frequently repeated experiment.
The challenge then becomes to identify which timing measurements are “good” measurements and which are “bad” measurements in repeated experiments. This differentiation between “good” and “bad” allows scientists to discard those measurements that are not coming from an accurate report of the time by the PC device.

We apply our Normal Mixture model to the data by programming a Gibbs Sampler algorithm developed in Geman and Geman (1984) using the R statistical package.¹

In this thesis we found that latent variables are a good tool to implement a Bayesian Normal Mixture Model with two components. In an experiment with two states, “bad” and “good”, a Bayesian Normal Mixture Model appropriately assigned probabilities of occurrence to the two states of the phenomenon clearly identifying two processes with the same slope, different intercepts and different variances.

The next chapter of this thesis is a presentation of the statistical model and the computational algorithm. The third chapter presents an application of the model to a data-set; the fourth chapter presents the results and the final chapter concludes.

¹ R Development Core Team (2010)
The model presented here is a two component normal mixture model. The density function for a random variable Y believed to come from one of two simple linear regression equations is

$$f(y | x) = p \left(\frac{1}{\sqrt{2\pi \sigma_1^2}} \right) \exp \left\{ -\frac{[y - (\beta_{01} + \beta_{11}x)]^2}{2\sigma_1^2} \right\} +$$

$$(1 - p) \left(\frac{1}{\sqrt{2\pi \sigma_2^2}} \right) \exp \left\{ -\frac{[y - (\beta_{02} + \beta_{12}x)]^2}{2\sigma_2^2} \right\} \tag{2.1}$$

Equation 2.1 represents a belief that a phenomenon with two outcomes can be described using two mutually exclusive linear processes that differ from each other on intercept ($\beta_{01} \neq \beta_{02}$), slope ($\beta_{11} \neq \beta_{12}$) or variance ($\sigma_1^2 \neq \sigma_2^2$). In this model one of the linear processes takes place with probability p and the other with probability $(1 - p)$.

Using latent indicators z_i, the joint distribution of the dependent variables

1 The notation for this chapter can be better followed if you refer to Appendix C.
\{y_1, y_2, \cdots, y_n\} and indicators \{z_1, z_2, \cdots, z_n\} is

\[
\pi(y | \theta) = \prod_{i=1}^{n} \left\{ p\left(\frac{1}{\sqrt{2\pi\sigma_1^2}} \right) \exp \left\{ -\frac{\left[y_i - (\beta_{01} + \beta_{11}x_i) \right]^2}{2\sigma_1^2} \right\} \right\}^{1-z_i} \\
\left\{ (1-p) \left(\frac{1}{\sqrt{2\pi\sigma_2^2}} \right) \exp \left\{ -\frac{\left[y_i - (\beta_{02} + \beta_{12}x_i) \right]^2}{2\sigma_2^2} \right\} \right\}^{z_i}
\]

(2.2)

To estimate the parameters of the model we use a Bayesian approach. This approach recognizes the posterior distribution for the parameters as proportional to the likelihood times the joint prior for those parameters. In this thesis we specify Jeffreys priors (Jeffreys (1961))\(^3\) for \(\sigma_1^2\), \(\sigma_2^2\) and constant non-informative priors for \(p, \beta_{11}, \beta_{12}\) and \(z\), and use empirical Bayes\(^4\) to specify the hyper-parameters \((\mu_0, \mu_1, v_0, v_1)\) for Gaussian priors on \(\beta_{01}, \beta_{02}\). When we applied our model to our dataset, we faced a common problem on Bayesian mixture models known as the “label switching problem”. This problem is caused by the symmetry in the likelihood of the model parameters. To address this issue we used empirical Bayes to set the values of hyper-parameters of the informative prior distributions for our \(\beta_{01}\) and \(\beta_{02}\) parameters\(^5\). This approach gives a joint prior of \(^6\)

\[
g(\theta) \propto \frac{1}{\sqrt{2\pi v_0}} \exp \left\{ -\frac{1}{2v_0} (\beta_{01} - \mu_0)^2 \right\} \cdot \frac{1}{\sqrt{2\pi v_1}} \exp \left\{ -\frac{1}{2v_1} (\beta_{02} - \mu_1)^2 \right\} \cdot \frac{1}{\sigma_1^2} \cdot \frac{1}{\sigma_2^2}
\]

(2.3)

Where \(\mu_0\) is a hyper-parameter that represents the mean intercept for the

\(^2\)Using \(\theta = \{z, p, \beta_{01}, \beta_{11}, \sigma_1^2, \beta_{02}, \beta_{12}, \sigma_2^2\}\) and \(\theta_{-\sigma_1^2} = \{z, p, \beta_{01}, \beta_{11}, \beta_{02}, \beta_{12}, \sigma_2^2\}\) to shorten the notation

\(^3\)Jeffreys prior satisfies the local uniformity property: a prior that does not change much over the region in which the likelihood is significant and does not assume large values outside that range. It is based on the Fisher information matrix.

Jeffreys prior is locally uniform and hence noninformative. It provides an automated scheme for finding a noninformative prior for any parametric model \(p(y | \theta)\). Another appealing property of Jeffreys prior is that it is invariant with respect to one-to-one transformations. The invariance property means that if you have a locally uniform prior on \(\theta\) and \(\phi(\theta)\) is a one-to-one function of \(\theta\), then \(p(\phi(\theta)) = \pi(\theta) \cdot |\phi'(\theta)|^{-1}\) is a locally uniform prior for \(\phi(\theta)\).

\(^4\)Carlin and Louis (2008)

\(^5\)For a description of the “label switching problem” see Stephens (2000)

\(^6\)The full derivation of the priors can be found on Appendix A.0.2

5
bottom cloud given by a ordinary linear regression ran on the data. Also this is the starting value for the β_{01} parameter. μ_1 is a hyper-parameter that represents the mean intercept for the top cloud given by a ordinary linear regression ran on the data. Also this is the starting value for the β_{02} parameter. v_0 is a hyper-parameter that represents the expected variance of the intercept for the bottom cloud given by a ordinary linear regression ran on the data. Also this is the starting value for the σ_1 parameter. v_1 is a hyper-parameter that represents the expected variance of the intercept for the top cloud given by a ordinary linear regression ran on the data. Also this is the starting value for the σ_2 parameter.

Combining 2.2 and 2.3 via multiplication gives the posterior distribution for θ:

$$\pi(\theta) \propto \pi(y | \theta) \cdot g(\theta) \quad (2.4)$$

Given a multivariate posterior distribution for θ, it is easier to sample from a conditional distribution than to marginalize by integrating over a joint distribution. Then the full conditional distributions for the parameters θ of our model are $\underline{7}$8

Let

$$A = p \left(\frac{1}{\sqrt{2\pi \sigma_1^2}} \right) \exp \left\{ - \frac{[y_i - (\beta_{01} + \beta_{11}x_i)]^2}{2\sigma_1^2} \right\}$$

$$B = (1 - p) \left(\frac{1}{\sqrt{2\pi \sigma_2^2}} \right) \exp \left\{ - \frac{[y_i - (\beta_{02} + \beta_{12}x_i)]^2}{2\sigma_2^2} \right\}$$

$$z_i | \theta_{-z}, x, y \sim \text{Bern} \left(\frac{A}{A + B} \right)$$

$$\beta_{01} | \theta_{-\beta_{01}}, x, y \sim N \left(\bar{y}_0 - \beta_{11}\bar{x}_0, \frac{\sigma_1^2}{n_0} \right)$$

$$\beta_{02} | \theta_{-\beta_{02}}, x, y \sim N \left(\bar{y}_1 - \beta_{12}\bar{x}_1, \frac{\sigma_2^2}{n_1} \right)$$

$$\beta_{11} | \theta_{-\beta_{11}}, x, y \sim N \left(\frac{\sum_{i \in \beta_{11} = 0} y_i x_i}{\sum_{i \in \beta_{11} = 0} x_i^2} - \beta_{01} \frac{\sum_{i \in \beta_{11} = 0} x_i}{\sum_{i \in \beta_{11} = 0} x_i^2}, \frac{\sigma_1^2}{n_0} \right)$$

7Derivation of the full conditional densities can be found on Appendix A

$^8 n_j = \sum_{i \in \beta_{j} = 0} z_i$ for $j = 0, 1$
Having recognized the full conditional distributions for the parameters in our model we apply the Gibbs Sampler algorithm to sample from the marginal distribution of the parameters in the model. The Gibbs Sampler is presented in the following Section in the context of our model.

2.1 The Gibbs Sampler Algorithm

We used the Gibbs sampler framework developed in [Geman and Geman (1984)](1984) to sample from the conditional distributions presented in Section 2. The idea of the Gibbs sampler algorithm in this case is that:

Given a multivariate distribution it is simpler to sample from a conditional distribution than to marginalize by integrating over a joint distribution. Suppose we want to obtain k samples of \(\theta = \{z, p, \beta_{01}, \beta_{11}, \sigma_1, \beta_{02}, \beta_{12}, \sigma_2\} \) from a joint distribution \(p(z, p, \beta_{01}, \beta_{11}, \sigma_1, \beta_{02}, \beta_{12}, \sigma_2) \). Denote the \(i^{th} \) sample by \(\theta^{(i)} = \{z^{(i)}, p^{(i)}, \beta_{01}^{(i)}, \beta_{11}^{(i)}, \sigma_1^{(i)}, \beta_{02}^{(i)}, \beta_{12}^{(i)}, \sigma_2^{(i)}\} \). We proceed as follows:

1. We begin with some initial value \(\theta^{(0)} \) for each variable parameter.

2. For each sample \(i = \{1 \cdots k\} \), sample each variable parameter \(\theta_j^{(i)} \) from the conditional distribution \(p(\theta_j | \theta_{-j}) \). That is, sample each of the

\[
\beta_{12} | \theta_{-\beta_{12}}, x, y \sim N \left(\frac{\sum_{i: z_i = 1} y_i x_i}{\sum_{i: z_i = 1} x_i^2} - \beta_{02} \frac{\sum_{i: z_i = 1} x_i}{\sum_{i: z_i = 1} x_i^2}, \sigma_2^2 \right)
\]

\[
\sigma_1^2 | \theta_{-\sigma_1^2}, x, y \sim \text{Inv-Gamma} \left(n_0, \sum_{i: z_i = 0} [y_i - (\beta_{01} + \beta_{11} x_i)]^2 \right)
\]

\[
\sigma_2^2 | \theta_{-\sigma_2^2}, x, y \sim \text{Inv-Gamma} \left(n_1, \sum_{i: z_i = 1} [y_i - (\beta_{02} + \beta_{12} x_i)]^2 \right)
\]

\[
p | \theta_{-p}, x, y \sim \text{Beta} \left(1 + n_1, 1 + n_0 \right)
\]

The parameters were originally initialized to several different values. However upon running into the label switching problem we started the parameters close to values found after applying the \(k \)-means clustering technique to our data. This topic is expanded on Chapter 3.

In general an example of this process is \(p(\theta_j^{(i)} | \theta_1^{(i)}, \cdots, \theta_j^{(i)}, \theta_{j+1}^{(i-1)}, \cdots, \theta_n^{(i-1)}) \).
variable parameters from the distribution of that parameter conditioned on all other parameters, making use of the most recent values and updating the variable with its new value as soon as it has been sampled. For example: \(p(\sigma^{(i)}_1 | z^{(i)}, \beta^{(i)}_0, \beta^{(i)}_{01}, \beta^{(i)}_{02}, \beta^{(i-1)}_1, \beta^{(i-1)}_2, \sigma^{(i-1)}_2) \).

The samples then approximate the joint distribution of all model parameters. Furthermore the marginal distribution of any subset of parameters can be approximated by simply examining the samples for that subset of parameters, ignoring parameters that are not of interest. In addition, the posterior expected value of any parameter can be approximated by averaging over all the samples.

2.1.1 Computing

The computational aspect of the modelling was done in R\(^\text{12}\), the full code is presented in Appendix\(^\text{13}\) this section presents the code for simulating from the joint posterior distribution for the parameters in the R programming language.

```r
for(i in 1:(lagg\*TOTAL+burn))
{
 n0<-sum(1-z) ##Recalculating n0
 n1<-n-n0 ##Recalculating n1

#****************** Calculations for b01 **************
R<-(-sum((1-z)*y)/n0)-(b11*sum((1-z)*x)/n0)
b01<-rnorm(1,(R*n0*v01+m01*sigma1^2)/(n0*v01+sigma1^2)
       ,((n0/sigma1^2)+(1/v01))^(-1))

#****************** Calculations for b02 **************
K<-(-sum(z*y)/n1)-(b12*sum(z*x)/n1)
b02<-rnorm(1,(K*n1*v02+m02*sigma2^2)/(n1*v02+sigma2^2)
       ,((n1/sigma2^2)+(1/v02))^(-1))

#****************** Calculations for b11 **************
b11<-rnorm(1, (sum((1-z)*x*y)/sum((1-z)*x^2))
   -b01*(sum((1-z)*x)/sum((1-z)*x^2)),sqrt(sigma1/sum((1-z)*x^2)))
```

\(^{11}\)Gelman et al. (2004)
\(^{12}\)R Development Core Team (2010)
##****************** Calculations for b12 **************
\[
b12 \leftarrow \text{rnorm}(1, \frac{\text{sum}((z) \times x \times y)}{\text{sum}((z) \times x^2)} - b02 \times \frac{\text{sum}((z) \times x)}{\text{sum}((z) \times x^2)}, \sqrt{\text{sigma2} / \text{sum}((z) \times x^2)})
\]

##****************** Calculations for Sigma1 ************
\[
sigma1 \leftarrow \frac{1}{\text{rgamma}(1, n0/2, (\text{sum}((1-z) \times (y-(b01+b11 \times x))^2))/2)}
\]

##****************** Calculations for Sigma2 ************
\[
sigma2 \leftarrow \frac{1}{\text{rgamma}(1, n1/2, (\text{sum}((z) \times (y-(b02+b12 \times x))^2))/2)}
\]

##******************* Calculations for p **************
\[
p \leftarrow \text{rbeta}(1,1+n1,1+n0)
\]
while \(p < 0.09 \text{ && } p > 0.93\) {
 \[
p \leftarrow \text{rbeta}(1,1+n1,1+n0)
 \]
}

##******************* Calculations for z ***************
\[
\text{exp1} \leftarrow \exp\left(-\frac{0.5}{\text{sigma1}} \times (y-(b01+b11 \times x))^2\right)
\]
\[
\text{exp2} \leftarrow \exp\left(-\frac{0.5}{\text{sigma2}} \times (y-(b02+b12 \times x))^2\right)
\]
\[
\text{zprob} \leftarrow \frac{(p \times (1/\text{sqrt} \text{sigma1}) \times \text{exp1}) / (p \times (1/\text{sqrt} \text{sigma1}) \times \text{exp1} + (1-p) \times (1/\text{sqrt} \text{sigma2}) \times \text{exp2})}{\text{z} \leftarrow \text{rbinom}(1000,1,\text{zprob})}
\]

Accumulation for parameters Values in vectors ****
\[
\text{if}(i \%\%lagg==0\&\&i\text{>burn})
\{ \
\text{b01vec} \leftarrow \text{c(b01vec,b01)} \\
\text{b02vec} \leftarrow \text{c(b02vec,b02)} \\
\text{b11vec} \leftarrow \text{c(b11vec,b11)} \\
\text{b12vec} \leftarrow \text{c(b12vec,b12)} \\
\text{svec1} \leftarrow \text{c(svec1,sigma1)} \\
\text{svec2} \leftarrow \text{c(svec2,sigma2)} \\
\text{pvec} \leftarrow \text{c(pvec,p)} \\
\text{zs} \leftarrow \text{rbind(zs,z)} \\
\}
\]
Chapter 3

The Experiment

Having established our normal mixture model, we now turn to present the dataset to which we apply our theoretical model. This dataset was provided by a private company to be used for research with the goal of receiving help on a timing issue that is described below.

3.1 The challenge

Researchers want to perform experiments with highly accurate timing using computers. Windows is a common operating system but it is not a Real Time Operating System (RTOS), and therefore is not very good at timing events accurately. A company that needed to time an experiment created the Rbox, a device which has a local hardware clock used to ensure accurate timing to 1 µs. Combined, the PC and the Rbox can provide a way to measure the expected delay from the PC clock reporting time.

The set-up of the time reporting system has the following steps:

1. PC records Rbox starting time
2. PC records its starting time
3. The experiment runs and ends
4. PC records its end time and

5. PC asks Rbox for its current time (end time)

The problem with this algorithm is the lazy nature of the Windows OS. Sometimes Windows records its time and waits several (crucial) milliseconds to ask the Rbox for its time. This leads to large deviations and inconsistent timings between the two time measuring devices.

The challenge then becomes to identify which experiment trials are “good” measurements and which ones are “bad” measurements. A mechanism to differentiate data coming from “good” measurements versus data coming from “bad” measurements would allow the experimenters to discard those runs that are not coming from an accurate report of the time by the PC device.

“Good” measurements are considered those that simultaneously meet two conditions:

- The starting times for the Rbox and the PC clocks are close in time
- The ending times for the Rbox and the PC clocks are close in time

“Bad” measurements are those that don’t meet the previous two conditions simultaneously. Example 1 on Figure 3.1 shows a case in which the experiment is measured correctly. Examples 2 through 4 on Figure 3.1 show cases in which the experiment is measured badly.

1There is no specific boundary to differentiate close and far in time on this experiment because the only times reported were the absolute times that each machine took measuring the event.
Example 1
PC Records:

Rbox PC
start start
end end
time time

e

Example 2
PC Records:

Rbox PC PC Rbox
start start end end
time time time time

e

Example 3
PC Records:

Rbox PC PC Rbox
start start end end
time time time time

e

Example 4
PC Records:

Rbox PC PC Rbox
start start end end
time time time time

e

Figure 3.1: Time recording process
3.2 Data Description: The PC and RBox timing

The data obtained came from the time reported from 1000 repetitions of an experiment done on a PC computer with an Rbox timer. The measurement lasted 6 hours and 53 minutes and yielded 1000 observations of each time measuring device (Rbox, PC clock).

The data we are interested in analyzing is the difference in time measurement between the two time measuring devices. The data is plotted in Figure 3.2.

Figure 3.2: Differences between Rbox time and PC time

2 The data axis were used to be consistent through the thesis. The scales were useful since they helped to the stability of the numerical algorithm.

3 The first data point on the left is an outlier. It appeared on the data and we did not have much information on its causes therefore we decided to keep it in the dataset as originally obtained.
Chapter 4

Experiment Results

We applied the statistical model described in Chapter 2 to the data presented in Section 3.2 and used the following conditions for the Gibbs sampler:

- 5000 simulated values of each parameter were saved.
- A lag of 30 iterations were used to avoid autocorrelation.
- A burn of 1000 iterations were used to allow for convergence.
- A total of 151,000 iterations were ran.
- Jeffreys priors for σ^2

After running the model with non-informative uniform priors for β_{01} and β_{02} and running into the label switching problem, normal informative prior distributions were used for β_{01} and β_{02} (the parameters that represent the intercepts). These procedure was carried out by dividing the data in two groups using the k-means clustering method. The two resulting groups are presented in figure 4.1.

1 As we explained earlier, when we applied our model to our dataset, we faced a common problem on Bayesian mixture models known as the “label switching problem”. This problem is caused by the symmetry in the likelihood of the model parameters. To address this issue we used empirical Bayes to set the values of informative prior distributions for our β_{01} and β_{02} parameters. For a description of the “label switching problem” see Stephens (2000).

2 Given a set of observations (x_1, x_2, \cdots, x_n) where each observation is a d-dimensional real vector, k-means aims to partitions the n observations into k sets $(k \leq n) S = \{S_1, S_2, \cdots, S_k\}$ so as to minimize the within-cluster sum of squares (WCSS) $\arg \min \sum_{i=1}^k \sum_{x_j \in S_i} \|x_j - \mu_i\|^2$ where μ_i is the mean of points in S_i. Hair et al. (2005)
Figure 4.1: Cluster separation for time differences between Rbox and PC

On each one of these two groups of data we fit a linear model. We used the intercept as the mean for our prior distributions of β_{01} and β_{02} and the standard error of the intercept as our variance for the prior distributions.

We let the mean of the top cloud be μ_0 and the standard error for top cloud be v_0. Similarly for the bottom cloud the mean is defined to be μ_1 and the standard error v_1. The values for this parameters are presented on Table 4.1. Under these conditions the resulting parameter estimates are presented in Table 4.2.

The initial values of β_{01} and β_{02} were set to be equal to μ_1 and μ_0 respectively. The other starting values were chosen from repeated experiments to be close to their convergence values.

3The full mathematical derivation of the posterior distributions for β_{01} and β_{02} can be found on Appendix A.0.2
Table 4.1: Prior values

<table>
<thead>
<tr>
<th>Prior Parameter</th>
<th>Starting Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_1</td>
<td>-0.006058537</td>
</tr>
<tr>
<td>v_1</td>
<td>9.335157e-05</td>
</tr>
</tbody>
</table>

Top cloud with more variance

<table>
<thead>
<tr>
<th>Prior Parameter</th>
<th>Starting Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_0</td>
<td>0.005059207</td>
</tr>
<tr>
<td>v_0</td>
<td>0.0006941547</td>
</tr>
</tbody>
</table>

Table 4.2: Parameters Convergence

<table>
<thead>
<tr>
<th>Starting Value</th>
<th>Average Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_{01}</td>
<td>-0.006058537</td>
</tr>
<tr>
<td>β_{11}</td>
<td>0.004492471</td>
</tr>
<tr>
<td>σ_1^2</td>
<td>2.368350e-07</td>
</tr>
</tbody>
</table>

Top cloud with more variance

<table>
<thead>
<tr>
<th>Starting Value</th>
<th>Average Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_{02}</td>
<td>0.005059207</td>
</tr>
<tr>
<td>β_{12}</td>
<td>0.004509729</td>
</tr>
<tr>
<td>σ_2^2</td>
<td>3.306623e-05</td>
</tr>
</tbody>
</table>
The model shows that the median \(p \) value is 65%. This tells us that about 65% of the data will come from a “good” run and 35% from a “bad” run. However, \(p \) can be as low as 54% or as high as 73% as shown on Table 4.3.

<table>
<thead>
<tr>
<th>Quantiles for (p)</th>
<th>0%</th>
<th>25%</th>
<th>50%</th>
<th>75%</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.5413966</td>
<td>0.6411983</td>
<td>0.6558685</td>
<td>0.6712449</td>
<td>0.7331182</td>
</tr>
</tbody>
</table>

Figure 4.2 plots the original data coloring each observation according to the probability obtained on each position of the \(z \) vector. An observation that is colored closer to blue is associated with a higher probability of coming from a “good” run (\(p = 1 \)). An observation that is colored closer to white is associated with a higher probability of coming from a “bad” run (\(p = 0 \)).

Figure 4.2 also includes the lines resulting from the average of all the estimated \(y \)’s that resulted from all pairs \(\beta_{01}, \beta_{11} \) and \(\beta_{02}, \beta_{12} \) using the equations \(\hat{y} = b_{01} + x_{11} \) and \(\hat{y} = b_{02} + x_{12} \) respectively.

The median was chosen to show the quartiles for the distribution of \(p \) which would also give a sense of the distribution of the parameter.
The histograms for the realizations of β_{01} and β_{02} are shown on Figure 4.3. The white noise aspect shown on the time series plots presented on Figure 4.4 illustrates that convergence of the parameters was reached. The autocorrelation function plots presented on Figure 4.5 show that our choice of lag eliminated the autocorrelation among different parameter realizations (no lines stick out of the blue bands).

Figure 4.3: Histograms of the marginal posterior realizations for β_{01} and β_{02}.
Figure 4.4: Convergence of the Parameters.

Figure 4.5: ACF for the Parameters.
Chapter 5

Conclusion and Future Work

Using latent variables, we designed a theoretical Bayesian Normal Mixture Model with two components. Then we tested the Bayesian Normal Mixture Model experimentally on a process with two states “good” and “bad” that resulted in the assignment of a probability of around 65% of occurrence to the “good” state of the phenomenon. The model performed better computationally by including prior distributions for the intercepts that were based on the data. This prevents the mixture model from degenerating into a single (one-component) regression model.

The model suggests that for the Rbox and PC time measurement dataset there are two processes: One process has larger variance than the other (2.990065e−07, 3.393336e−05), the two processes have similar slopes (0.004493892, 0.004494087) and the two processes have different intercepts (−0.006315958, −0.001409068).

The expected difference between PC time and Rbox time in our application is a linear function of Rbox time. With an estimated 65% chance, we have that an observation can be associated with the equation: (PC time - Rbox Time) = −0.006315958 + (Rbox time) 0.004493892 an occurrence of a “good” measurement. With an estimated 35% we have that an observation can be associated with the equation (PC time - Rbox Time) = −0.001409068 + (Rbox
time) 0.004494087 an occurrence of a “bad” measurement.

For future work an alternative approach to our model is to address the “label switching problem” by using a different route than the informative prior distributions given by the empirical Bayes analysis.

A generalization of this model that will include more than two components would also improve the applicability of the model.

Appendix A

Two component Normal mixture distribution

The following is a two component normal mixture distribution:

\[f(y | x) = p \left(\frac{1}{\sqrt{2\pi \sigma_1^2}} \right) \exp \left\{ -\frac{[y - (\beta_{01} + \beta_{11} x)]^2}{2\sigma_1^2} \right\} +
\]
\[(1 - p) \left(\frac{1}{\sqrt{2\pi \sigma_2^2}} \right) \exp \left\{ -\frac{[y - (\beta_{02} + \beta_{12} x)]^2}{2\sigma_2^2} \right\} \]

(A.1)

Using latent indicators \(z_i \), the joint distribution of the dependent variables \(\{y_1, y_2, \cdots, y_n\} \) and indicators \(\{z_1, z_2, \cdots, z_n\} \) is:

\[
\pi(y | \theta) = \prod_{i=1}^{n} \left\{ p \left(\frac{1}{\sqrt{2\pi \sigma_1^2}} \right) \exp \left\{ -\frac{[y_i - (\beta_{01} + \beta_{11} x_i)]^2}{2\sigma_1^2} \right\} \right\}^{1 - z_i} \cdot
\]
\[
\left\{ (1 - p) \left(\frac{1}{\sqrt{2\pi \sigma_2^2}} \right) \exp \left\{ -\frac{[y_i - (\beta_{02} + \beta_{12} x_i)]^2}{2\sigma_2^2} \right\} \right\}^{z_i} \]

(A.2)

The joint priors are:

\footnote{Using \(\theta = \{z, p, \beta_{01}, \beta_{11}, \sigma_1^2, \beta_{02}, \beta_{12}, \sigma_2^2\} \) and \(\theta_{-\sigma_1^2} = \{z, p, \beta_{01}, \beta_{11}, \beta_{02}, \beta_{12}, \sigma_2^2\} \) to shorten the notation}
\[g(\theta) \propto \frac{1}{\sqrt{2\pi v_0}} \exp \left\{ -\frac{1}{2v_0} (\beta_{01} - \mu_0)^2 \right\} \cdot \frac{1}{\sqrt{2\pi v_1}} \exp \left\{ -\frac{1}{2v_1} (\beta_{02} - \mu_1)^2 \right\} \cdot \frac{1}{\sigma_1^2} \cdot \frac{1}{\sigma_2^2} \] (A.3)

Combining A.2 and A.3 via multiplication gives the posterior distribution for \(\theta \):

\[\pi(\theta) \propto \pi(y \mid \theta) \cdot g(\theta) \] (A.4)

A.0.1 Derivation of the Full Conditional Distributions for \(z_i \)

From equation (A.2) we can identify the marginal distribution for the \(z_i \) parameters to be:

Let

\[A = p \left(\frac{1}{\sqrt{2\pi \sigma_1^2}} \right) \exp \left\{ -\frac{[y_i - (\beta_{01} + \beta_{11}x_i)]^2}{2\sigma_1^2} \right\} \]

\[B = (1 - p) \left(\frac{1}{\sqrt{2\pi \sigma_2^2}} \right) \exp \left\{ -\frac{[y_i - (\beta_{02} + \beta_{12}x_i)]^2}{2\sigma_2^2} \right\} \]

\[z_i \mid \theta - z, x, y \sim \text{Bern} \left(\frac{A}{A+B} \right) \]

Now re-writing (A.2) we obtain:

\[n^- \sum_{i \ni z_i = 1} z_i \left(\frac{1}{\sqrt{2\pi \sigma_1^2}} \right) \exp \left\{ -\sum_{i \ni z_i = 1} \frac{[y_i - (\beta_{01} + \beta_{11}x_i)]^2}{2\sigma_1^2} \right\} \cdot \]

\[(1 - p)^{\sum_{i \ni z_i = 1}} z_i \left(\frac{1}{\sqrt{2\pi \sigma_2^2}} \right)^{\sum_{i \ni z_i = 1}} z_i \exp \left\{ -\sum_{i \ni z_i = 1} \frac{[y_i - (\beta_{02} + \beta_{12}x_i)]^2}{2\sigma_2^2} \right\} \] (A.5)

Calling A to

\[\exp \left\{ -\sum_{i \ni z_i = 0} \frac{[y_i - (\beta_{01} + \beta_{11}x_i)]^2}{2\sigma_1^2} \right\} \]
and B to

\[
\exp \left\{ -\sum_{i \geq z_i = 1} \frac{[y_i - (\beta_{02} + \beta_{12}x_i)]^2}{2\sigma^2} \right\}
\]

Expanding A we get:

\[
= \exp \left\{ -\sum_{i \geq z_i = 0} \frac{y_i^2 - 2\beta_{01}y_i - 2\beta_{11}y_ix_i + \beta_{01}^2 + 2\beta_{01}\beta_{11}x_i + \beta_{11}^2 x_i^2}{2\sigma^2} \right\}
\]

A.0.2 Derivation of the Full Conditional Distributions for \(\beta_{01}\) and \(\beta_{02}\)

Now the marginal density function for \(\beta_{01}\) can be found by re-expressing A as:

\[
= \exp \left\{ -\sum_{i \geq z_i = 0} \frac{-2\beta_{01}y_i + \beta_{01}^2 + 2\beta_{01}\beta_{11}x_i + y_i^2 - 2\beta_{11}y_ix_i + \beta_{11}^2 x_i^2}{2\sigma^2} \right\}
\]

\[
\propto \exp \left\{ -\sum_{i \geq z_i = 0} \frac{y_i + n_0\beta_{01}^2 + 2\beta_{01}\beta_{11}x_i}{2\sigma^2} \right\}
\]

\[
= \exp \left\{ -\sum_{i \geq z_i = 0} \frac{n_0\beta_{01}^2 + 2\beta_{01}\beta_{11}\sum x_i}{2\sigma^2 n_0} \right\}
\]

\[
(A.6)
\]

Calling \(\bar{y}_0 = \frac{\sum_{i \geq z_i = 0} y_i}{n_0}\) and \(\bar{x}_0 = \frac{\sum_{i \geq z_i = 0} x_i}{n_0}\) we can write the previous equation as:

\[
= \exp \left\{ -\left[\frac{\beta_{01}^2 - 2\beta_{01}(\bar{y}_0 - \beta_{11}\bar{x}_0) - (\bar{y}_0 - \beta_{11}\bar{x}_0)^2 + (\bar{y}_0 - \beta_{11}\bar{x}_0)^2}{2\sigma^2 n_0} \right] \right\}
\]

\[
= \exp \left\{ -\left[\frac{\beta_{01} - (\bar{y}_0 - \beta_{11}\bar{x}_0)]^2}{2\sigma^2 n_0} \right] \right\}
\]

(A.7)
Now we can replace \((A.7)\) in equation in \((A.5)\).

\[
p^{\sum_{i \ni z_i = 1} z_i} \left(\frac{1}{\sqrt{2\pi\sigma_1^2}} \right)^{\sum_{i \ni z_i = 1} z_i} \exp \left\{ - \sum_{i \ni z_i = 0} \left[y_i - (\beta_{01} + \beta_{11}x_i) \right]^2 \right\}.
\]

\[
(1 - p)^{\sum_{i \ni z_i = 1} z_i} \left(\frac{1}{\sqrt{2\pi\sigma_2^2}} \right)^{\sum_{i \ni z_i = 1} z_i} \exp \left\{ - \sum_{i \ni z_i = 1} \left[y_i - (\beta_{02} + \beta_{12}x_i) \right]^2 \right\}
\]

\[
\propto p^{n_0} \left(\frac{1}{\sqrt{2\pi\sigma_1^2}} \right)^{n_0} \exp \left\{ - \left[\beta_{01} - (\bar{y}_0 - \beta_{11}\bar{x}_0) \right]^2 \right\} \tag{A.8}
\]

Finally we conclude that the full conditional distribution for \(\beta_{01}\) is:

\[
\beta_{01} \mid \theta_{-\beta_{01}}, \mathbf{x}, \mathbf{y} \sim N \left(\bar{y}_0 - \beta_{11}\bar{x}_0, \frac{\sigma_1^2}{n_0} \right)
\]

Similarly for \(\beta_{02}\) we obtained that

\[
p^{\sum_{i \ni z_i = 1} z_i} \left(\frac{1}{\sqrt{2\pi\sigma_1^2}} \right)^{\sum_{i \ni z_i = 1} z_i} \exp \left\{ - \sum_{i \ni z_i = 0} \left[y_i - (\beta_{01} + \beta_{11}x_i) \right]^2 \right\}.
\]

\[
(1 - p)^{\sum_{i \ni z_i = 1} z_i} \left(\frac{1}{\sqrt{2\pi\sigma_2^2}} \right)^{\sum_{i \ni z_i = 1} z_i} \exp \left\{ - \sum_{i \ni z_i = 1} \left[y_i - (\beta_{02} + \beta_{12}x_i) \right]^2 \right\}
\]

\[
\propto (1 - p)^{n_1} \left(\frac{1}{\sqrt{2\pi\sigma_2^2}} \right)^{n_1} \exp \left\{ - \left[\beta_{02} - (\bar{y}_1 - \beta_{12}\bar{x}_1) \right]^2 \right\} \tag{A.9}
\]

and we conclude that the full conditional distribution for \(\beta_{02}\) is:

\[
\beta_{02} \mid \theta_{-\beta_{02}}, \mathbf{x}, \mathbf{y} \sim N \left(\bar{y}_1 - \beta_{12}\bar{x}_1, \frac{\sigma_2^2}{n_1} \right)
\]

Informative Prior Distributions

After running the model with uniform prior distributions for \(\beta_{01}\) and \(\beta_{02}\) normal informative prior distributions were used for \(\beta_{01}\) and \(\beta_{02}\) (the parameters that represent the intercepts)^2 These procedure was done by dividing the data in

^2When we applied our model to our dataset, we faced a common problem on Bayesian mixture models known as the “label switching problem”. This problem is caused by the symmetry in the likelihood of the model parameters. To address this issue we used empirical Bayes to set the values of informative prior distributions for our \(\beta_{01}\) and \(\beta_{02}\) parameters. For a description of the “label switching problem” see [Stephens (2000)](http://www.stats.ox.ac.uk/~steve/stephens.html).
two groups using the \(k \)-means clustering method\(^3\) The two resulting groups are presented in figure A.1.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Figure_A.1.png}
\caption{Cluster separation for time differences between Rbox and PC}
\end{figure}

On each one of these two groups of data we fit a simple linear regression model. We used the intercept as the mean for our prior distributions and the standard error of the intercept as our variance for the prior distributions of our \(\beta_{01} \) and \(\beta_{02} \) parameters. Mathematically the derivation is as follows:

Letting

\[R_i = \bar{y}_i - \beta_{1j}x_i \quad \text{for } i = 0, j = 1 \text{ and } i = 1, j = 2 \]

and letting the mean of the top cloud be \(\mu_0 \) and the standard error for top cloud be \(v_0 \). Similarly for the bottom cloud the mean is defined to be \(\mu_1 \) and the

\(^3\)Given a set of observations \((x_1, x_2, \ldots, x_n)\) where each observation is a \(d \)-dimensional real vector, \(k \)-means aims to partitions the \(n \) observations into \(k \) sets \((k \leq n)\) \(S = \{S_1, S_2, \ldots, S_k\} \) so as to minimize the within-cluster sum of squares (WCSS) \(\arg \min \sum_{i=1}^{k} \sum_{x_j \in S_i} \|x_j - \mu_i\|^2 \) where \(\mu_i \) is the mean of points in \(S_i \). \cite{Hair2005}
standard error v_1

then:

$$
\frac{1}{\sqrt{2\pi \frac{\sigma_j^2}{n_i}}} \exp \left\{ -\frac{n_i}{2\sigma_j^2} (\beta_{0j} - R_i)^2 \right\} \cdot \frac{1}{\sqrt{2\pi v_i}} \exp \left\{ -\frac{1}{2v_i} (\beta_{0j} - \mu_i)^2 \right\}
$$

which implies that:

$$
\beta_{0j} | \theta_{-\beta_{0j}}, x, y \sim N \left(\left(\frac{R_{ni}v_i + \mu_i\sigma_j^2}{n_i v_i + \sigma_j^2} \right), \left(\frac{n_i}{\sigma_j^2 v_i} \right)^{-1} \right)
$$

A.0.3 Derivation of the Full Conditional Distributions for β_{11} and β_{12}

The marginal density function for β_{11} can be found by re-expressing A and letting

$$
C = \left[\sum_{i \neq z_i=0} y_i x_i - \left(\frac{\beta_{01}}{\sum_{r \neq z_i=0} x_i} \right) \sum_{i \neq z_i=0} x_i^2 \right]
$$

as shown bellow:
\(A = \exp \left\{ - \sum_{i \geq z_i = 0} \frac{y_i^2 - 2\beta_{11}y_i - 2\beta_{01}y_i + \beta_{11}^2 + 2\beta_{01}\beta_{11} + \beta_{11}^2 x_i^2}{2\sigma_1^2} \right\} \)

\(= \exp \left\{ - \frac{2\beta_{11}}{2\sigma_1^2} \sum_{i \geq z_i = 0} y_i + \frac{2\beta_{01}\beta_{11}}{2\sigma_1^2} \sum_{i \geq z_i = 0} x_i + \frac{\beta_{11}^2}{2\sigma_1^2} \sum_{i \geq z_i = 0} x_i^2 \right\} \)

\(\propto \exp \left\{ - \frac{2\sigma_1^2}{2\sigma_1^2} \sum_{i \geq z_i = 0} y_i + \frac{2\beta_{01}\beta_{11}}{2\sigma_1^2} \sum_{i \geq z_i = 0} x_i + \frac{\beta_{11}^2}{2\sigma_1^2} \sum_{i \geq z_i = 0} x_i^2 \right\} \)

\(\propto \exp \left\{ - \frac{\beta_{11}^2}{2\sigma_1^2} \sum_{i \geq z_i = 0} y_i - \beta_{01} \sum_{i \geq z_i = 0} x_i \right\} \)

\(= \exp \left\{ - \left[\beta_{11} - \left(\frac{\sum_{i \geq z_i = 0} y_i}{\sum_{i \geq z_i = 0} x_i} - \frac{\beta_{01}}{\sum_{i \geq z_i = 0} x_i} \right) \right]^2 \right\} \)

\(\text{(A.10)} \)

Finally we can replace (A.10) in equation in (A.5).

\(p \left(\frac{1}{\sqrt{2\pi \sigma_1^2}} \right)^{n-\sum_{i \geq z_i = 0} z_i} \exp \left\{ - \sum_{i \geq z_i = 0} \left[y_i - (\beta_{01} + \beta_{11}x_i) \right]^2 \right\} . \)

\((1 - p) \left(\frac{1}{\sqrt{2\pi \sigma_2^2}} \right)^{\sum_{i \geq z_i = 1} z_i} \exp \left\{ - \sum_{i \geq z_i = 1} \left[y_i - (\beta_{02} + \beta_{12}x_i) \right]^2 \right\} \)

\(\alpha(p)^{n_0} \left(\frac{1}{\sqrt{2\pi \sigma_1^2}} \right)^{n_0} \exp \left\{ - \left[\beta_{11} - \left(\frac{\sum_{i \geq z_i = 0} y_i x_i}{\sum_{i \geq z_i = 0} x_i^2} - \beta_{01} \sum_{i \geq z_i = 0} x_i \right) \right]^2 \right\} \)

Then we conclude that the marginal distribution for the coefficient \(\beta_{11} \) is distributed as:

\[
\beta_{11} \mid \mathbf{\theta} - \beta_{11}, \mathbf{x}, \mathbf{y} \sim N \left(\frac{\sum_{i \geq z_i = 0} y_i x_i}{\sum_{i \geq z_i = 0} x_i^2} - \beta_{01} \sum_{i \geq z_i = 0} x_i, \frac{\sigma_1^2}{\sum_{i \geq z_i = 0} x_i^2} \right)
\]
Similarly we found for β_{12}:

$$
\begin{align*}

p & \sum_{i \in z_i = 0} z_i \left(\frac{1}{\sqrt{2\pi \sigma_1^2}} \right)^{n-\sum_{i \in z_i = 0} z_i} \exp \left\{ - \sum_{i \in z_i = 0} \frac{[y_i - (\beta_{01} + \beta_{11} x_i)]^2}{2\sigma_1^2} \right\}. \\
(1-p) & \sum_{i \in z_i = 1} z_i \left(\frac{1}{\sqrt{2\pi \sigma_2^2}} \right)^{\sum_{i \in z_i = 1} z_i} \exp \left\{ - \sum_{i \in z_i = 1} \frac{[y_i - (\beta_{02} + \beta_{12} x_i)]^2}{2\sigma_2^2} \right\} \\
\propto (1-p)^{n_1} \left(\frac{1}{\sqrt{2\pi \sigma_2^2}} \right)^{n_1} \exp \left\{ - \left[\beta_{12} - \frac{\sum_{i \in z_i = 1} y_i x_i - \beta_{02} \sum_{i \in z_i = 1} x_i}{\sum_{i \in z_i = 1} x_i^2} \right]^2 \right\}
\end{align*}
$$

(A.11)

Then we conclude that the marginal distribution for the coefficient β_{12} is distributed as:

$$
\beta_{12} \mid \theta_{-\beta_{12}}, \mathbf{x}, \mathbf{y} \sim N \left(\frac{\sum_{i \in z_i = 1} y_i x_i - \beta_{02} \sum_{i \in z_i = 1} x_i}{\sum_{i \in z_i = 1} x_i^2} , \frac{\sigma_2^2}{\sum_{i \in z_i = 1} x_i^2} \right)
$$

A.0.4 Derivation of the Full Conditional Distributions for σ_1 and σ_2

The marginal distribution for σ_1 can be found in the following way:

$$
\begin{align*}

p & \sum_{i \in z_i = 0} z_i \left(\frac{1}{\sqrt{2\pi \sigma_1^2}} \right)^{n-\sum_{i \in z_i = 0} z_i} \exp \left\{ - \sum_{i \in z_i = 0} \frac{[y_i - (\beta_{01} + \beta_{11} x_i)]^2}{2\sigma_1^2} \right\}. \\
(1-p) & \sum_{i \in z_i = 1} z_i \left(\frac{1}{\sqrt{2\pi \sigma_2^2}} \right)^{\sum_{i \in z_i = 1} z_i} \exp \left\{ - \sum_{i \in z_i = 1} \frac{[y_i - (\beta_{02} + \beta_{12} x_i)]^2}{2\sigma_2^2} \right\} \\
\propto p^{\sigma_2} \left(\frac{1}{\sqrt{2\pi \sigma_1^2}} \right)^{n_0} \exp \left\{ - \sum_{i \in z_i = 0} \frac{[y_i - (\beta_{01} + \beta_{11} x_i)]^2}{2\sigma_1^2} \right\} \\
\propto (\sigma_1)^{-n_0} \exp \left\{ - \sum_{i \in z_i = 0} \frac{[y_i - (\beta_{01} + \beta_{11} x_i)]^2}{2\sigma_1^2} \right\}
\end{align*}
$$

(A.12)

with a prior distribution of $1/\sigma_1^2$ then we have that (A.12) is proportional to:

$$
\propto (\sigma_1^2)^{-\left(\frac{n_0}{2} + 1\right)} \exp \left\{ - \sum_{i \in z_i = 0} \frac{[y_i - (\beta_{01} + \beta_{11} x_i)]^2}{2\sigma_1^2} \right\}
$$

(A.13)
from (A.13) we find σ_1 distribution to be:

$$
\sigma_1^2 | \theta - \sigma_1^2, x, y \sim \text{Inv-Gamma} \left(\frac{n_0}{2}, \sum_{i \in z_i = 0} \frac{|y_i - (\beta_{01} + \beta_{11}x_i)|^2}{2} \right)
$$

Similarly for σ_2 we obtained its marginal distribution in the following way:

$$
p^{n-\sum_{i \in z_i = 0} z_i} \left(\frac{1}{\sqrt{2\pi\sigma_2^2}} \right)^{n-\sum_{i \in z_i = 0} z_i} \exp \left\{ -\sum_{i \in z_i = 0} \frac{|y_i - (\beta_{01} + \beta_{11}x_i)|^2}{2\sigma_1^2} \right\}.
$$

$$(1-p)^{\sum_{i \in z_i = 1} z_i} \left(\frac{1}{\sqrt{2\pi\sigma_2^2}} \right)^{\sum_{i \in z_i = 1} z_i} \exp \left\{ -\sum_{i \in z_i = 1} \frac{|y_i - (\beta_{02} + \beta_{12}x_i)|^2}{2\sigma_2^2} \right\}
$$

$$
\propto (1-p)^{n_1} \left(\frac{1}{\sqrt{2\pi\sigma_2^2}} \right)^{n_1} \exp \left\{ -\sum_{i \in z_i = 1} \frac{|y_i - (\beta_{02} + \beta_{12}x_i)|^2}{2\sigma_2^2} \right\}
$$

(A.14)

with a prior distribution of $1/\sigma_2^2$ then we have that (A.14) is proportional to:

$$
\propto (\sigma_2^2)^{-(n_1+1)} \exp \left\{ -\sum_{i \in z_i = 1} \frac{|y_i - (\beta_{02} + \beta_{12}x_i)|^2}{2\sigma_2^2} \right\}
$$

(A.15)

from (A.15) we find σ_2 distribution to be:

$$
\sigma_2^2 | \theta - \sigma_2^2, x, y \sim \text{Inv-Gamma} \left(\frac{n_1}{2}, \sum_{i \in z_i = 1} \frac{|y_i - (\beta_{02} + \beta_{12}x_i)|^2}{2} \right)
$$

A.0.5 Derivation of the Full Conditional Distributions for p

The marginal posterior distribution for the parameter p can be obtained directly recalling equation (A.5)

$$
p^{n-\sum_{i \in z_i = 1} z_i} \left(\frac{1}{\sqrt{2\pi\sigma_1^2}} \right)^{n-\sum_{i \in z_i = 1} z_i} \exp \left\{ -\sum_{i \in z_i = 0} \frac{|y_i - (\beta_{01} + \beta_{11}x_i)|^2}{2\sigma_1^2} \right\}.
$$

$$(1-p)^{\sum_{i \in z_i = 1} z_i} \left(\frac{1}{\sqrt{2\pi\sigma_2^2}} \right)^{\sum_{i \in z_i = 1} z_i} \exp \left\{ -\sum_{i \in z_i = 1} \frac{|y_i - (\beta_{02} + \beta_{12}x_i)|^2}{2\sigma_2^2} \right\}
$$

(A.16)
From (A.5) we conclude that:

\[p \sim \text{Beta} \left(1 + \sum_{i \ni z_i = 1} z_i, 1 + n - \sum_{i \ni z_i = 1} z_i \right) \]

\[p \mid \theta_p, x, y \sim \text{Beta} (1 + n_1, 1 + n_0) \]
Appendix B

R-Code: Two Component Normal Mixture Distribution

```r
library(zoo)
rm(list=ls(all=TRUE))
detach(Mydata)
## Paths for the folders to retrieve data and store outputs
PATH='...
PATH1='...
NAME='date.png' #Common Name of the files

Mydata<-read.table(paste(PATH1, "timing.txt", sep=""), header=T)
attach(Mydata)

y<-(Difference/10000)
x<-(Rboxtime/1000000)

## Detrending the cluster
m<-lm(y~x)
detr<-zoo(resid(m),x)

d<-data.frame(x,ydet=detr)

### K-means clustering
fit <- kmeans(d$y, 2)

## Saving the file
png(paste(PATH,"Clusters",NAME,sep=""),
width=700, height=500)
```
```r
plot(x[fit$cluster==2],y[fit$cluster==2],
col='blue', ann=F, pch=4)
points(x[fit$cluster==1],y[fit$cluster==1],
col='red', ann=F, pch=1)
title(main = "", ylab = "Rbox time -
PC time in tens of seconds",
xlab="Rbox time in thousands of seconds")
dev.off()

## New values for the clusters
fit$cluster[fit$cluster==1] <- 0
fit$cluster[fit$cluster==2] <- 1
z<-fit$cluster

lm.c0<-lm(y[z==0]~x[z==0])
lm.c1<-lm(y[z==1]~x[z==1])

### Parameter initialization
### Applying the coefficients of the simple linear regression
### to the parameters of the model.
#bottom cloud with less variance
b01<- summary(lm.c0)$coeff[1,1] # -0.006
#Top cloud with more variance
b02<- summary(lm.c1)$coeff[1,1] # 0.005

b11<-summary(lm.c0)$coeff[2,1] # 0.0045
b12<-summary(lm.c1)$coeff[2,1] # 0.0045

#bottom cloud with less variance
m01<-summary(lm.c0)$coeff[1,1]
#bottom cloud with less variance
v01<-summary(lm.c0)$coeff[1,2]
#Top cloud with more variance
m02<-summary(lm.c1)$coeff[1,1]
#Top cloud with more variance
v02<-summary(lm.c1)$coeff[1,2]

n<-length(x)
be<-0

n0 <- sum(1-z)
n1 <- n-n0
Z01<-0
Z02<-0

###it is already sigma1 squared
```

35
bottom cloud with less variance
\[\sigma_1^2 = (0.000486657)^2 \]

it is already \(\sigma_2^2 \) squared

top cloud with more variance
\[\sigma_2^2 = (0.005750324)^2 \]

\(p < 0 \)

Vector definition
\[b_{01vec} \leftarrow \text{NULL} \]
\[b_{02vec} \leftarrow \text{NULL} \]
\[b_{11vec} \leftarrow \text{NULL} \]
\[b_{12vec} \leftarrow \text{NULL} \]
\[s_{vec1} \leftarrow \text{NULL} \]
\[s_{vec2} \leftarrow \text{NULL} \]
\[p_{vec} \leftarrow \text{NULL} \]
\[z_s \leftarrow \text{NULL} \]
\[z_{prob} \leftarrow \text{NULL} \]

Values of the Lag, burn and total number of iterations
\[\text{lagg} < 30 \]
\[\text{burn} < 1000 \]
\[\text{TOTAL} < 5000 \]

\[p \leftarrow \text{rbeta}(1,1+n_1,1+n_0) \]

for(i in 1:(lagg*TOTAL+burn))
{
 \[n_0 \leftarrow \text{sum}(1-z) \]
 \[n_1 \leftarrow n - n_0 \]

 ## calculations for b_{01}
 \[R \leftarrow -\text{sum}((1-z)*y)/n_0 - (b_{11}*\text{sum}((1-z)*x)/n_0) \]
 \[b_{01} \leftarrow \text{rnorm}(1, (R*n_0*v_{01}+m_{01}*\sigma_1^2)/((n_0/v_{01}+\sigma_1^2)^{-1})) \]

 ## calculations for b_{02}
 \[K \leftarrow -\text{sum}(z*y)/n_1 - (b_{12}*\text{sum}(z*x)/n_1) \]
 \[b_{02} \leftarrow \text{rnorm}(1, (K*n_1*v_{02}+m_{02}*\sigma_2^2)/((n_1/v_{02}+\sigma_2^2)^{-1})) \]
}
calculations for b11
b11 <- rnorm(1, (sum((1-z)*x*y)/sum((1-z)*x^2)) -
 b01*(sum((1-z)*x)/sum((1-z)*x^2)), sqrt(sigma1/sum((1-z)*x^2)))

calculations for b12
b12 <- rnorm(1, (sum((z)*x*y)/sum((z)*x^2)) -
 b02*(sum((z)*x)/sum((z)*x^2)), sqrt(sigma2/sum((z)*x^2)))

calculations for sigma1
sigma1 <- 1/rgamma(1,n0/2,(sum((1-z)*(y-(b01+b11*x))^2))/2)

calculations for sigma2
sigma2 <- 1/rgamma(1,n1/2,(sum((z)*(y-(b02+b12*x))^2))/2)

calculations for p
p <- rbeta(1,1+n1,1+n0)
while(p < 0.09 && p>0.93){
p <- rbeta(1,1+n1,1+n0)
}

calculations for z
exp1 <- exp(-(0.5/sigma1)*(y-(b01+b11*x))^2)
exp2 <- exp(-(0.5/sigma2)*(y-(b02+b12*x))^2)
zprob <- (p*(1/sqrt(sigma1))*exp1)/
 (p*(1/sqrt(sigma1))*exp1 + (1-p)*(1/sqrt(sigma2))*exp2)
z <- rbinom(1000,1,zprob)

if(i%%lagg==0&&i>burn)
{
b01vec <- c(b01vec,b01)
b02vec <- c(b02vec,b02)
b11vec <- c(b11vec,b11)
b12vec <- c(b12vec,b12)
svec1 <- c(svec1,sigma1)
svec2 <- c(svec2,sigma2)
pvec <- c(pvec,p)
zs <- rbind(zs,z)
}

optional features
tsplot <- function(vec,w){
n <- length(vec)
x <- c(1:n)
plot(x,vec, type="l",xlab="Iteration", main=w, ylab="")
title(font.main=4)
require(graphics)

Creating bins for the coloring of the results
zprob<-NULL
bins<-NULL
bins<-seq(0,1, by=0.01)
for(i in 1:length(zs[1,])){
 zprob<-c(zprob,mean(zs[,i]))
}
bins<-round(zprob*100)+1

Scatter plot

png(paste(PATH,"Scatter-",NAME,sep=""), width=700, height=500)
plot(x,y, col=rainbow(101)[bins], ann=F)
abline(mean(b01vec),mean(b11vec))
abline(mean(b02vec),mean(b12vec))
title(main = "", ylab = "Rbox time - PC time in tens of seconds",
 xlab="Rbox time in thousands of seconds")
dev.off()

TSplots

png(paste(PATH,"Convergence-",NAME,sep=""), width=700, height=500)
par(mfrow=c(4,2))
tsplot(b01vec,"Convergence for B01 (after lag)"

tsplot(b02vec,"Convergence for B02 (after lag)"

tsplot(b11vec,"Convergence for B11 (after lag)"

tsplot(b12vec,"Convergence for B12 (after lag)"

tsplot(pvec,"Convergence for p (after lag)"

tsplot(svec1,"Convergence for Sigma 1 (after lag)"

tsplot(svec2,"Convergence for Sigma 2 (after lag)"

dev.off()

ACF plots

png(paste(PATH,"ACF-",NAME,sep=""), width=700, height=500)
par(mfrow=c(4,2))
acf(b01vec, main='Beta 01', ylab='')
acf(b02vec, main='Beta 02', ylab='')
acf(b11vec, main='Beta 11', ylab='')
acf(b12vec, main='Beta 12', ylab='')
acf(svec1, main='Sigma 1', ylab='')
acf(svec2, main='Sigma 2', ylab='')
acf(pvec, main='p', ylab='')
dev.off()

teta<-1:length(b01vec)
plot(teta, b01vec, xlim=range(min(teta), max(teta)),
 ylim=range(min(b01vec), max(b02vec)))
points(teta, b02vec, col="red")

y1vec<-NULL
y2vec<-NULL

for(i in 1:TOTAL)
{
 y1vec<-c(y1vec, b01vec[i]+b11vec[i]*x)
 y2vec<-c(y2vec, b02vec[i]+b12vec[i]*x)
}
y1mat<-NULL
y1mat<-matrix(y1vec, 5000, 1000, byrow=TRUE)
y1mean<-apply(y1mat, 2, mean)
y2mat<-NULL
y2mat<-matrix(y2vec, 5000, 1000, byrow=TRUE)
y2mean<-apply(y2mat, 2, mean)

Scatter Kern style
png(paste(PATH, "Kern-Scatter-", NAME, sep=""),
 width=700, height=500)
plot(x, y, col=rainbow(101)[bins], ann=F)
lines(x, y1mean)
lines(x, y2mean)
title(main = "", ylab = "Rbox time - PC time in tens of seconds",
 xlab="Rbox time in thousands of seconds")
dev.off()

Plot of the values of the parameters B0i
png(paste(PATH,"B0i-Diffs-",NAME,sep=""),
 width=700, height=500)
plot(c(1:length(b01vec)), b01vec, ann=F, ylim=c(-0.008,0.003))
points(c(1:length(b02vec)), b02vec, col='red')
title(main = "B01 and B02", ylab = "Value", xlab="Rbox Time ")
dev.off()

Data plot
png(paste(PATH,"data",NAME,sep=""),
 width=700, height=500)
plot(x, y, ann=F)
title(main = "", ylab = "Rbox time - PC time in tens of seconds",
 xlab="Rbox time in thousands of seconds")
xlab="Rbox time in thousands of seconds"
dev.off()
Appendix C

Notation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>Dependent variable (Pc time - Rbox time)</td>
</tr>
<tr>
<td>x</td>
<td>Independent variable (Rbox time)</td>
</tr>
<tr>
<td>β_{01}</td>
<td>Intercept of one cloud of data (bottom cloud)</td>
</tr>
<tr>
<td>β_{02}</td>
<td>Intercept of one cloud of data (top cloud)</td>
</tr>
<tr>
<td>β_{11}</td>
<td>Trend of one cloud of data (bottom cloud)</td>
</tr>
<tr>
<td>β_{12}</td>
<td>Trend of one cloud of data (top cloud)</td>
</tr>
<tr>
<td>σ^2_1</td>
<td>Variance of one cloud of data (bottom cloud)</td>
</tr>
<tr>
<td>σ^2_2</td>
<td>Variance of one cloud of data (top cloud)</td>
</tr>
<tr>
<td>p</td>
<td>Parameter that captures the proportion of observations on one cloud</td>
</tr>
<tr>
<td>z_i</td>
<td>Parameter that signals to which cloud a particular belongs.</td>
</tr>
<tr>
<td>n</td>
<td>Total number of observations</td>
</tr>
<tr>
<td>n_0</td>
<td>Sum of the observations for which $z_i = 0$</td>
</tr>
<tr>
<td>n_1</td>
<td>Sum of the observations for which $z_i = 1$</td>
</tr>
<tr>
<td>μ_0</td>
<td>Hyper-parameter that represents the mean intercept for the bottom cloud given by a ordinary linear regression ran on the data. Also this is the starting value for the β_{01} parameter</td>
</tr>
<tr>
<td>Parameter</td>
<td>Meaning</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td>μ_1</td>
<td>Hyper-parameter that represents the mean intercept for the top cloud given by an ordinary linear regression ran on the data. Also this is the starting value for the β_0 parameter</td>
</tr>
<tr>
<td>v_0</td>
<td>Hyper-parameter that represents the expected variance of the intercept for the bottom cloud given by an ordinary linear regression ran on the data. Also this is the starting value for the σ_1 parameter</td>
</tr>
<tr>
<td>v_1</td>
<td>Hyper-parameter that represents the expected variance of the intercept for the top cloud given by an ordinary linear regression ran on the data. Also this is the starting value for the σ_2 parameter</td>
</tr>
<tr>
<td>θ</td>
<td>A notation summary symbol that represents the parameters $z, p, \beta_{01}, \beta_{11}, \sigma_1^2, \beta_{02}, \beta_{12}, \sigma_2^2$</td>
</tr>
</tbody>
</table>