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is predominantly mediated through phagocytosis. Based on the presented results, it can be 

proposed that nanoemulsion enters the cells via an endocytic mechanism and moves 

intracellularly via the endosome-lysosome pathway. 

The pharmacological effect of celecoxib delivery was evaluated by quantitation of 

PGE2 in activated macrophages. Similar to our previously reported results in chapter 4, 

CXBNE produced significant reduction in PGE2 produced by LPS-activated 

macrophages compared to DFNE (Figure 6.9). This reduction was comparable to free 

drug delivered in DMSO. Together, these data strongly suggest that the nanoemulsion, 

efficiently internalized by macrophages in a dose- and time-dependent manner and 

inhibiting COX-2 enzyme activity can produce anti-inflammatory effects in vivo. To test 

the in vivo efficacy of these nanoemulsions as imaging and therapeutic agents, a paw 

inflammation mouse model was used, which is described in chapter 7.  
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Histological analysis of the inflamed paw revealed a high level of macrophage 

infiltration (Figure 7.8). A majority of the nanoemulsion droplets are co-localized with 

macrophages (CD68+) expressing the target enzyme, COX-2. Further, CXBNE and 

DFNE showed accumulation specifically in macrophages compared to neutrophils 

(Figure 7.9), similar to the histology data from 24 h after inflammation (Figure 7.4). The 

combination of in vivo imaging and histological studies confirm that the nanoemulsion is 

efficiently taken up by macrophages in the inflamed tissue. In vivo live animal data 

indicate that by delivering celecoxib in a nanoemulsion, macrophage infiltration is 

reduced over time. We showed that the theranostic system not only delivered celecoxib to 

the target cells, but also facilitated the visualization of therapeutic response (reduced 

macrophage infiltration). Most importantly, the combined therapy and response 

monitoring was achieved after a single dose administration of the theranostic system. We 

acknowledge that the approach presented in this study utilized theranostic injection prior 

to inducing inflammation, which is contrary to the common mode of treatment, where 

therapeutic intervention ensues after the disease state is established. Prior labeling of 

blood monocytes was expected to facilitate visualization of these labeled monocytes 

fluxing to the inflamed site and reduces interference due to accumulation of 

nanoemulsion at the inflamed site through EPR. Yet, this approach has clinical 

significance, for example, to monitor macrophages in post-surgery and transplantation 

settings. In the next section, combined imaging and diagnostic features were 

demonstrated in a neuropathic pain model, which is more representative of clinical 

treatment setting for chronic pain. 
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Figure 7.9. Histology of paw 72 h after inducing inflammation to assess 

nanoemulsion accumulation in macrophages and neutrophils. 

Representative immunofluorescence sections of inflamed paw stained for macrophages 

(Rat anti mouse-CD68, green) or (Rat anti mouse-Gr-1-FITC, green) show nanoemulsion 

co-localization with macrophages (arrows), but not neutrophils (arrow head) in the 

merged panel.  
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Figure 7.10. In vivo and ex vivo NIRF imaging of neuropathic pain rat model to 

assess dual fluorescent PFPE nanoemulsion accumulation. Arrow points to the 

surgical site showing fluorescence at the injured sciatic nerve in chronic constriction 

injury (CCI) rat. 

 

This model was also utilized to investigate the pain sensitivity changes in 

response to COX-2 inhibition in macrophages using a celecoxib theranostic 

nanoemulsion.215 This theranostic system is prepared with same ingredients as 

nanoemulsions reported in chapter 4, 5, and 6, but PFCE was utilized instead of PFPE. 

Animals with neuropathic pain were injected with free drug or drug-loaded or drug-free 

fluorescent PFCE nanoemulsions. Animals injected with free-drug also received drug-

free fluorescent PFCE nanoemulsion (vehicle) to facilitate imaging. Sham animals were 
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used as controls for pain behavior testing. As shown in Figure 7.11, animals experienced 

less pain with celecoxib-loaded nanoemulsion compared to free drug and drug-free 

nanoemulsion starting on day 8 (2nd day after nanoemulsion injection). Representative 

sciatic nerves (from one animal) from drug-loaded and free drug treated groups were 

analyzed by ex vivo 19F NMR, 19F MRI and NIRF imaging. The results from three 

methods show a reduction in imaging signal in the animals receiving celecoxib 

nanoemulsion compared to free drug. There was also a significant difference in CD68 

macrophages between these groups (Kiran Vasudeva, Dissertation 2015). These results 

indicate that by inhibiting COX-2 in macrophages, macrophage infiltration as well as 

pain sensitivity will be reduced, validating the theranostic potential of the nanoemulsion 

in a different inflammation model.  
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Figure 7.11. Imaging and pain behavior assessment of theranostic PFCE 

nanoemulsion in a neuropathic pain rat model. 

A. Pain sensitivity test performed in rats with sham surgery (grey) and sciatic nerve 

ligation (red blue, light blue), chronic constriction injury (CCI). Mechanical 

hypersensitivity is quantified based on paw withdrawal in response to filament poking. 

Reduction in withdrawal threshold is read as increase in pain. Comparison between rats 

(neuropathic pain) injected with and without celecoxib-loaded theranostic using B. Ex 

vivo NIRF, C. 19F MRI, D. 19F NMR and E. CD68-macrophages. Author credits: 

Behavior testing by Kiran Vasudeva and Muzamil Saleem, nanoemulsion designed by Dr. 

Jelena M. Janjic and Sravan kumar Patel, in vivo NIRF imaging, ex vivo NIRF and 19F 

NMR by Sravan Kumar Patel, in vivo NIRF imaging by Dr. John A. Pollock, 19F MRI by 

Dr. Kevin Hitchens, CMU, and histology for CD68 detection by Kiran Vasudeva.  

 

7.4 Conclusions 

As hypothesized, theranostic nanoemulsions detected inflamed locus in preclinical 

inflammatory models. 19F NMR, MRI, and fluorescence imaging methods unequivocally 
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confirmed the nanoemulsion presence at the inflammation site. In the mouse paw 

inflammation model, theranostic nanoemulsion was specifically localized to macrophages 

compared to neutrophils. In both inflammation models, a temporal reduction in 

fluorescence intensity at the inflammation site with celecoxib-nanoemulsion indicated a 

reduced macrophage accumulation. Further, reduced mechanical hypersensitivity as a 

measure of pain in response to macrophage-targeted drug delivery was observed. This 

result was concomitant with reduced number of macrophages and imaging signal at the 

injured sciatic nerve. Ultimately, the studies presented in this chapter showed that the 

celecoxib-loaded theranostic nanoemulsion produces anti-inflammatory effects i.e. 

reduced macrophage accumulation and the associated pain, while the effect can be 

simultaneously visualized.  
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8 Summary and future directions 

The treatment of chronic inflammatory diseases needs a personalized approach to 

increase therapeutic efficacy and reduce unwanted side effects. NP-based theranostics 

can be effective towards driving disease management strategy to a personalized medicine 

realm by reducing intra- and inter-patient variability.  A common aspect among several 

inflammatory diseases is the infiltration of macrophages that participate in disease 

pathogenesis. Targeting these cells for combined therapeutic and diagnostic purposes is 

an attractive approach applicable to multiple diseases. In this dissertation, the treatment 

aspects of macrophages (i.e. diagnosis and therapy) were carefully exploited to 

demonstrate the concept of simultaneous therapy and therapy response monitoring 

through the use of theranostic nanoemulsions. 

The work presented in this dissertation identified that the inhibition of COX-2 in 

macrophages is an effective strategy for obtaining both therapeutic and diagnostic 

information. Furthermore, the dissertation led to the development of PFC nanoemulsions 

that can be utilized for therapeutic and diagnostic purposes, separately and together. A 

rational methodology was followed from idea conception to theranostic platform design 

and development, and ultimately, to in vivo application. In the first phase of research, 

lipophilic PFC conjugates were synthesized to address specific challenges in the current 

19F magnetic materials pertaining to MR sensitivity, body residence time and formulation 

challenges. After solving the instability problems, nanoemulsions with high droplet 

stability and macrophage labeling potential were produced. This formulation was not 

taken forward to in vivo studies due to the large time and cost investments that would be 

required for large-scale synthesis and pre-formulation studies. Nevertheless, this work led 
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to the development of a stable formulation of a new PFC conjugate. Due to its single 19F 

resonance peak, which is easily distinguishable from the widely used PFCs, the reported 

nanoemulsion can be used as an imaging tracer in multi-spectral 19F MRI applications. 

The developed platform serves as a starting point for future investigations involving drug 

and dye incorporation for the development of a potential theranostic system. 

In the second phase of the work presented in chapters 4, 5, and 6, PFPE 

nanoemulsions were developed and sequentially optimized for increased MR imaging 

efficiency. The developed platform was amenable to the incorporation of additional dye, 

which can facilitate in vivo fluorescence and 19F MR imaging as well as ex vivo histology. 

The formulation could not be detected in a neuropathic pain model using 19F MR. Most 

likely, this was due to the low amount of PFPE in the nanoemulsion, as well as the 

presence of a localized low degree of inflammation. However, this formulation has the 

potential to be used in models with significant inflammation such as cancer and graft 

rejection. To address the MR sensitivity, nanoemulsions with increased PFPE content 

were prepared. In this multimodal theranostic platform, therapeutic and imaging 

functionalities were preserved in cells and tissues. In the mouse paw inflammation model, 

these nanoemulsions showed specific localization in macrophages (CD68+) expressing 

COX-2 compared to neutrophils. With a single dose administration of the celecoxib-

loaded theranostic, we observed a reduction in fluorescence in the inflamed paw with 

time, indicating a reduction in macrophage infiltration. Essentially, infiltrating 

macrophages that would, otherwise, produce pro-inflammatory effects by PGE2 release 

and further recruitment of blood monocytes, were converted into immunotherapeutic 

cells carrying theranostics. Evaluation in a neuropathic model validated our results that 
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the inhibition of macrophage COX-2 leads to a reduction in neuropathic pain and 

macrophage infiltration, which can be sensed by the theranostic nanoemulsion. Our data 

strongly suggest that the delivery of select agents to infiltrating macrophages can 

potentially lead to new inflammatory disease treatments in which macrophage behavioral 

changes are monitored in vivo. For the first time, the work presented here showed both 

simultaneous therapy and response monitoring after a single dose administration.  

One can envision that additional inflammatory drugs could be delivered using the 

above-presented theranostic nanoemulsions, and that select pathways inside these cells 

could be inhibited or modulated for potentially therapeutic effects. Therefore, the work 

presented here sets the stage for a new type of inflammation treatment, with macrophages 

as the therapeutic and diagnostic targets. With PFCs showing ultrasound echogenic 

properties and suitability of the developed theranostic system for photoacoustic imaging, 

a suite of imaging methods could be used for noninvasive detection. The gas-dissolving 

capacity of PFCs could be exploited to deliver oxygen to hypoxic tumor tissue, as well as 

to increase sensitivity to radiation therapy. Given these functionalities, the PFC 

theranostic platform has great potential to be applied in varied inflammatory models. A 

potential future study could employ a graft rejection model to assess if pre-administration 

of theranostic nanoemulsion is able to reduce macrophage burden and rejection at the 

graft site. In addition to providing mechanistic information in preclinical pathological 

settings, application of these theranostics in the clinic could assist physicians in risk 

assessment, decision-making and strategizing treatment options leading to personalized 

medicine. 
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