Nitrate metabolism in the Epsilonproteobacteria: Campylobacter jejuni and Sulfurospirillum barnesii

Courtney Sparacino-Watkins

Follow this and additional works at: https://dsc.duq.edu/etd

Recommended Citation

This Immediate Access is brought to you for free and open access by Duquesne Scholarship Collection. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Duquesne Scholarship Collection.
NITRATE METABOLISM IN THE EPSILONPROTEOBACTERIA:

CAMPYLOBACTER JEJUNI AND SULFUROSPIRILLUM BARNESII

A Dissertation

Submitted to the Bayer School of Natural and Environmental Sciences

Duquesne University

In partial fulfillment of the requirements for

the degree of Doctor of Philosophy

By

Courtney E. Sparacino-Watkins

August 2011
NITRATE METABOLISM IN THE EPSILONPROTEOBACTERIA: 
*CAMPYLOBACTER JEJUNI* AND *SULFUROSPIRILLUM BARNESII*

By
Courtney E. Sparacino-Watkins

Approved June 30, 2011

Partha Basu, PhD
Professor of Chemistry and Biochemistry
(Committee Chair)

Michael Cascio, PhD
Associate Professor of Chemistry and Biochemistry
(Committee Member)

Mihaela Rita Mihaiucle, PhD
Associate Professor of Chemistry and Biochemistry
(Committee Member)

John F. Stolz, PhD
Director, Center for Environmental Research and Education
Professor of Biological Science
(Outside Reader)

David W. Seybert, PhD
Dean, Bayer School of Natural and Environmental Sciences Professor of Chemistry and Biochemistry

Ralph A. Wheeler, PhD
Chair, Chemistry and Biochemistry Professor of Chemistry and Biochemistry
ABSTRACT

NITRATE METABOLISM IN THE EPSILONPROTEOBACTERIA:
CAMPYLOBACTER JEJUNI AND SULFUROSPIRILLUM BARNESII

By
Courtney E. Sparacino-Watkins
August 2011

Dissertation supervised by Partha Basu

The molecular mechanisms employed by Campylobacter jejuni and Sulfurospirillum barnesii during nitrate metabolism will be examined, specifically the periplasmic nitrate reductase (Nap) enzyme which transforms nitrate into nitrite. The catalytic subunit, NapA, is a molybdenum dependent enzyme. Isolation of molybdenum containing enzymes is not straightforward as co-factor can be lost during protein purification procedures. This study explored two protein purification methods to isolate NapA. First, NapA was isolated directly from S. barnesii using protein fractionation and anion exchange chromatography. Second, molecular cloning was used to express the recombinant affinity-tagged S.barnesii and C. jejuni NapA proteins from E. coli. Immobilized metal affinity chromatography was used to isolate the recombinant proteins. NapD was co-expressed with NapA to aid in post-translational modifications. The reduced methyl viologen assay was used to study the kinetics of nitrate reduction.
Comparison of the native and recombinant NapA kinetic properties suggests that the recombinant enzyme have attenuated activity. The theoretical structure of C. jejuni NapA was calculated using homology modeling techniques. Comparison of the C. jejuni NapA with structures of NapA from other organisms indicates that C. jejuni NapA has large sequence inserts on the outside of the protein. Furthermore, the napA operon of C. jejuni and S. barnesii display distinct gene content and organization.
DEDICATION

This dissertation is dedicated to:

❖ My mother, Linda Sparacino, who has always encouraged and supported my educational goals. Thank you for believing in my abilities.

❖ My first son, Tyler, who initially inspired me to pursue a career in the sciences. You, and your siblings, are my motivation to be successful.

❖ My father, Jim Sparacino, and my husband, William Watkins, for keeping me grounded and thinking practical.

❖ My family and close friends for their unwavering support.
ACKNOWLEDGEMENTS

First and foremost, I must thank my PhD advisor and mentor, Dr. Partha Basu. Your encouragement, guidance, and motivation over the years have facilitated me in achieving my educational goals and directed me onto the path to accomplish my career goals. I appreciate your dedication, and thank you for pushing me to strive for excellence.

I thank my current committee members, Dr. Rita Mihaiescu, Dr. Michael Cascio, and Dr. John Stolz, for their guidance and time. Your ideas and suggestions have been invaluable. Dr. Stolz, your passion for research was particularly inspiring. As well, I would like to thank my past committee members, Dr. Charles Dameron and Dr. Mitch Johnson, for their guidance during my initial years. Thank you to my undergrad research advisor, Dr. Paul Birckbichler, for encouraging me to continue my chemistry education, at a graduate level. I am grateful to you for introducing me to scientific research.

A special thanks to Dr. Günter Schwarz at the University of Cologne, Germany for inviting me to work in his laboratory. I appreciate the opportunity to work with you and your lab members: Dr. Jose Santamaria, Jens Herweg, Sita Arjune, Abdel Ali Belaidi, Jen-Chih Chi, Simona Jansen, Juliane Röper, Oliver Schwiese, Julika Csaszar, Julian Klein, Borislav Dejanovic. I am especially thankful to Nastassia Havarushka and Natalie Keib for helping me enjoy Germany, moreover making me feel welcome abroad. I am particularly grateful to Dr. Katrin Schrader, who provided me with countless hours of one-on-one training and guidance on molecular biology and cloning.

I graciously thank Drs. Axel Magalon and A. Andrew Pacheco for valuable discussions. A special thanks to the individuals of the research community, who guided me through the more practical aspects of my dissertation research, especially Dr. Peter
Chovanec and Claudia Almaguer. Following written protocols could not serve as a substitution for your experimental know-how.

Also I am grateful for Dr. William Miller, who provided the C. jejuni RM1221 genomic DNA, Dr. Rishu Dheer and Shrabani Basu for S. barnesii SES-3 DNA. I am thankful to Lina Bird and Dr. Ganesh Naik for preliminary work on NapA. Many thanks to my good friend Dr. Peter Chovanec for performing mass spectroscopy.

I thank the present and past Basu lab members for their support: Brain Kail, Barbra Serli, Bernd Hammond, Benjamin Mogesa, Eranda Perera, Indrajit Saha, Igor Pimkov, John Thomas, Kiran Venna, Samih Nassif, Lauren Marbella and Lawrence Blume. My fellow graduate students, especially Tim Evans, Suma Shetty, Anna Blice-Baum, Rachael Palchesko, Kelly Keller, Chelsee Donelan, Valerie Scott, Erin Divito, Bonnie Merchant, Meirelle Balili, Will Eckenhoff, Raj Kaur, Johanna Burnett, Chris Kabana, Matt Purzycki, Dinesh Nath, Shankar Manepalli, for supporting me both professionally and personally.

I appreciated the encouragement of the Duquesne University community, especially Dr. Paul Johnson, Dr. Alicia Paterno-Parsi, Alcira Chapman, Amy Stroyne, Dr. Jane Cavanaugh, Dr. Jennifer Aitken, Dr. Jelena Janjic, Dr. Rita Mihailescu, Sandy Russell, and Dr. Sarah Woodley. Thanks to the entire faculty and staff within the Department of Chemistry and Biochemistry at Duquesne University. In the department of Biological Sciences, I thank Dr. Peter Castric, Dr. Jana Patton-Vogt, and Dr. Nancy Turn, who always made time for my biology questions.

I would like to express my gratitude to Dean Seybert and Provost Ralph Pearson at Duquesne University, for their part in facilitating my trip to the University of Cologne.
I would like to acknowledge the Bayer School of Natural and Environmental Sciences funding my graduate education and providing teaching assistantship. The partial financial support of this work by the Office of Science (BER), U.S. Department of Energy, Grant No. DE-FG02-07ER64372 is gratefully acknowledged.
2.3.3.2. Native gel electrophoresis and in-gel assays ........................................54
2.3.3.3. Denaturing protein gel electrophoresis .................................................54
2.3.3.4. Metal analysis ..........................................................................................54
2.4. Results and Discussion ....................................................................................55
  2.4.1. Cultivation of S. barnesii ........................................................................55
  2.4.2. Purification of NapA ................................................................................56
2.5. Conclusions .....................................................................................................74

Chapter 3: Cloning, expression and characterization of the Campylobacter jejuni strain RM1221 and Sulfurospirillum barnesii strain SES-3 periplasmic nitrate reductase (Nap) proteins ..................................................................................................................75
  3.1. Abstract .........................................................................................................75
  3.2. Introduction ...................................................................................................76
  3.3. Experimental ..................................................................................................78
    3.3.1. Cloning of nap genes .............................................................................78
      3.3.1.1. Bacterial strains and media .................................................................79
      3.3.1.2. DNA Electrophoresis .........................................................................79
      3.3.1.3. Amplification nap genes from the genomic DNA .............................79
      3.3.1.4. Restriction digestion and purification of digested DNA ...................82
      3.3.1.5. Ligation of nap gene constructs and expression vectors .................82
      3.3.1.6. Ligation of nap gene constructs and pJET 1.2 cloning vector ..........82
      3.3.1.7. Amplifying genes from the pJET 1.2 cloning vector .........................83
      3.3.1.8. Transformation of E. coli DH5α .......................................................83
      3.3.1.9. Colony PCR .......................................................................................84
      3.3.1.10. Plasmid extraction from E.coli .........................................................84
      3.3.1.11. Restriction enzyme assay .................................................................85
      3.3.1.12. DNA Sequencing ............................................................................86
    3.3.2. Protein expression and purification ........................................................86
      3.3.2.1. Co- transformation of the E. coli expression strains ..........................86
      3.3.2.2. Pilot expression studies ....................................................................87
      3.3.2.3. Large scale expression of NapA .......................................................88
      3.3.2.4. Purification of NapA ........................................................................89
    3.3.3. Detection and characterization ...............................................................90
      3.3.3.1. Protein gel electrophoresis .................................................................90
      3.3.3.2. Western blotting ..............................................................................90
      3.3.3.3. Mass spectrometry ..........................................................................91
      3.3.3.4. Metal analysis ..................................................................................91
      3.3.3.5. Molybdenum cofactor determination ...............................................91
      3.3.3.6. Protein assays ...................................................................................91
      3.3.3.7. Kinetic analysis and data treatment ..................................................92
  3.4. Results and Discussion ...............................................................................93
    3.4.1. Amplification, cloning and transformation of napA, napB and napLD .....93
    3.4.2. Expression and growth conditions .........................................................100
    3.4.3. Purification of NapA ..............................................................................106
    3.4.4. Spectral characterization .......................................................................110
    3.4.5. Kinetic analysis of recombinant NapA ...................................................111
Chapter 4: Characteristics of the Epsilonproteobacteria periplasmic nitrate reductase: theoretical modeling of Campylobacter jejuni NapA

4.1. Abstract ...............................................................................................................118
4.2. Introduction .........................................................................................................119
4.3. Experimental .......................................................................................................124

4.3.1. Bioinformatics investigation of the nap operon .........................................124
4.3.2. Theoretical modeling of the C. jejuni NapA enzyme structure .................125
4.3.3. Determining the surface charge of NapA proteins: electrostatic potential calculations .................................................................128
4.4. Results and Discussion .......................................................................................128
4.5. Conclusions .........................................................................................................144

Chapter 5: Conclusions .............................................................................................145

5.1. Future directions .................................................................................................147

Appendix I: Supplemental Tables and Figures ................................................................152

Appendix II: DNA sequencing data ...........................................................................168

Appendix III: Protein mass spectroscopy data ........................................................179

Appendix IV: The effect of hexavalent chromium on dissimulatory nitrate reduction to ammonia by the soil bacteria: Sulfurospirillum barnesii, Geobacter metallireducens and Desulfovibrio desulfuricans ..................................................189

6.1. Introduction ............................................................................................................189
6.2. Experimental ..........................................................................................................192

6.2.1. Cultivation of bacteria ...................................................................................192
6.2.2. Crude fractionation of bacteria cells ..........................................................192
6.2.3. Detergent solublization of membrane proteins ...........................................192
6.2.4. Preparative CHAPS native- polyacrylamide gel electrophoresis ...............193
6.2.5. In-gel activity assays and native polyacrylamide gel electrophoresis ..........193
6.2.6. Sodium dodecyl sulfate polyacrylamide gel electrophoresis .................194
6.2.7. Assays ........................................................................................................195
6.2.8. Spectroscopy and redox cycling of cytochromes .......................................196
6.3. Results and Discussion ..........................................................................................197

6.3.1. The effect of chromate on Sulfurospirillum barnesii nitrate and nitrite reductase activity .................................................................197
6.3.2. The effect of chromate on D. desulfuricans nitrate and nitrite reductase activity ......................................................................................207
6.3.3. The isolation of a multiheme protein from G. metallireducens nitrate and nitrite reductase activity ..................................................214
6.4. Conclusions ............................................................................................................219
Appendix V: Reagents and Protocols

Media

Buffers

Electrophoresis

Polymerase chain reaction (PCR)

Cloning protocols

Protein assays

Mass spectroscopy techniques

Works cited
LIST OF TABLES

**Table 1.1:** Structurally characterized, DMSOR molybdopterin enzymes ........................................ 11
**Table 1.2:** The reactions catalyzed by mononuclear molybdenum enzymes of the DMOSR family ................................................................. 13
**Table 1.3:** The iron sulfur content and subunit composition of DMSOR family enzymes ................................................................. 14
**Table 2.1:** Energy yields of arsenate, selenate, and nitrate respiration by *S. barnesii* ................................................................. 48
**Table 2.2:** The effect of ammonium sulfate, CHAPS detergent, dithiothreitol and EDTA on the specific activity of *S. barnesii* lysate ........................................ 59
**Table 2.3:** Nitrate reductase activity in *S. barnesii* NapA purification ................................................ 69
**Table 3.1:** Polymerase chain reaction (PCR) conditions and primers used to amplify *nap* genes ................................................................. 81
**Table 3.2:** Summary of plasmids used in this study ................................................................. 83
**Table 3.3:** Restriction endonuclease (RE) assay conditions for the *nap* plasmids ................................. 85
**Table 3.4:** The predicted sizes of each *nap* gene amplified by colony PCR ................................................................. 95
**Table 3.5:** Summary of results from the *S. barnesii* NapA pilot expression ................................................ 101
**Table 3.6:** Summary of results from the *C. jejuni* NapB pilot expression ................................................ 103
**Table 3.7:** A summary of kinetic properties from NapA enzymes ................................................................. 114
**Table 3.8:** Summary of the kinetic data from the recombinant and native NapA isolates ................. 116
**Table 4.1:** Comparison of the NapA physical properties among each class of proteobacteria ............................................................................................................. 123
**Table A.1:** The *nap* operon gene content and organization in bacteria ................................................ 152
**Table 6.1:** Redox potentials of compounds used in this study ................................................................. 198
**Table 6.2:** The effect of chromate on the nitrite reductase activity of *S. barnesii* lysate ................................................................. 201
**Table 6.3:** The electronic absorption data of *S. barnesii* fractions isolated with preparative CN-PAGE ......................................................................................... 205
**Table 6.4:** The electronic absorption data of *D. desulfuricans* fractions isolated with preparative CN-PAGE ......................................................................................... 209
**Table 6.5:** The electronic absorption data of *G. metallireducens* fractions isolated with preparative CN-PAGE ......................................................................................... 214
LIST OF FIGURES

**Figure 1.1**: The structure of pyranopterin (PPT) with bound molybdenum: the basic pterin unit conserved in all mononuclear molybdopterin enzymes. ..........3

**Figure 1.2**: Categorization of molybdenum enzymes. .........................................................5

**Figure 1.3**: The *bis*pyranopterin guanine dinucleotide (*bis*PGD) molybdenum cofactor...6

**Figure 1.4**: The hypothesized route of intermolecular electron transport within DMSOR enzymes...................................................................................................................... 8

**Figure 1.5**: The structural superimposition of periplasmic nitrate reductase (Mo-NapA) and formate dehydrogenase (W-FdhA) illustrating the similarities in the vicinity of the iron sulfur cluster and differences in the residue composition surrounding the active site. ...........................................................................17

**Figure 1.6**: A schematic representation of the nitrogen cycle...................................................23

**Figure 1.7**: Diagram of dissimilatory and assimilatory nitrate reduction (NR). .................24

**Figure 1.8**: Classification of prokaryote nitrate reductases into molybdopterin enzyme families based on active site composition.................................................................26

**Figure 1.9**: The nap operon gene content and organization in some bacteria. ..................30

**Figure 1.10**: Transcriptional regulation of the nap operon and the pyranopterin and iron sulfur cofactor biogenesis operons. .............................................................33

**Figure 1.11**: The structure of NapA illustrating the location of the iron sulfur cluster [4Fe-4S] and the Mo-*bis*PGD...............................................................36

**Figure 1.12**: The protein structure of *E. coli* NapD in complex with the N- terminus of NapA.........................................................................................................................38

**Figure 1.13**: The proposed routes of electron transport to NapAB from quinone pool during nitrate reduction.................................................................42

**Figure 2.1**: The effect of storage temperature, ammonium sulfate, CHAPS detergent, dithioteritol and EDTA on the specific activity of *S. barnesii* lysate. ...............58

**Figure 2.2**: Scheme of the differential solublization of *S. barnesii* proteins using CHAPS and OBG P detergents..............................................................................60

**Figure 2.3**: SDS/PAGE separation of proteins from the *S. barnesii* OBG P and CHAPS solubilized fractions illustrating the enrichment of RarA in the OBG P fraction. .................................................................61

**Figure 2.4**: Native gel electrophoresis and in-gel nitrate reductase activity of CHAPS solubilized *S. barnesii* proteins. .................................................................62

**Figure 2.5**: Native gel electrophoresis and in-gel nitrite reductase activity assay of the CHAPS and OBG P solubilized *S. barnesii* fractions. ..................................................63

**Figure 2.6**: SDS/PAGE of nitrite and nitrate reductase active bands excised from the OBG P native gel. ..............................................................................64

**Figure 2.7**: Native gel electrophoresis, in-gel nitrite reductases activity assay, and SDS/PAGE separation of RarA from OBG P soluble *S. barnesii* fraction....65
Figure 2.8: Stepwise ammonium sulfate precipitation of proteins from the S. barnesii OBG and CHAPS solubilized fractions ................................................................. 66
Figure 2.9: Overview, flow chart, of the S. barnesii NapA purification process. ........... 67
Figure 2.10: The total nitrate reductase activity measured in crude fractionation of S. barnesii ................................................................. 69
Figure 2.11: SDS-PAGE of the crude S. barnesii fractions ........................................... 70
Figure 2.12: The nitrate reductase activity measured in protein fractions separated with anion exchange chromatography .................................................... 71
Figure 2.13: SDS/PAGE of select anion exchange chromatography fractions, including the purified NapA ................................................................. 72
Figure 2.14: The electronic spectra of S. barnesii NapA: as-isolated, dithionite reduced and nitrate oxidized ................................................................. 73
Figure 2.15: Michaelis–Menten kinetics of nitrate reduction in the NapA enriched CHAPS soluble fraction using the reduced methylviologen coupled nitrate reductases assay ................................................................. 74
Figure 3.1: An overview of the cloning procedures used to create nap plasmids ........... 78
Figure 3.2: Preparative gel electrophoresis of the nap genes amplified from S. barnesii and C. jejuni ................................................................. 94
Figure 3.3: Agarose gel electrophoresis of the C. jejuni napA gene amplified from pJCnapA ................................................................. 95
Figure 3.4: DNA gel electrophoresis of colony PCR ................................................................. 97
Figure 3.5: Gel electrophoresis of restriction digest assays preformed on C. jejuni nap plasmids ................................................................. 98
Figure 3.6: S. barnesii napB sequence ................................................................. 99
Figure 3.7: SDS-PAGE of S. barnesii NapA purified from E. coli strain T7 express during the pilot expression experiment ................................................................. 102
Figure 3.8: SDS/PAGE of the periplasmic extract from the C. jejuni NapB pilot expression experiment ................................................................. 103
Figure 3.9: SDS-PAGE illustrating the IPTG concentration-dependent expression of S. barnesii and C. jejuni NapA in E. coli ................................................................. 105
Figure 3.10: An overview of the expression and purification of affinity tagged NapA and NapB ................................................................. 106
Figure 3.11: SDS-PAGE of fractions obtained during the purification of C. jejuni and S. barnesii NapA from E. coli using immobilized metal affinity chromatography ................................................................. 107
Figure 3.12: SDS-PAGE of the purified C. jejuni NapA and NapD complex, and the purified S. barnesii NapA ................................................................. 109
Figure 3.13: The electronic spectra of the purified NapA proteins ............................................. 111
Figure 3.14: Michaelis-Menten, non-linear, plot of the enzyme rate versus substrate concentration for C. jejuni and S. barnesii NapA ................................................................. 112
Figure 4.1: The sequence alignment of Azotobacter vinelandii NifL with the putative NapS proteins from Epsilonproteobacteria ................................................................. 122
Figure 4.2: The protein sequence alignment of *C. jejuni* and *C. necator* NapA used to create the *C. jejuni* NapA structure. ...........................................................127

Figure 4.3: The theoretical three-dimensional model of *C. jejuni* NapA. ..................... 130

Figure 4.4: A global sequence alignment of the relatively larger Epsilonproteobacteria NapA from *C. jejuni*, *W. succinogenes*, *A. butzleri*, *S. deleyianum*, and *S. barnesii* with the smaller NapA sequences from crystallographically studied organisms, *R. sphaeroides*, *E. coli* and *D. desulfuricans*. ..........................131

Figure 4.5: Superimposition of the *C. jejuni* NapA model onto the *R. sphaeroides* NapAB octomer. ........................................................................................133

Figure 4.6: Superimposition of the *C. jejuni* and *R. sphaeroides* NapA structures. ......135

Figure 4.7: The electrostatic surface potential of NapA proteins. ........................................139

Figure 4.8: Phylogenic tree, neighbor joining, showing the relationship of NapA sequences. ..............................................................................................................143

Figure 5.1: The proposed mechanism of nitrate reduction by NapA ............................... 145

Figure A.1: A western blot of the purified *S. barnesii* NapA protein isolated from *E. coli* strain T7 express during the pilot expression experiments. .........................155

Figure A.2: A western blot of the periplasmic extract from the *C. jejuni* NapB pilot expression experiment. .................................................................156

Figure A.3: The multiple sequence alignment of *C. jejuni* NapA with the sequences of the four structurally characterized NapA proteins from *D. desulfuricans*, *R. sphaeroides*, *E.coli* and *C. necator* ...............................................................157

Figure A.4: A plasmid map of the pCnapA vector. ............................................................158

Figure A.5: The DNA and protein sequences of the recombinant *C. jejuni* NapA. ......159

Figure A.6: A plasmid map of the pSnapA vector.................................................................160

Figure A.7: The DNA and protein sequences of the recombinant *S. barnesii* NapA.....161

Figure A.8: A plasmid map of the pCnapB vector. ............................................................162

Figure A.9: The DNA and protein sequences of the recombinant *C. jejuni* NapB. ......163

Figure A.10: A plasmid map of the pSnapB vector.............................................................164

Figure A.11: The DNA and protein sequences of the recombinant *S. barnesii* NapB ...165

Figure A.12: A plasmid map of pCnapLD vector.................................................................166

Figure A.13: The DNA sequence of the *C. jejuni* napLD construct and protein sequence of the recombinant *C. jejuni* NapL. .........................................................167

Figure A.14: The DNA sequence of the *C. jejuni* napLD construct and protein sequence of the recombinant *C. jejuni* NapD. .........................................................167

Figure A.15: Alignment of the *S.barnesii* napA gene with the sequencing data obtained from the pSnapA plasmid using the T7 promoter-binding primer. ..........168

Figure A.16: Alignment of the *S.barnesii* napA gene with the sequencing data obtained from the pSnapA plasmid using the *S. barnesii* napA internal binding primer .................................................................169
Figure A.17: Alignment of the *C. jejuni* napA gene with the sequencing data obtained from the pJCnapA plasmid using the pJET 1.2 forward primer ..........170

Figure A.18: Alignment of the *C. jejuni* napA gene with the sequencing data obtained from the pJCnapA plasmid using the pJET 1.2 reverse primer ..........171

Figure A.19: Alignment of the *C. jejuni* napL gene with the sequencing data from the pJCnapLD plasmid using the pJET 1.2 forward primer ..........172

Figure A.20: Alignment of the *C. jejuni* napB gene with the sequencing data from the pCnapB plasmid using a pQE-60 sequencing primer ..........173

Figure A.21: Alignment of the *C. jejuni* napLD genes with the sequencing data from the pCnapLD plasmid using a pRSF reverse primer ..........174

Figure A.22: Alignment of the *S. barnesii* napH gene with the sequencing data from the pJSnapHBF plasmid using the pJET 1.2 forward primer ..........175

Figure A.23: Alignment of the *S. barnesii* napF gene with the sequencing data from the pJSnapHBF plasmid using the pJET 1.2 reverse primer ..........176

Figure A.24: Alignment of the *S. delyanum* napHBF genes with the sequencing data from the pJSnapHBF plasmid using the pJET 1.2 forward primer ..........187

Figure A.25: Alignment of the *S. delyanum* napHBF genes with the sequencing data from the pJSnapHBF plasmid using the pJET 1.2 reverse primer ..........188

Figure 6.1: The effect of chromate on nitrate reductase activity in the *S. barnesii* lysate. .................................................................199

Figure 6.2: The effect of chromate on the nitrite reductase activity of *S. barnesii* lysate. .................................................................200

Figure 6.3: The oxidation of reduced benzyl viologen by *S. barnesii* lysate in the presence of chromate ................................................202

Figure 6.4: *S. barnesii* native gel electrophoresis and in-gel nitrate and chromate activity assay .........................................................204

Figure 6.5: The preparative fractionation of the *S. barnesii* CHAPS soluble fraction using electrophoresis ........................................206

Figure 6.6: SDS-PAGE of *S. barnesii* protein fractions isolated with preparative CN-PAGE .............................................................207

Figure 6.7: The electronic absorption spectra of the yellow protein fraction isolated from *S. barnesii* .................................................207

Figure 6.8: *D. desulfuricans* native gel electrophoresis and in-gel nitrate and chromate activity assay ..................................................208

Figure 6.9: The preparative fractionation of the *D. desulfuricans* CHAPS soluble fraction using electrophoresis ................................210

Figure 6.10: SDS-PAGE of *D. desulfuricans* protein fractions isolated with preparative CN-PAGE ....................................................211

Figure 6.11: The electronic absorption spectra of the desulfoviridin enriched fraction from *D. desulfuricans* .....................................212

Figure 6.12: The electronic absorption spectra of nitrite reductase activity fraction from *D. desulfuricans* .............................................213

Figure 6.13: The preparative fractionation of the *G. metallireducens* CHAPS soluble fraction using electrophoresis .......................215
Figure 6.14: SDS-PAGE of *G. metallireducens* protein fractions isolated with preparative CN-PAGE .................................................................216

Figure 6.15: The electronic absorption spectra of the *G. metallireducens* pink heme enriched fraction .................................................................217
LIST OF ABBREVIATIONS

SO: sulfite oxidase
XO: xanthine oxidase
DMSOR: dimethyl sulfoxide reductase
mARC: mitochondrial amidoxime reducing component
PPT: Pyranopterin
PGD: Pyranopterin guanidine dinucleotide
PCD: Pyranopterin cytosine dinucleotide
C. jejuni: Campylobacter jejuni
S. barnesii: Sulfurospirillum barnesii
E. coli: Escherichia coli
D. desulfuricans: Desulfovibrio desulfuricans
W. succinogenes: Wolinella succinogenes
C. necator: Cupriavidus necator
R. sphaeroides: Rhodobacter sphaeroides
nap: Periplasmic nitrate reductase gene
Aox: Arsenite oxidase
Arr: Arsenate respiratory reductase
Bis: Biotin sulfoxide reductase
Clr: Chlorate reductase
Ddh: Dimethyl sulfide dehydrogenase
Dor: Dimethyl sulfoxide reductase
Dms: Respiratory dimethyl sulfoxide reductase
Ebd: Ethylbenzene dehydrogenase
FdhH: Formate dehydrogenase-H
FdnN: Formate dehydrogenase-N
Pcr: Perchlorate reductase
Nap: Periplasmic nitrate reductase
pNar: Periplasmic respiratory nitrate reductase
Psr: Polysulfide reductase
Pgt: Pyrogallol–phloroglucinol transhydroxylase
Nar: Respiratory nitrate reductase
Ser: Selenate reductase
Ttr: Tetrathionate reductase
Phs: Thiosulfate reductase
Tor: Trimethylamine-N-oxide reductase
EukNR: Eukaryotic nitrate reductase
RarA: Metalloid reductase
NasA: Assimilatory nitrate reductase A
NarB: Assimilatory nitrate reductase B
Fdh: Formate dehydrogenase
DNRA: dissimilatory nitrate reduction to ammonia
TAT: Twin arginine translocase
SEC: Secretory translocase
DNA: Deoxyribonucleic acid
EDTA: Ethylene diamine tetra acetic acid
RE: Restriction endonucleases
AmpR: Ampicillin resistance
KanR: Kanamycin resistance
bp: Base pair
Da: Dalton
PCR: Polymerase chain reaction
CHAPS: 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate
OBGP: n-octyl-β-D-glucopyranoside
SDS-PAGE: Sodium dodecyl sulfate-polyacrylamide gel electrophoresis
CN-PAGE: CHAPS native-polyacrylamide gel electrophoresis
MQH₂: Menaquinone
UQH₂: Ubiquinone
DEAE: Diethylaminoethyl cellulose
Vₘₐₓ: Maximum velocity
Kₘ: Michaelis-Menten constant
Kₑₜ: Catalytic constant
**LB:** Lysogeny broth

**IPTG:** Isopropyl-b-D-thiogalactopyranoside

**MWCO:** Molecular weight cut off

**Moco:** Molybdenum cofactor

**DH5α:** *Escherichia coli* strain DH5α

**His6x:** Hexahistidine tag

**Ni-NTA:** Nickel-nitrilotriacetic acid

**RNR:** Ribonucleotide reductase

**MV:** Methyl viologen

**BV:** Benzyl viologen

**TCA:** Trichloroacetic acid

**Crp:** Cyclic AMP receptor protein

**IscR:** Iron-sulfur cluster regulator

**FNR:** Fumarate and nitrate reductase

**ModE:** Molybdate-Responsive transcriptional regulator protein

**NRases:** Nitrate reductases

**AMP:** Adenosine monophosphate

**VMD:** Visual Molecular Dynamics

**MOE:** Molecular Operating Environment

**PDB:** Protein data bank
CHAPTER 1: Introduction

1.1. Molybdenum enzymes

1.1.1. Importance of molybdenum enzymes

Molybdenum is considered to be an essential micronutrient [4] as it is a vital component of nearly all organisms. Incorporation of the metal into the active site of metabolically essential enzymes gives rise to the necessity for molybdenum. Enzymes which are dependent on molybdenum for catalysis are generally referred to as molybdenum enzymes. Molybdenum enzymes catalyze a variety of transformations in all domains of life (i.e., eukarya, bacteria and archaea).

Sulfite oxidase, arguably the most important human molybdenum enzyme, is responsible for converting sulfite (toxic in high concentrations) into sulfate (a vital component of sulfur amino acid metabolism).[5, 6] Molybdenum cofactor deficiency hinders the enzymatic conversion of sulfite, which eventually will cause neurological damage and death. In humans, three additional molybdenum enzymes are expressed: xanthine oxidoreductase, aldehyde oxidase and the mitochondrial amidoxime reducing component (mARC). mARC, the most recently identified molybdenum enzyme, has been garnering the attention of many researchers, as it is the first non-cytochrome enzyme exclusively involved in drug metabolism. mARC is capable of reducing an assortment of N-hydroxylated compounds, [7] therefore playing an important role in pro-drug metabolism. While the physiological role of mARC is not completely defined, mARC has been implemented in nitric oxide generation and the reduction of Nω-hydroxy-L-arginine. [8] To date, more than fifty molybdenum enzymes have been identified. [9] The number of unidentified molybdenum enzymes may be comparable. [10] While only a
handful of eukaryotic molybdenum enzymes have been identified, prokaryotic molybdenum enzymes are numerous. To stay within the context of this study, prokaryotic molybdenum enzymes will be discussed in detail within the subsequent sections.

1.1.2. Classification of molybdenum enzymes

Molybdenum enzymes have been divided into two groups according to the active site architecture: multinuclear or mononuclear molybdenum enzymes. [11-13] The multinuclear molybdenum enzyme, nitrogenase (EC 1.18.6.1), catalyzes fixation of nitrogen gas (N₂) into ammonia. [14] Nitrogenase has an iron-molybdenum cofactor active site. Mononuclear molybdenum enzymes are far more abundant. A basic pterin structure, known as the pyranopterin (PPT) (Figure 1.1) has been identified in all mononuclear molybdenum enzyme isolates. The PPT is located in the interior of the enzyme, clenched by multiple non-covalent interactions. Over 40 hydrogen bonds are formed between the PPT and protein. Consequently no consensus sequence exists for PPT binding.
Figure 1.1: The structure of pyranopterin (PPT) with bound molybdenum: the basic pterin unit conserved in all mononuclear molybdopterin enzymes. R = H, monophosphate, guanidine dinucleotide (PGD) or cytosine dinucleotide (PCD).

Pyranopterin-containing enzymes have been categorized by Hille into three families based on the active site structure: sulfite oxidase (SO), xanthine oxidase (XO) and dimethyl sulfoxide reductase (DMSOR) (Figure 1.2). [15] Recently a fourth family, referred to as the mARC family hereon, has been proposed following the characterization of mARC. [16] Enzymes in the SO, mARC, and XO families contain one PPT molecule per mole of protein. DMSOR family enzymes contain two (Figure 1.3), the PPT molecules are arranged anti-parallel around the molybdenum center. In addition to the PPT dithiolene sulfur donors, the oxidized molybdenum is coordinated by additional ligands. In the SO family, two oxo ligands and a protein derived cysteiny1 sulfur; in the
XO family, an oxo, a hydroxyl and a sulfide; in the mARC family, two oxo ligands and sulfur or oxygen are contributed by an unidentified protein residue. In lieu of detailed spectroscopic and crystallographic data, mARC is proposed to have a similar coordination as the SO family, except that cysteine is not involved in covalent bonding.[16] In the DMSOR family four dithiolene sulfurs, provided by two PPT molecules, coordinate molybdenum in the active site. Typically, a protein derived sulfur, oxygen or selenocysteine also coordinate molybdenum. The identity of the amino acid ligands varies greatly within the DMSOR family and is dependent on the chemistry of the reaction catalyzed.

In general, molybdopterin enzymes function either via oxygen atom transfer reactions or hydroxylation. The two electron oxidation or reduction of the substrate is coupled to the reduction or the oxidation of molybdenum. During the catalysis molybdenum shuttles between the fully oxidized (+6) and reduced (+4) oxidation states. In some cases, the molybdenum center is also associated other redox centers (e.g. iron sulfur clusters or heme) for electron transfer. [17]
Figure 1.2: Categorization of molybdenum enzymes. Cofactor inserts from Schwarz et al. [18] Used with permission from the publisher (license number 2707751006623).
1.1.3. Diversity and functional significance of the molybdopterin (PPT)

Eukaryotes contain an unmodified PPT. Prokaryotes contain an amended PPT with a dinucleotide group (the “R” group in Figure 1.1). Either a guanidine dinucleotide (pyranopterin guanidine dinucleotide, PGD) or cytosine dinucleotide (pyranopterin cytosine dinucleotide, PCD) are attached to the PPT via a phosphate linkage. [19] In the DMSOR family, two PGD molecules are arranged anti-parallel around the molybdenum center (Figure 1.3). When bound to molybdenum, the entire cofactor is referred to as the bispyranopterin guanine dinucleotide (Mo-bisPGD).

![Figure 1.3: The bispyranopterin guanine dinucleotide (bisPGD) molybdenum cofactor. Only mononuclear molybdenum enzymes within the DMSOR family contain the bisPGD cofactor.](image_url)

In general PPT biosynthesis is conserved in eukaryotes and prokaryotes, although prokaryotes are capable of an additional step which transforms the basic pterin into the more complex nucleoside cofactor (Figure 1.3). [18, 20] Eukaryotes do not encode the genes responsible for nucleoside bound PPT synthesis, as the modified PPT containing enzymes have only been identified in prokaryotes.[18, 21] In humans mutation of the PPT biosynthesis pathway has fatal consequences. Due to the unavailability of PPT all
molybdopterin enzymes (e.g., sulfite oxidase, aldehyde, and xanthine oxidoreductase) are inactivated. Fortunately reconstitution of the PPT cofactor into the inactive enzymes is possible for some forms of molybdopterin biosynthesis deficiencies. [22]

In addition to acting as a scaffold for molybdenum the PPT is thought to be involved in enzyme catalysis. The dithiolene ligand (Figure 1.3) may play a role in the substrate transformation mechanism. [23] The dithiolene ligands are located in the first coordination sphere around molybdenum. Additionally, the pyrimidine may provide a route for intermolecular electron transfer between the active site and additional redox centers. [24], [25] A conserved amino acid residue unites the iron sulfur cluster and molybdopterin active site (Figure 1.4). Mutagenesis of this residue, for instance the lysine in formate dehydrogenase (Figure 1.4), inactivates the enzyme. [26]
Figure 1.4: The hypothesized route of intermolecular electron transport within DMSOR enzymes. In formate dehydrogenase (Fdh), the substrate, formate, transfers electrons to the molybdenum active site, then, via the PGD-P (labeled “MPT 802”) and a lysine (Lys 44) residue the electrons are sent to the iron sulfur cluster. An external electron acceptor, in this figure, benzyl viologen (BV). This figure, originally published by Boyington et al. in Science (1997), [24] was used with permission by the publisher. License Number: 2659110526821.
The pyranopterin ring, which is also redox active, has been proposed by Enemark to provide a route of proton transfer. [27] The properties of the natural enzyme bound PPTs are not completely understood. Although synthetic models of the PPT demonstrate that the pyran ring is capable of scission and condensation. The closed, pyran ring is illustrated in Figure 1.1. Most structurally characterized DMSOR enzymes are reported to harbor closed pyran rings in the bisPGD cofactor (Figure 1.3). However two DMSOR enzyme structures, ethylbenzene dehydrogenase (Ebd) and respiratory nitrate reductase (Nar), contain an open pyran ring. In the crystal structure of *Aromatoleum aromaticum* Ebd the PGD-P pyran ring is open. [28] The PGD-P pyranopterin is relatively closer, compared to the PGD-Q, to the iron sulfur cluster and is believed to aid in electron transfer from the iron sulfur cofactor to the molybdenum cofactor. Conversely, the PGD-Q, which is distal to the iron sulfur cofactor, is open in the structure of respiratory nitrate reductase from *E. coli*. PGD-Q is proposed to be involved in proton translocation from the active site to the external environment.[29] Figure 1.4 illustrates the proposed route of electron transport from the molybdenum active site to the iron sulfur cluster via proximal pyranopterin (PPT-P) in formate dehydrogenase. Crystal structures cannot verify if the PGD-P and PGD-Q are redox active, although these observations do raise the possibility of a functional advantage of the bisPGD cofactor in the DMSOR family enzymes. In any case, the bisPGD does not have an experimentally demonstrated role in catalysis. The question remains: could the two PGD moieties (designated PGD-P and PGD-D in Figure 1.3) confer discrete functions? This question can only be addressed though purification and characterization of the enzymes.
1.1.4. The DMSOR family of molybdopterin enzymes

Molybdopterin containing enzymes in DMSOR family participate in a diverse collection of reactions. The majority are involved in the global cycling of nitrogen, sulfur and carbon.[30] To date, several enzymes of the DMSOR family have been identified and many have been structurally characterized (Table 1.1). In general the DMSOR family enzymes exhibit a high degree of structural similarity:[17] an alpha and beta (α/β) type fold with four domains, and a bisPGD cofactor, which is buried in the core of the protein and accessible through a large (over 14 Å deep) catalytic funnel in the center of the enzyme. However the differences among the DMSOR family enzymes are more noteworthy, such as active site heterogeneity, iron sulfur cofactor content, and oligomeric state. The following sections will describe the differences among the DMSOR family enzymes, and exactly how these somewhat subtle modifications can extrapolate into catalytic diversity.

Almost all molybdopterin enzymes in the DMSOR family catalyze redox reactions (Table 1.2). Molybdenum, which transitions between oxidation states (+4 and +6), must receive and export electrons from the active site in order to achieve catalytic turnover. The route of electron transport, either to or from the active site, involves additional redox centers (e.g. iron sulfur clusters), amino acid residues and other redox active proteins.
Table 1.1: Structurally characterized, DMSOR molybdopterin enzymes. All enzymes have the bisPGD, which provides four dithiolene sulfur ligands.

<table>
<thead>
<tr>
<th>Enzyme name</th>
<th>α subunit</th>
<th>β subunit redox centers</th>
<th>γ subunit redox centers</th>
<th>Organism</th>
<th>PDB ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimethyl sulfoxide reductase (Dor)</td>
<td>(Oγ)Ser, =O</td>
<td>–</td>
<td>–</td>
<td>Rhodobacter capsulatus</td>
<td>1H5N[31]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rhodobacter sphaeroides</td>
<td>1EU1[32]</td>
</tr>
<tr>
<td>Pyrogallol-Phloroglucinol Transhydroxylase</td>
<td>(Oγ)Ser, =O</td>
<td>–</td>
<td>3x[4Fe-4S]</td>
<td>Pelobacter acidigallici</td>
<td>1VLD[33]</td>
</tr>
<tr>
<td>Trimethylamine N-oxide reductase (Tor)</td>
<td>(Oγ)Ser,=O</td>
<td>–</td>
<td>–</td>
<td>Shewanella massilia</td>
<td>1TMO[34]</td>
</tr>
<tr>
<td>W - Formate Dehydrogenase (W-Fdh)</td>
<td>(Seγ)SeCys, =S</td>
<td>[4Fe-4S]</td>
<td>3x[4Fe-4S]</td>
<td>Desulfovibrio gigas</td>
<td>1HOH[37]</td>
</tr>
<tr>
<td>Periplasmic nitrate reductase (Nap)</td>
<td>(Sγ)Cys, =S</td>
<td>[4Fe-4S]</td>
<td>2 x heme c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polysulfide reductase (Psr)</td>
<td>(Sγ)Cys, (O)water</td>
<td>[4Fe-4S]</td>
<td>4x[4Fe-4S]</td>
<td>no cofactor</td>
<td>2VPZ[43]</td>
</tr>
<tr>
<td>Formate dehydrogenase (Fdhn)</td>
<td>(Seγ)SeCys, –OH</td>
<td>[4Fe-4S]</td>
<td>4x[4Fe-4S]</td>
<td>2x heme b</td>
<td>1KQG[44]</td>
</tr>
<tr>
<td>Respiratory nitrate reductase (Nar)</td>
<td>(Oδ1) (Oδ2)Asp</td>
<td>[4Fe-4S]</td>
<td>3x [4Fe-4S], [3Fe-4S]</td>
<td>2x heme b</td>
<td>1R27[45]</td>
</tr>
<tr>
<td>Ethylbenzene dehydrogenase (Ebd)</td>
<td>(Oδ2)Asp, (O)acetate</td>
<td>[4Fe-4S]</td>
<td>3x [4Fe-4S], [3Fe-4S]</td>
<td>heme b</td>
<td>2IVF[28]</td>
</tr>
</tbody>
</table>
Cofactor content varies significantly among enzymes in the DMSOR family. To generalize, the DMSOR enzymes are categorized into four sub-categories (labeled as groups in Table 1.3) based on the iron sulfur cluster content in the Mo-enzyme and oligomeric state. The method of organization was proposed by Magalon et al. [46]. In group I the molybdopterin subunit only contains the bisPGD cofactor. No iron sulfur cluster binding motif is present in the catalytic subunit, confirmed by the structures of dimethyl sulfoxide reductase (DorA), Pyrogallol-Phloroglucinol Transhydroxylase and Trimethylamine N-oxide reductase (TorA) (Table 1.1). The remaining three groups contain iron sulfur binding motifs which are located at the peptide N-terminus. In the three dimensional enzyme structures the iron sulfur cluster is situated roughly 12 Å from the PGD-P. [46] Two types of iron sulfur cluster (i.e. [3Fe-4S] and [4Fe-4S]) have been identified in the structurally characterized enzymes, providing a second degree of categorization. Group II enzymes encode a [3Fe-4S] binding motif (i.e. C-X_{2}-C-X_{3}-C), as found in arsenite oxidase (Aox). Groups III and IV encode a [4Fe-4S] binding motif (i.e. C/H-X_{2}-C-X_{3}-C-X_{24-26}-C). Group IV, referred to as the “complex iron-sulfur molybdoenzymes” by Magalon et al., form a stable tetramer (αβγ subunits), as exemplified by the structures of polysulfide reductase (Par), respiratory nitrate reductase (Nar), and formate dehydrogenase-N (FdhN). Conversely, the group III enzymes do not have strong interactions with membrane bound subunits.
Table 1.2: The reactions catalyzed by mononuclear molybdenum enzymes of the DMOSR family.

<table>
<thead>
<tr>
<th>Enzymes</th>
<th>Reaction catalyzed</th>
<th>$E^\circ$ (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenite oxidase (Aro &amp; Aox)</td>
<td>$\text{As}^{(V)}\text{O}_2^2^- + 2\text{H}_2\text{O} \rightarrow \text{As}^{(III)}\text{O}_4^{3^-} + 4\text{H}^+ + 2\text{e}^-$</td>
<td>+ 0.56</td>
</tr>
<tr>
<td>Arsenate reductase (Arr)</td>
<td>$\text{AsO}_4^{3^-} + 4\text{H}^+ + 2\text{e}^- \rightarrow \text{AsO}_2^{2^-} + 2\text{H}_2\text{O}$</td>
<td>- 0.71</td>
</tr>
<tr>
<td>Biotin sulfoxide reductase (Bis)</td>
<td>$\text{C}<em>{10}\text{H}</em>{16}\text{N}<em>2\text{O}<em>4\text{S} + 2\text{H}^+ + 2\text{e}^- \rightarrow \text{C}</em>{10}\text{H}</em>{16}\text{N}_2\text{O}_3\text{S} + \text{H}_2\text{O}$</td>
<td></td>
</tr>
<tr>
<td>Chlorate reductase (Clr)</td>
<td>$\text{ClO}_3^- + 3\text{H}^+ + 2\text{e}^- \rightarrow \text{HClO}_2 + \text{H}_2\text{O}$</td>
<td>+ 1.18</td>
</tr>
<tr>
<td>dimethyl sulfide dehydrogenase (Ddh)</td>
<td>$\text{Me}_2\text{S} + \text{H}_2\text{O} \rightarrow \text{Me}_2\text{SO} + 2\text{H}^+ + 2\text{e}^-$</td>
<td>+ 0.16</td>
</tr>
<tr>
<td>Dimethyl sulfoxide reductase (Dor &amp; Dsm)</td>
<td>$\text{Me}_2\text{SO} + 2\text{H}^+ + 2\text{e}^- \rightarrow \text{Me}_2\text{S} + \text{H}_2\text{O}$</td>
<td>- 0.16</td>
</tr>
<tr>
<td>Ethylbenzene dehydrogenase (Ebd)</td>
<td>$\text{C}<em>8\text{H}</em>{10} + \text{H}_2\text{O} \rightarrow \text{C}<em>8\text{H}</em>{10}\text{O} + 2\text{H}^+ + 2\text{e}^-$</td>
<td></td>
</tr>
<tr>
<td>Formate dehydrogenase (Fdh &amp;Fdn)</td>
<td>$\text{HCOOH} \rightarrow \text{CO}_2 + 2\text{H}^+ + 2\text{e}^-$</td>
<td>- 0.42</td>
</tr>
<tr>
<td>Nitrate reductases (Nap, pNar &amp; Nar)</td>
<td>$\text{NO}_3^- + 2\text{H}^+ + 2\text{e}^- \rightarrow \text{NO}_2^- + \text{H}_2\text{O}$</td>
<td>+ 0.42</td>
</tr>
<tr>
<td>perchlorate reductase (Pcr)</td>
<td>$\text{ClO}_4^- + 2\text{H}^+ + 2\text{e}^- \rightarrow \text{ClO}_3^- + \text{H}_2\text{O}$</td>
<td>+ 1.19</td>
</tr>
<tr>
<td>polysulfide reductase (Psr)</td>
<td>$\text{S}<em>n^{2^-} + 2\text{H}^+ + 2\text{e}^- \rightarrow \text{S}</em>{(n-1)}^{2^-} + \text{H}_2\text{S}$</td>
<td></td>
</tr>
<tr>
<td>pyrogallol–phloroglucinol transhydroxylase (Pgt)</td>
<td>$\text{C}_6\text{H}_6\text{O}_3 \rightarrow \text{C}_6\text{H}_6\text{O}_3$</td>
<td></td>
</tr>
<tr>
<td>Selenate reductase (Ser)</td>
<td>$\text{SeO}_4^{2^-} + 2\text{H}^+ + 2\text{e}^- \rightarrow \text{SeO}_3^{2^-} + \text{H}_2\text{O}$</td>
<td>+ 1.15</td>
</tr>
<tr>
<td>tetrathionate reductase (Trt)</td>
<td>$\text{S}_4\text{O}_6^{2^-} + 2\text{H}^+ + 2\text{e}^- \rightarrow 2\text{S}_2\text{O}_3^{2^-} + \text{H}_2\text{O}$</td>
<td>+ 0.08 + 0.17</td>
</tr>
<tr>
<td>thiosulfate reductase (Phs)</td>
<td>$\text{S}_2\text{O}_3^{2^-} + 2\text{H}^+ + 2\text{e}^- \rightarrow \text{SO}_3^{2^-} + \text{H}_2\text{S}^2$</td>
<td>- 0.40</td>
</tr>
<tr>
<td>Trimethylamine N-oxide reductase (Tor)</td>
<td>$\text{Me}_3\text{NO} + 2\text{H}^+ + 2\text{e}^- \rightarrow \text{Me}_3\text{N} + \text{H}_2\text{O}$</td>
<td>+ 0.13</td>
</tr>
</tbody>
</table>
Table 1.3: The iron sulfur content and subunit composition of DMSOR family enzymes. Cytoplasmic molybdopterin proteins are denoted within the table with bold text. The redox active cofactors are denoted as follows: iron sulfur clusters ([4Fe-4S], [3Fe-4S], [2Fe-2S], or [Fe-S]); c-type cytochrome (c); b-type cytochrome (b), no redox cofactor motif (-NA-), W-bisPGD (†); Mo-bisPGD. If more than one co-factor is present the total amount in each enzyme is indicated by an Arabic number and an “x” (i.e. 2 x).

<table>
<thead>
<tr>
<th>DMSOR group</th>
<th>Alpha subunit</th>
<th>Beta subunit</th>
<th>Gamma subunit</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>TorA</td>
<td>TorC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DorA</td>
<td>DorC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BisC</td>
<td>PgtS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PgL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>[3Fe-4S]</td>
<td>AoxB</td>
<td>NapC</td>
</tr>
<tr>
<td></td>
<td>AroA</td>
<td>AoxA</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>[4Fe-4S]</td>
<td>NapB</td>
<td>FdhB</td>
</tr>
<tr>
<td></td>
<td>ArA</td>
<td>ArnB</td>
<td>IlycB</td>
</tr>
<tr>
<td></td>
<td>EbdA</td>
<td>EbdB</td>
<td>Fhnl</td>
</tr>
<tr>
<td></td>
<td>DdhA</td>
<td>DdhB</td>
<td>FhsB</td>
</tr>
<tr>
<td></td>
<td>SerA</td>
<td>SerB</td>
<td>Trb</td>
</tr>
<tr>
<td></td>
<td>ClrA</td>
<td>ClrB</td>
<td>PsrB</td>
</tr>
<tr>
<td></td>
<td>PcrA</td>
<td>PcrB</td>
<td>DmsB</td>
</tr>
<tr>
<td></td>
<td>&gt;NarG</td>
<td>pNarH</td>
<td>NarI</td>
</tr>
<tr>
<td></td>
<td>FdhA#</td>
<td>FdhB</td>
<td>NarY</td>
</tr>
<tr>
<td>IV</td>
<td>[4Fe-4S]</td>
<td>FdnG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PhsA</td>
<td>PhsB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TrA</td>
<td>TrC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PsrA</td>
<td>PsrC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DmsA</td>
<td>DmsC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NarG</td>
<td>NarH</td>
<td>NarI</td>
</tr>
<tr>
<td></td>
<td>NarZ</td>
<td>NarY</td>
<td>NarV</td>
</tr>
</tbody>
</table>

Enzyme abbreviations: arsenite oxidase (AoxAB), arsenate respiratory reductase (ArrA), biotin sulfoxide reductase (BisC), chlorate reductase(ClrABC), dimethyl sulfide dehydrogenase (DdhABC), dimethyl sulfoxide reductase (DorAC), dimethyl sulfoxide reductase (DmsABC), ethylbenzene dehydrogenase (EbdABC), formate dehydrogenase-H (FdhAB), formate dehydrogenase-N (FdnGHI), perchlorate reductase (PcrABC), periplasmic nitrate reductase (NapABC), periplasmic respiratory nitrate reductase (pNarGH), polysulfide reductase (PsrABC), pyrogallol–phloroglucinol transhydroxylase (PgtLS), respiratory nitrate reductase (NarGHI), selenate reductase(SerABC), tetrahtionate reductase (TtrABC), thiosulfate reductase (PhsABC), trimethylamine-N-oxide reductase (TorAC).
Cofactor content is an important part of understanding the physiological function and mechanism of each enzyme. Each cofactor confers a different redox potential, thereby affecting the overall electron transport and catalysis. For example, many of the group III and IV enzyme complexes are involved in electron transport from membranous quinone pools. Electron transport can be coupled to respiration and therefore energy conservation. Functionally homologous enzymes, which catalyze the same reactions but are structurally different (i.e. cofactor content and subunit composition) may confer a selective advantages in preforming their respective physiological function.

For example, the periplasmic nitrate reductase (NapABC) and respiratory nitrate reductases (NapGHI) use nitrate reduction for very different roles in the cell. The periplasmic nitrate reductase, which in some organisms is a NapA monomer, is linked to detoxification or redox balance. Conversely, the Nar complex is always employed for nitrate respiration. NarG has a tight association with the redox active NarHI and is capable of coupling nitrate reduction to respiration. NarI is a quinone oxidase that transports electrons from the membrane to the molybdenum catalytic site. In some organisms the NapABC complex has been linked to nitrate respiration, [47] however NapAB interacts more transiently with NapC. Before discussing the significance of the cofactor content and presence (or absence) of additional redox proteins in nitrate reductase enzymes, the physiological functions nitrate reduction (section 1.2) and the difference in the Nap system (section 1.3) will be introduced. The Nap subunit content varies immensely among organisms, thus generalizations in regard to the relationship between the Nap subunit composition and the function of Nap are not straightforward.
A second aspect in which the DMSOR enzymes differ is the active site structure, which confers more obvious effects on the chemistry of each catalyzed reaction. In addition to the substrate selectivity provided by surface exposed amino acid residues, the catalytic diversity demonstrated by the DMSOR family is a result of variations within the active site. Specifically, the surrounding residues (non-covalently bound) and metal coordination sphere. Figure 1.5 [13] illustrates the differences in the non-covalently bound residues that are located directly above the molybdopterin active site. The superimposition of the formate dehydrogenase (Fdh) and periplasmic nitrate reductase (Nap) structures in Figure 1.5 reveals the structural conservation of the bisPGD. The residues surrounding the active site, although not covalently bound to molybdenum, play a crucial role in catalysis. In formate dehydrogenase a conserved histidine is responsible for proton abstraction during formate oxidation (Figure 1.4). [24] Similarly non-covalently bound active site residues are involved in catalysis, alanine in arsenate oxidase, tyrosine in Dms, lysine in Ebd.
**Figure 1.5:** The structural superimposition of periplasmic nitrate reductase (Mo-NapA) and formate dehydrogenase (W-FdhA) illustrating the similarities in the vicinity of the iron sulfur cluster and differences in the residue composition surrounding the active site.  

**a)** Structural conservation of the electron transport pathway; the active site is linked to the [4Fe-4S] cluster by the PGD-P ligand, a conserved water residue and a lysine residue, all are present is FdhA and NapA. Five structures were superimposed in this figure.  

**b)** The amino acid residues located in the active sites of NapA and FdhA differ. The residues line the substrate channel leading to substrate specificity, and can be involved in catalysis (for example, the histidine in Fdh deprotonates formate). The residues are represented as sticks, and labeled according to the respective residue number: Fdh (PDB 1HOH) with black labels and residues color-coded according to element; NapA has blue labels and structures (PDB 2Nap). This figure, published by José Moura *et al.* in the Journal of Biological Inorganic Chemistry (2004), [13] was modified and used with the publishers permission: License number 2661940798241.
The covalently bonded ligands, which are directly involved in reaction
mechanism, also vary significantly (Table 1.1). It is important to note that the ligand
composition surrounding the metal in the active site is not stagnant. The number of
coordinating ligands is subject to the oxidation state of the metal [48] (molybdenum, or in
select cases tungsten). For simplicity, the oxidized molybdenum, Mo$^{VI}$, will be discussed.
Most enzyme isolates are oxidized as a result of purification. Consequently, more structural
data are available for the oxidized Mo$^{VI}$ state. As previously described, molybdenum is
ligated in the active site by four dithiolene sulfurs provided by the PPT cofactor (Figure
1.3). In addition to the four dithiolene sulfurs, one ligand is typically donated from an
amino acid side chain: sulfur from cysteine, selenium from selenocysteine, and oxygen
from aspartate or serine. Arsenate oxidase, which does not contain a coordinating amino
acid,[35] is the exception to this generalization. The sixth ligand is typically an oxo- (=O),
hydroxyl- (–OH), sulfido- (=S), or sulfanyl- (–SH), however the nature of this ligand is
difficult to assess experimentally.

As mentioned previously the type of metal in the active site can also vary. The
PPT can bind tungsten (W) or molybdenum (Mo). Mo-PPT enzymes are more common,
presumably due to the relatively greater abundance of Mo on Earth. In general, organisms
which utilize W-PPT enzymes exclusively are extremophiles, and grow at higher
temperatures. Interestingly, some enzymes can retain activity with either W or Mo in the
active site, such as dimethyl sulfoxide reductase isolated from R. capsulatus; [49]
conversely, the replacement of Mo with W in the growth media can also abolish function,
as observed in E. coli periplasmic nitrate reductase. [50]
Of the DMSOR family enzymes, formate dehydrogenase and nitrate reductase are the most extensively studied. [13] In fact, the numerous studies conducted on these enzymes have increased our knowledge of molybdopterin enzymes as a whole. Still, with each new isolate, variation in the active site and functionality is revealed. For example, the formate hydrogen lyase (FdhH) complex was isolated with W in the active site *Desulfovibrio gigas* and as a Mo-containing enzyme from *E. coli*. [24] The second type of formate dehydrogenase (FdhN), which is linked nitrate respiration, has only been isolated as a Mo enzyme. [44] Nitrate reductases, which have even more diverse physiological functionality, exhibit diverse active sites; the ligand composition in the metal coordination sphere varies among the three types of nitrate reductases. Nap and Nas contain coordinating cysteine sulfur. Nar utilizes oxygen from asparagine. A detailed discussion on the active site variability within nitrate reductase will be covered in a latter section (section 1.2.1.), as exploring the molecular basis for the catalytic diversity exhibited by bacterial nitrate reductases is a fundamental motivation for this dissertation.

1.2. **Nitrate reductases**

The enzymatic reduction of nitrate to nitrite via nitrate reductases (NRases) is ubiquitous in nature, as a result the environmental and physiological significance of NRases have been investigated for well over 50 years. This section will provide a summary on the importance of nitrate reduction in human health and the global nitrogen cycle.

1.2.1. **The pathological significance of nitrate reductases in humans**

Nitrogen is vital for all forms of life on Earth, as it is an indispensable component of peptides and nucleic acids. Humans typically obtain nitrogen in the form of nitrate.
Food, such as fruits, vegetables, grains, meat, and dairy products, is the main source of nitrogen. Organic nitrogen (i.e. amino acids) is also an important nitrogen source. The natural concentration of nitrate in meats is low (~5 mg • kg$^{-1}$); however, nitrate (and nitrite) are added in higher concentrations (>10 mg • kg$^{-1}$) to “cure” meat. Plants can contain much larger concentrations of nitrate, from 13 mg • kg$^{-1}$ in asparagus, to a high of 2500 mg • kg$^{-1}$ in spinach.

In general, nitrate is considered to be inert. The only example of “nitrate toxicity” in humans, methemoglobia, is the result of nitrate reduction to nitrite by bacterial nitrate reductases (NRases) in the oral cavity [52-54] and gastrointestinal tract. [55-59] On the other hand, nitrite does manifest various pathological consequences. In methemoglobia, nitrite (or other oxidants) can react with the iron center of hemoglobin, oxidizing the Fe$^{2+}$ to Fe$^{3+}$, producing methemoglobin. Methemoglobin cannot bind and transport oxygen, a condition which would quickly progress into deadly consequences. Methemoglobin reductases quickly transform methemoglobin back into hemoglobin. Unfortunately, infants do not have high levels of methemoglobin reductase at birth, and as a result methemoglobin levels can accumulate in the blood stream, leading to hypoxia. In the United States methemoglobia is associated with nitrate and/or nitrite contaminated well water, although congenital methemoglobia does exist.

Nitrate reductases have not been identified from any human (or vertebrae) tissue, although nitrate reduction occurs throughout the gastrointestinal tract by the microbial flora.[60] Many gastrointestinal pathogens, such as E. coli, Campylobacter species and Helicobacter species, can grow on nitrate and nitrite.[61][62] For many years, nitrate reductases have been implicated in human carcinogenesis.[63] due to the generation of
multiple “toxic” nitrogenous compounds, such as nitrite, ammonia and nitrosamines.[64-67] As previously described, nitrite toxicity would be a significant risk for individuals which are prone to methemoglobia.[68] While nitrate reduction can produce toxic nitrogen compounds, recent studies describe the beneficial consequences of microbial nitrate reduction.[68] These studies focus on the influence of commensal bacteria nitrate reduction in human health. Lundberg et al. contend that nitrite aids in the human host’s defense mechanisms, mucus generation, and vasodilation; [69] as nitrite can be transformed to nitric oxide under acidic conditions. Nitric oxide (NO) is a pluripotent signaling molecule in the human body, and is very important in vasodilation.[70] The prospective benefits of nitrate or nitrite therapy in myocardial infarction, stroke, systemic and pulmonary hypertension, and gastric ulceration have been postulated.[71, 72] The involvement of microbes in organ function is a relatively new concept; however, evidence that microbial activity can affect organ function in mammals is increasing [73, 74]. Detailed biophysical studies conducted on the pathogenic or communalistic specific NRases can provide insight into the effects of bacterial nitrate reduction in the human gastrointestinal tract.
1.2.2. The environmental impact of nitrate reduction

Nitrate reductases play a key role in the global nitrogen cycle. Nitrogen is cycled through the environment and living organisms, shifting oxidation state and transforming through chemical reactions (Figure 1.6). The stable nitrogen species involved in the global nitrogen cycle are nitrate ($\text{NO}_3^-$), nitrite ($\text{NO}_2^-$), nitrogen dioxide ($\text{N}_2\text{O}$), nitric oxide (NO), nitrogen gas ($\text{N}_2$), ammonia ($\text{NH}_3^+$) and ammonium ($\text{NH}_4^+$). Nitrate and ammonium are important nitrogen sources for plants; the fixation of nitrogen in sediment prevents the loss of nitrogen into the atmosphere via volatile nitrogen species (e.g., $\text{N}_2$, NO) and run off into the water table. Disruption of the nitrogen cycle has consequences for plants and humans. Human activity, through the use of fossil fuels and nitrogen rich fertilizers, disrupts the environmental nitrogen balance. As a result, water supplies become contaminated with agricultural run-off (nitrates and ammonia), and nitrogen dioxide is released into the atmosphere through the burning of fossil fuels. Nitrogen dioxide is the 3$^{rd}$ most abundant greenhouse gas, although it possesses the greatest heating capacity, over carbon dioxide and methane.
Figure 1.6: A schematic representation of the nitrogen cycle. Reproduced from Stolz and Basu (2002). [75] Copy right clearance was given by the publisher (license number 2707740565498)

1.2.3. Assimilatory vs. Dissimilatory nitrate reduction

Nitrate reduction is commonly designated as either an assimilatory or a dissimilatory metabolic process (Figure 1.7). Assimilatory nitrate reduction, a type of constructive metabolism, is the transfer of nitrogen from nitrate into the organism’s biomass. Conversely, dissimilatory nitrate reduction, a type of deconstructive metabolism or catabolism, does not incorporate the products of nitrate reduction into the biomass, instead the products are excreted from the cell. In some cases, dissimilatory nitrate reduction is an energy yielding process; therefore, the term “nitrate respiration” is used to specify nitrate reduction coupled to ATP generation. Dissimilatory nitrate reduction can be further divided into two categories, denitification and dissimilatory nitrate reduction to ammonia (DNRA) (Figure 1.7). DNRA is an important part of the global nitrogen
cycle, as the ammonia produced can be stored in the soil; whereas denitrification generates volatile compounds, which accumulate in the atmosphere.

**Figure 1.7:** Diagram of dissimilatory and assimilatory nitrate reduction (NR). Modified from Zumft, 1997. [76]

1.2.4. **Taxonomy of prokaryotic nitrate reductases**

Nitrate reductases are classified into four groups, based on the catalytic site of the molybdopterin containing subunit, cellular location and the metabolic pathway in which it precipitates.[75] Animals do not encode a classical nitrate reductase; therefore, only the combined efforts of plant and microbial nitrate reduction contribute to the global nitrogen cycle. Plant eukaryotic assimilatory nitrate reductase (EukNR) will not be discussed in detail, as it is beyond the scope of this study.

Three prokaryote nitrate reductases have been identified: one assimilatory nitrate reductase (Nas) and two dissimilatory nitrate reductases Nar and Nap. [75] All nitrate
reductases contain two redox active cofactors, a Mo-PPT and an iron sulfur cluster. The
catalytic subunits of both dissimilatory nitrate reductases, NapA and NarG, are members
of the DMSOR family as they contain the bisPGD cofactor. The assimilatory nitrate
reductases, EukNR and NasA, are predicted to be members of the SO family (Figure
1.8). Based on spectroscopic studies and amino acid composition the active site of NasA
is predicted to be similar to NapA. Both NapA and NasA contain a conserved cysteine
residue in the active site [19], however Nas is believed to only contain one PPT molecule
and two oxo groups. NapA is coordinated by two sulfur ligands. One ligand is derived
from a conserved cysteine residue. Nar is coordinated by two oxygen asparagine residue
ligands.

The variability of nitrate reductase active site could provide insight into the
evolution and relatedness of molybdopterin enzymes. Chapter 4 provides detailed
evidence of the hypothesized evolution of nitrate reductases and the divergence of Nap
from assimilatory nitrate reductases, ultimately providing clues as to the importance of
the bisPGD cofactor, which is only present in Nap, not Nas.
Figure 1.8: Classification of prokaryote nitrate reductases into molybdopterin enzyme families based on active site composition. The ligand composition differs among the molybdopterin enzyme families (black), xanthine oxidase, sulfite oxidase and dimethyl sulphoxide reductase, and among prokaryotic nitrate reductases (blue). The nitrate reductases, assimilatory nitrate reductase (NasA) and the dissimilatory nitrate reductases (NapA and NarG), are displayed under the classifying family.

The cellular compartment in which each NRase protein complex is localized also differs. The assimilatory NRases are soluble-cytoplasmic proteins. The dissimilatory NRases (i.e., Nap and Nar) are membrane associated. In bacteria, the Nar complex faces the cytoplasm, and, in archaea, the periplasm (pNar). [77] The Nap complex, which is only found in bacteria, faces the periplasm.

As a result of the cytoplasmic location, Nar couples nitrate respiration to proton translocation across the inner membrane of bacteria. The resulting electrochemical gradient can be used to fuel ATP generation via ATP synthase. Conversely, periplasmic-oriented complexes, Nap and pNar, would yield a zero net proton change in the periplasmic space from nitrate reduction to nitrite; indicating that Nap and pNar are not capable of producing a proton motive force by nitrate respiration, and that Nap and pNar
do not function in energy acquisition. However, this is not always the case, some organism, primarily the Epsilonproteobacteria, [78] do rely on Nap for anaerobic nitrate respiration. Section 1.3.1 will discuss the function of periplasmic nitrate reductase in respiration.

1.3. Periplasmic nitrate reductase

The periplasmic nitrate reductase (Nap) was first isolated from Paracoccus denitrificans by Sears et al. [79] Initially it was differentiated from the well-known respiratory nitrate reductases (Nar) by its insensitivity to azide and its inability to reduce chlorate, in addition to the periplasmic location. As mentioned previously, the molybdenum containing catalytic site also differs. Since the discovery of Nap in 1993, multiple genetic and peptide level variations have been revealed among prokaryotes. The differences in the nap operon structure and organization, nap gene content, mechanisms of transcriptional regulation and amino acid composition of the catalytic subunit are the apparent sources for the functional diversity of the periplasmic nitrate reductase. The following sections will review each feature in detail.

1.3.1. Functional diversity of periplasmic nitrate reductase

While the specific roles of Nas and Nar remain consistent from species to species, Nap is functionally diverse. It has been implicated in dissimilatory nitrate reduction (both denitrification and nitrate reduction to ammonia), [80, 81] maintenance of cellular oxidation-reduction potential (i.e., redox poise) [82] and nitrate scavenging. [83] The functional diversity of Nap demonstrates that the presence of a napA homolog in an organism’s genome does not confer homologous functionality.

As previously discussed, Nar is the prototypical respiratory nitrate reductase; however, the Nap system does have the ability to function in nitrate respiration when
coupled to quinone oxidation.[84] In some organisms, nitrate respiration is dependent on
the nap operon,[85] most of these organism belong to the Epsilonproteobacteria class of
gram negative bacteria.[78, 86] Nap has also been associated with pathogenicity in the
gastrointestinal pathogens Helicobacter and Campylobacter. In C. jejuni, Nap is with
colonization. In both organisms, Nap is up-regulated in response to oxidative stress.[62,
87-91] The role of Nap in pathogenesis is discussed in greater detail within Chapter 3.

The Epsilonproteobacteria are unique in their conserved ability to utilize the
periplasmic nitrate reductase (Nap) in nitrate respiration. Raising the question, what is
different about the Epsilonproteobacteria Nap? In order to explore the unique features of
the Epsilonproteobacterial Nap, a review of the known Nap features will be presented.
The mechanisms of transcriptional regulation, the diversity of the nap operon, and the
biophysical features of the Nap protein will be discussed. The following sections aim to
define the properties which make the Epsilonproteobacterial Nap unique.

1.3.2. Operon structure and organization

Genes which are co-transcribed and co-regulated, and located within close
proximity to each other, are collectively referred to as an operon. The nap operon is
typically located within the organism’s genomic DNA. Although some organisms contain
a plasmid borne nap operon (e.g., Paracoccus denitrificans, R. metallidurans,
Sinorhizobium meliloti, S. medicae Sulfuricurvum kuijense, Rhodobacter sphaeroides,
[92] Ralstonia eutropha [93] and Cupriavidus necator. [94]). Some organisms carry
multiple copies of the nap operon. [95, 96]

The nap operon exhibits significant variability in the genes organization and
composition (Figure 1.9). In addition to the napA gene, eleven nap genes have been
identified to date. [47, 97, 98] The nap genes can be divided into redox active or
maturation based on the physiological functions of the translated proteins. Redox active
genes (napC, napG, napH, napB, napM) encode proteins involved in electron transport to
or from the terminal reductase, NapA. Maturation genes (napD, napL and napF) encode
proteins which are involved in post-translational modification of NapA. Some less
common nap genes (napS, napK and napE) have unclear functions.

The most commonplace nap operon is the napEDABC, which is found in some
Alpha-, Beta-, and Gamma- proteobacteria, though multiple nap operons have been
identified. Each nap operon differs in gene organization and content. Table A.1
categorizes the operons on a basis of membrane quinone oxidase content, a noteworthy
feature as Nap can be involved in nitrate respiration; the nap operon can encode two
(napC & napH), one (napC or napH) membrane quinone oxidases, while others are
devoid of a putative membrane quinone oxidase. The variability and diversity in the nap
operon could suggest that the nap operon is diverging into different functional roles.
**Figure 1.9:** The *nap* operon gene content and organization in some bacteria. For a complete list see Table A.1 in Appendix I. Each *nap* gene (Arrow) was identified by performing a blast search within the NCBI database. The *nap* genes are listed by the order in which each is found. (*) indicates organisms which encode two *nap* operons.
1.3.3. Regulation of the nap operon

The functional diversity of Nap has a foundation in transcriptional regulation. The *nap* operon can be regulated in response to multiple environmental cues (i.e. the absence or presence of nitrate, oxygen, molybdenum and/or iron, the type of as carbon source, or redox potential). The mechanisms of *nap* transcription regulation are not conserved. Thus, considerable variations in the regulatory mechanisms do exist from organism to organism.

Microbes utilize multiple terminal reductases during respiratory growth, regulating translation of each reductase, under the appropriate conditions, is a concerted endeavor. During aerobic growth, oxygen is typically the preferred terminal electron acceptor, a result of the high redox potential ($E^\circ = +840$ mV). Under anaerobic conditions, nitrate takes precedence to other anaerobic dehydrogenases ($E^\circ = +420$ mV). Not surprisingly, the presence and absence of both oxygen and nitrate can affect transcription of nitrate reductases.

Multiple global transcription regulators have been identified for nitrate reductases. Although no unique *nap* regulator has been identified. Figure 1.10 provides a graphical overview of the transcriptional regulators which can affect the *nap* operon. Each regulatory protein binds to a DNA consensus sequence upstream from the regulated genes. In response to oxygen, the fumarate and nitrate reductase (FNR) protein can control transcription of the *nap* operon. [99, 100] Additionally, the NarPQ/ NarLX, dual interacting two-component regulatory system is employed to regulate transcription of *nap* in the presence of nitrate.[101] The dualistic constituents, a membrane bound sensor (i.e. NarX and NarQ) and a DNA binding response regulator (i.e. NarL and NarP), work together to fine tune expression of the controlled genes. *E. coli* uses both the Fnr and
NarPQ/NarLX transcriptional regulators to sense nitrate and oxygen levels in the environment and coordinate expression of nitrate reductases (i.e., Nap and Nar) and nitrite reductases (i.e., Nrf and Nir). [102] Nap is maximally expressed anaerobically in the presence of low nitrate concentrations, possibly providing a selective advantage over Nar during colonization of the human GI tract. [103-106]

The *Bradyrhizobium japonicum* NapEDABC expression is also up-regulated in response to micro-aerophillic growth and the presence of nitrate. In *B. japonicum* the FixLJ-FixK2-NnrR regulatory cascade controls *nap* expression in response to oxygen [107, 108]. FixLJ, a two-component regulatory system, down-regulates translation of the *nap* operon when elevated concentrations of oxygen are present. However translation of the *nap* operon is not always repressed in the presence of oxygen. In *Paracoccus pantotrophus* Nap expression occurs aerobically. The *P. pantotrophus* *nap* operon does not have a FNR-binding site upstream. [109] *Rhodobacter capsulatus* and *R. sphaeroides* express *nap* both in the presence and absence of oxygen. [110]

The cellular redox status can also regulate *nap* expression. *P. pantotrophus* utilizes the ferric uptake regulator (Fur) as a transcriptional regulator of NarP and NarL. Fur is a global regulator which controls iron (Fe\(^{2+}\)) uptake and detoxification. [111, 112] Fur controls *nap* expression response to oxygen and cellular redox status as it is dependent on free Fe\(^{2+}\). Consequently oxidants (i.e., O\(_2\)) can decrease Fur activity. [102]
Figure 1.10: Transcriptional regulation of the nap operon and the pyranopterin and iron sulfur cofactor biogenesis operons. It is important to note that not all regulatory effects are present in the same organism. The acronyms of each regulatory protein are enclosed in boxes (see text for details). Proteins which directly regulate nap operon transcription are connected to “NapA” with a dashed line (▪▪▪), and those which affect cofactor biogenesis operons are connected to the specific operons via a double dashed line (≡≡). The operons for bisPGD and [4Fe-4S] cofactor biogenesis (blue) are moaABCDE and iscRSUA-hscBA-fdx, respectively. Lines with arrow (→) denote a positive regulatory effect, up-regulation, in the presence of the associated environmental signal; negative effects, down-regulation, is indicated with circles (●). Concentration dependent regulation is indicated with brackets surrounding the chemical, for example [O_2]. This figure was partially reproduced, and updated, from Rabin and Stewart’s publications [101, 113]
In *E. coli*, the cyclic AMP receptor protein (Crp) has also been demonstrated to up-regulate *nap* operon translation in response the type of carbon source. Less favorable sugars, such as mannose, increased *nap* translation compared to the typical fermentative sugars, such as glucose. [114]

The *nap* operon translation is also coordinated with the biosynthesis of the iron sulfur cluster and the PPT cofactors required in the active NapA. An iron-sulfur cluster-containing transcription factor, the iron-sulfur cluster regulator (IscR), represses *nap* transcription under aerobic conditions. [115] IscR also regulates iron-sulfur cluster biogenesis. [115] The IscR binding motif is typically located up-stream from the *nap* operon. The IscR binding region overlaps with an additional regulatory protein binding site, the molybdate-responsive (ModE) transcriptional regulator protein. In response to molybdenum, ModE up-regulates the *nap* operon translation. ModE also regulates transcription of the PPT biosynthesis genes (MoaABCDE) [116] and a high affinity molybdate transporter (ModABC).[117] The ModE and IcsR regulatory site are located further up-stream from the *nap* operon than the FnrR, NarP, NarL binding sites.[118] Thus ModE and IscR can supersede transcription of the *nap* operon if molybdate (MoO$_4^-$) and iron are lacking,[119] even if FnrR, NarP, or NarL regulatory elements are up-regulating translation of the *nap* operon.

The Epsilonproteobacterium *C. jejuni* appears to employ analogous regulatory mechanisms for nitrate respiration. Unlike *E. coli*, which encodes three dissimilatory NRases (i.e. NapA, NarG and NarZ), *C. jejuni* only encodes NapA. In *C. jejuni* NapABGH are expressed in response to iron [120-122] and molybdenum. [91, 122] This suggests that the IscR and ModE regulatory proteins are involved in transcriptional
regulation of the *C. jejuni* nap operon. Additionally, *C. jejuni* preferably up-regulates Nap expression anaerobically. The *napABG* expression is up-regulated during chicken colonization [123] and *napABGH* in elevated growth temperatures, [124] possibly an indication of Fnr regulation. The alignment of the *C. jejuni* pre-nap operon DNA with the corresponding *E. coli* sequence indicates that all of the regulatory element binding sites are conserved.

**1.3.4. The catalytic subunit, NapA**

The catalytic subunit NapA contains a molybdenum active site (Mo- bisPGD) and an iron sulfur cluster [4Fe-4S] (Figure 1.11). The N-terminus of the translated protein also contains a twin arginine translocase (TAT) leader sequence which signals the protein for transportation to the periplasmic space. In most organisms NapA is isolated as a heterodimer accompanied by its physiological redox partner, NapB. The *Rhodobacter sphaeroides* and *Cupriavidus necator* NapAB heterodimer structure has been determined using X-ray crystallography.[125] Additionally, the crystal structures of two monomeric NapAs are available.[39, 42] While *E.coli* NapA does function as a heterodimer, NapB is not present in the crystal structure because the NapAB dimer dissociated during purification. *D. desulfuricans* does not contain a *napB* gene, thus NapB is absent in the NapA crystal structure. A strictly conserved lysine residue is proposed to transport electrons from the [4Fe-4S] to the molybdenum active site. A tyrosine residue in NapA is proposed to aid in electron transfer from the heme of NapB to the [4Fe-4S] cluster of NapA. This tyrosine residue is conserved in all heterodimeric NapA proteins and absent in monomeric NapA proteins such as *D. desulfuricans*. [126] Kinetics studies of the Alpha, Beta and Gamma- proteobacteria NapA indicated a high affinity for nitrate. The
properties of the Epsilonproteobacteria NapA must be established to determine if all
NapA proteins exhibit the same affinity.

Figure 1.11: The structure of NapA illustrating the location of the iron sulfur cluster
[4Fe-4S] and the Mo-bisPGD. The structure of *E. coli* NapA (2NYA) was downloaded
from pbd.org; illustration was created using the Visual Molecular Dynamics software.
1.3.5. Auxiliary Nap proteins: the benefits of team work in nitrate reduction

While the monomeric NapA and dimeric NapAB isolates are capable of nitrate reduction, these proteins do not act alone during catalysis within the organism. Redox active Nap proteins transfer electrons to NapA. Maturation proteins aid in the posttranslational modification of NapA. The presence of the maturation or redox active nap genes varies among organisms. No solitary nap gene can be considered ubiquitous in all napA encoding organisms. Mutational studies conducted on *R. sphaeroides* [127], *E. coli* [83], and *Wolinella succinogenes* [86] have given insight into the significance of each auxiliary nap gene in nitrate reduction via Nap.

Of the auxiliary Nap proteins, the napD gene is the most common and appears to be the most vital. The *R. sphaeroides*, *E. coli*, and *W. succinogenes* mutational studies are in agreement, napD is an essential component of nitrate reduction. In all napD mutants nitrate reduction is inhibited. [127] [83] [86] Translated NapD is a dedicated chaperone protein as it has a defined role in NapA maturation. [46] NapD is a member of the well-studied TorD chaperone protein family.[128-130] NapD interacts with the TAT machinery and possibly other maturation proteins, such as NapF, in the biosynthesis of NapA.[131] NapD impedes the periplasmic export of NapA via the TAT machinery by binding to the N-terminal TAT leader sequence of NapA. Structural characterization of the *E. coli* NapD [131] indicates that the non-polar residues in the β-sheet of NapD bind, via protein-protein interactions, to the TAT leader-sequence of NapA (**Figure 1.12**). It is conceivable that NapD delays export of NapA until the protein is properly folded and the cofactors are inserted. [131] While the purpose of the NapA-D interaction is predicted to
be comparable in all organisms, the chemical basis of the interaction is species-specific. NapD lacks a conserved NapA binding motif.

**Figure 1.12:** The protein structure of *E. coli* NapD in complex with the N-terminus of NapA. The protein backbone, of NapD (blue) and NapA (red), is displayed as a ribbon. The location of the two arginine residues (RR), for which the TAT leader sequence is named, is on the N-terminus of NapA. The NMR solution structure (PDB ID: 2PQ4) was downloaded from the pdb.org. VDM (version 1.8.7) was used to create this figure.

Despite the importance of NapD in NapA maturation some organisms do not encode a napD homologue (*i.e.*, *Sorangium cellulosum*, *Photobacterium damsela*, *Rhodothermus marinus*, and *Anaeromyxobacter* species). In general, nap operons which lack napD have relatively few genes. The absence of napD may be an indication of reduced functionality as a result of the attenuated or incapacity to synthesize a functional
NapA. This may be the case in *P. damselae*, [132] and *R. marinus* [133] as these organisms cannot reduce nitrate despite the presence of a *napA* homologue. *S. cellulosum* and *Anaeromyxobacter* species can reduce nitrate, [134, 135] though this activity cannot be attributed to NapA without a more detailed investigation. These organisms encode multiple nitrate reductases (*i.e.*, Nar, Nap and Nas). Comprehensive assessment of the necessity for *napD* in NapA maturation may come from studies with nitrate reducing organisms which lack the *napD* gene, such as *S. cellulosum* and the *Anaeromyxobacter* species.

NapF, a cytoplasmic, non-heme iron sulfur protein also plays a role in NapA maturation. While mutation of the *napF* gene does not completely abolish nitrate reductase activity in *E. coli*, [83] a drastic decrease in activity is observed in *R. sphaeroides* and *W. succinogenes*. [127, 136] NapF is not considered to be essential for NapA maturation, although NapF does aid in [4Fe-4S] insertion. [136, 137][138] NapF contains four iron sulfur binding motifs (CXₙ CXₙ CXₙ CP). Mutation of each motif demonstrated that one specific motif is responsible for transferring the [4Fe-4S] cluster into NapA. [139] Moreover mutation of the *W. succinogenes* NapF lead to the accumulation of the inactive precursor NapA in the cytoplasm. [139] The ability of NapF to reconstitute the 4Fe-4S cluster of the apo-NapA has also been demonstrated *in vitro.*[140] The association of NapF and NapA has also been confirmed.[138] Interestingly, the recombinant affinity-tagged NapF has been used to purify NapA from *E. coli.*[138] NapA maturation is more efficient in the presence of NapF. Mature NapA is able to accumulate in the periplasmic space with time, as indicated by nitrate reductase
acidity assays, growth curves and SDS/PAGE data. NapF is possibly an evolutionary advantage to organisms which encode the napF gene.

A third predicted maturation protein, NapL, is found primarily in the Epsilonproteobacteria. NapL is a periplasmic protein with no known metal binding motifs. While the function of NapL is unknown, mutation of napL in W. succinogenes and C. jejuni delays growth on nitrate media. This suggests that NapL may be involved in maturation of NapA.

Of the redox active Nap proteins, NapB is the most extensively studied. The small c- type cytochrome is an essential component of electron transport to NapA. NapB has been demonstrated to be an essential component of nitrate reduction via NapA in organisms which encode the napB gene. NapB is not essential for all NapA isolates. Organisms which lack the napB gene, such as D. desulfuricans, encode alternative iron cofactor redox partners, such as NapM or NapC. Although NapM has not been studied directly, D. desulfuricans does translate the tetra heme containing NapM.

The crystal structure of the recombinant Haemophilus influenza NapB revealed that two heme molecules are stacked parallel and hydrogen bonded to each other via propionated side chains. In this structure, the conserved residues of NapB are located along the heme binding motifs (HXn CXn CH). Poorly conserved regions of NapB are located at the N- and C- termini and are not involved in electron transfer with NapA. The N-terminus encodes a hydrophobic signal sequence, roughly 30 amino acids long, which targets the unfolded NapB for periplasmic export via the sec dependent pathway. Arnoux et al. suggest that the N- and C-termini are involved in
NapA binding.[146] The latter crystal structures of NapAB heterodimers, from *C. necator* and *R. sphaeroides*, underscore this aspect.[40, 146] The poor conservation of the NapA binding sites on NapB proteins could be the source of the different binding affinities observed in NapAB dimers. *E.coli* and *R. sphaeroides* NapAB exhibit different dissociation constants, 32 µM [147] and 5 x 10^{-4} µM [146] respectively, and are reflective of the purified form. *E. coli* NapA was isolated as a monomer and the NapAB interaction is correspondingly weaker than that of the *R. sphaeroides* homologue, which was isolated as a heterodimer.

Similar to NapA, NapB has been reported to utilize maturation proteins. The cytochrome *c* maturation (Ccm) proteins are involved in NapB cofactor synthesis and insertion. In *E. coli* and select organisms the *ccmABCDEFGHI* operon is located directly adjacent to the *nap* operon. [105] The *ccm* operon is not adjacent to the *nap* operon in the majority of *nap* encoding organisms. The *ccm* operon is missing completely from the genomes of the Epsilonproteobacteria, suggesting that these organisms have alternative methods for iron uptake and heme synthesis. In fact *C. jejuni* encodes a large variety of genes associated with iron scavenging, uptake, and storage, one of which (*chu*) can transport intact heme into the cell.[148] The ability of *C. jejuni* to utilize intact heme could make the cytochrome *c* biogenesis redundant and consequently energetically unfavorable.

NapC, a tetra-heme transmembrane protein, is also considered to be an essential component of electron transport to NapA in some organisms.[83] NapC transports electrons via the heme cofactors from the membrane quinone pool to the periplasmic NapB[149] (Figure 1.13). In *E.coli*, electron transfer from ubiquinone and menaquinone
to NapAB is dependent on NapC. Ubiquinone electron transfer from NapGH to NapABC is more efficient than ubiquinol transfer directly from NapC to NapAB. [137] Like napB, napC is not encoded in the nap operon of all organisms. NapC belongs to a large group of tetra heme proteins, the NapC/ NirT family. [150] The possibility that other members of the NapC/ NirT family, NrfH and Cym, could fulfill the function of NapC (i.e., electron transport to NapA) in organisms which lack napC has been postulated, [151] although supporting experimental evidence is not available.

Figure 1.13: The proposed routes of electron transport to NapAB from quinone pool during nitrate reduction. Electrons can be transferred from menaquinone (MQH$_2$) or ubiquinone (UQH$_2$) with in the inner membrane by a quinone oxidase (i.e., NapC or NapH). Electrons are transported to NapAB via NapC, NapGH or NapCGH.

The genes napG and napH encode the two putative ferredoxins. NapH is an integral membrane protein. The cytoplasmic portion of NapH contains two iron sulfur
binding motifs. NapG contains four iron sulfur binding motifs and is associated with the periplasmic face of the membrane. In organisms which do not encode a NapC homologue, NapG and NapH are predicted to transfer electrons from the quinone pool directly to NapAB. [153] *Campylobacter* only has menaquinone, but does not have a NapC homologue. In *Campylobacter*, NapGH are believed to transport electrons from the menaquinone pool to NapAB. [154] The MQH$_2$ couple has a lower midpoint redox potential than UQH$_2$, -70 mV compared to +90 mV, [153] indicating that MQH$_2$ would be a less efficient electron transport.

The variety of nap genes indicates that the nap operon evolved by gaining or losing genes in an effort to fit the functional needs of the organism. Chaperone proteins, such as NapF and NapL, while not essential for maturation, may help NapA mature quickly.

### 1.4. Conclusion

Molybdenum enzymes are essential for most organisms. Mononuclear molybdenum enzymes contain a pyranopterin cofactor, which coordinates molybdenum in the active site. These enzymes are assigned to four groups based on the molybdenum active site: sulfite oxidase, xanthine oxidase, dimethyl sulfoxide reductase and the mitochondrial amidoxime reducing component families. The DMSOR family is the most diverse and contains only prokaryotic enzymes.

Within the DMSOR family the two types of dissimilatory nitrate reductases, Nap and Nar, display diverse features. In the active site molybdenum is coordinated by cysteine in NapA and asparagine in NarG. NapA is a heterodimer and NarG is part of a stable membrane bound heterotrimer. Both are membrane associated, though Nap is
periplasmic and Nar is cytoplasmic. Nar is a dedicated respiratory enzyme and Nap is functionally diverse. Nap has been implemented in redox poise, nitrate scavenging, nitrate respiration and pathogenicity. In fact, human pathogens including *Haemophilus influenzae, Vibrio cholera, Yersinia pestis, and C. jejuni* have only Nap.

In addition to the functional diversity of Nap, genetic variability is common. The transcriptional level regulatory mechanisms and *nap* gene content and organization associated with the *nap* operon vary among organisms. As many as three promoters and seven regulatory-protein binding sites can precede the *nap* operon. The regulator proteins control the translation of the *nap* operon in respond to environmental conditions such as oxygen, iron, molybdenum, nitrate content and cellular redox potential. The *nap* operon contains genes which translate into dedicated chaperone proteins (i.e., NapD, NapL, and NapF) or redox active proteins (i.e., NapC, NapB, NapG, and NapH). The genetic diversity of *nap* could be a possible clue into the molecular basis of Nap’s functional diversity. The presence (or absence) and type of membrane-bound quinone oxidase, NapC or NapH, used by each organism can provide clues into the respective physiological functions of Nap. In general, four *nap* genes are important for respiration: *napA, napB, napC* and *napD*. [83] However, NapC may not be essential as the Epsilonproteobacteria do not encode a *napC* homologue in the *nap* operon (Figure 1.9) but can perform nitrate respiration. [151]

The Epsilonproteobacteria, are an important group of pathogenic, (i.e., *C. jejuni* and *H. pylori*) and free-living bacteria (i.e., *S. barnesii*). While nitrate reduction is a vital process for most Epsilonproteobacteria, the physiological function of Nap in these organisms is not well understood.
1.5. Specific aims of study

The global objective of this study was to elucidate the function of periplasmic nitrate reductase (Nap) in the Epsilonproteobacteria through isolation and characterization of the catalytic subunit, NapA. The goal of this research was to expand the current knowledge of the prokaryotic nitrate reductases, specifically Nap. NapA has been isolated from organisms belonging to other genre of proteobacteria, although the Epsilonproteobacteria NapA has not been fully characterized. The specific aims are: 1) isolate NapA from an Epsilonproteobacteria, 2) determine the kinetic parameters for nitrate reduction by NapA, and 3) determine if the Epsilonproteobacteria NapA is different than other NapA isolates.

The two organisms chosen to represent the Epsilonproteobacteria class were Campylobacter jejuni and Sulfurospirillum barnesii, thus providing insight into the function of NapA in both a human pathogen and a free living organism. The purification and characterization of NapA from Sulfurospirillum barnesii is presented in Chapter 2. The cloning and heterologous expression of C. jejuni and S. barnesii NapA, NapB, NapL & NapD, and the purification of the recombinant C. jejuni and S. barnesii NapA from E. coli are presented in Chapter 3. Chapter 4 contains a bioinformatics investigation into the variability of the nap operon using computational approach and presents the theoretical structure of C. jejuni NapA. The unique molecular features of the Epsilonproteobacteria NapA are proposed by comparing the C. jejuni NapA structure to the experimentally determined NapA structures from E. coli, Rhodobacter sphaeroides, C. necator and Desulfovibrio desulfuricans. The physiological significance of the nap
operon organization and content is also discussed. **Chapter 5** will summarize the results from each study and consider the influence this study has on the current understanding of prokaryotic nitrate reduction. Also, preliminary research, conducted on the effect of chromate on dissimilatory nitrate reduction by *Geobacter metallireducens*, *D. desulfuricans*, and *S. barnesii* are placed in the Appendix.
CHAPTER 2: Purification of periplasmic nitrate reductase from *Sulfurospirillum barnesii* strain SES-3

2.1 Abstract

*Sulfurospirillum barnesii* strain SES-3, a free living soil microbe, is capable of using selenate, arsenate and nitrate as terminal electron acceptors during respiration. *S. barnesii* uses this flexible respiratory chain to survive in response to changes in environmental conditions. While transformation of selenate and arsenate has obvious toxic repercussions on the environment, nitrate is ubiquitous in nature and can lead to the generation of toxic nitrogenous compounds (i.e., nitrite, nitrosamines and nitric oxide). In Epsilonproteobacteria, like *S. barnesii*, the periplasmic nitrate reductase (Nap) catalyzes the transformation of nitrate to nitrite. The catalytic subunit, NapA, was isolated from *S. barnesii*. The electronic spectrum of the purified sample indicates that a c-type cytochrome may also be present, possibly NapB. Although the yield of NapA was too low to perform kinetic experiments, the NapA enriched CHAPS soluble fraction indicates tight binding of nitrate ($K_m = 314 \mu M$), in agreement with NapA activity from other organisms under similar conditions.

2.2 Introduction

*Sulfurospirillum barnesii* strain SES-3 is a gram negative Epsilonproteobacteria originally isolated from a selenate contaminated freshwater marsh in Nevada. [155, 156] The free-living, opportunistic organism has a diverse respiratory metabolism. *S. barnesii* can couple the oxidation of lactate to the reduction of multiple terminal electron acceptors such as selenate ($\text{SeO}_4^{2-}$), selenite ($\text{SeO}_3^{2-}$), nitrate ($\text{NO}_3^-$), nitrite ($\text{NO}_2^-$), iron ($\text{Fe}^{\text{III}}$), manganese ($\text{Mn}^{\text{IV}}$), fumarate, arsenate ($\text{As}^{\text{V}}$), elemental sulfur ($\text{S}^0$),
trimethylamine N-oxide (TMAO) and thiosulfate (S$_2$O$_3^-$). Growth is supported by reduction of selenate to selenite, nitrate to nitrite, arsenate to arsenite, Fe$^{III}$ to Fe$^{II}$ and thiosulfate to sulfide.$^{4a,5}$ The thermodynamic estimations for nitrate reduction to ammonia via nitrite, selenate reduction to elemental selenium via selenite and arsenate reduction to arsenite (Table 2.1) indicate that the organism would obtain the most energy by selenate reduction, however stoichiometric conversion of selenate to elementenal selenium was not observed.$^{[155]}$

**Table 2.1:** Energy yields of arsenate, selenate, and nitrate respiration by *S. barnesii*.

<table>
<thead>
<tr>
<th><em>S. barnesii</em> respiratory reaction</th>
<th>Estimate of $\Delta G_f^\circ$ (kJ/mol of lactate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactate$^- + 2$HAsV$O_4^-$ + H$^+$ → Acetate$^- + 2$H$_2$As$^{III}$O$_3^- + $HCO$_3^-$</td>
<td>-140.3$^{[157]}$</td>
</tr>
<tr>
<td>Lactate$^- + 2$SeO$_4^{2-}$ + H$^+$ → 3Acetate$^- + $Se$^0 + 3$HCO$_3^- + $2$H_2$O</td>
<td>-467.4$^{[155]}$</td>
</tr>
<tr>
<td>4Lactate$^- + 2$NO$_3^- + $2$H_2$O → 4Acetate$^- + 2$NH$_4^+ + 4$HCO$_3^- $</td>
<td>-245.0$^{[155]}$</td>
</tr>
</tbody>
</table>

The transformation of arsenate, selenate, and nitrate are catalyzed by separate enzymes: arsenate reductase, selenate reductase, and nitrate reductase and nitrite reductase.$^{[159, 160]}$ Despite the relatively lower free energy yield, nitrate reduction is thought to be the preferred substrate.$^{[161]}$ Because nitrate is ubiquitous in nature,$^{[155]}$ the ability of *S. barnesii* to respire nitrate is important for the long term survival of this organism.

*S. barnesii*’s ability to concurrently transform toxic compounds (i.e. arsenate and selenate) in the presence of nitrate is important to subsurface bioremediation,$^{[155, 157, 161-163]}$ as natural systems contain mixtures of metals, metalloids and inorganic oxyanions. $^5$ Furthermore, *S. barnesii* may serve the additional benefit as a non-pathogenic model for understanding nitrate reduction to ammonia in the Epsilonproteobacterial phylogenic class, which includes human pathogens such as
Campylobacter jejuni and Helicobacter hepaticus. As found in most Epsilonproteobacteria S. barnesii only encodes one nitrate reductase (NR), the periplasmic nitrate reductase (Nap), not the typical respiratory NR (Nar) or the assimilatory NR (Nas), underscoring the possibility for multiple functions of this enzyme in nitrogen metabolism.

The goal of this study was to isolate the catalytic subunit (NapA) from S. barnesii, in order to examine the kinetic properties of the enzyme. To date, wild type NapA has not been isolated from any Epsilonproteobacteria. Thus, the biochemical and structural properties are yet to be described. With the increasing volume of information available on nitrate reductase enzymes,[164][165] it has become clear that significant variations exist among these proteins even within subclades of proteobacteria.

NapA has been isolated as a heterodimer with c-type cytochrome containing NapB from multiple organisms [41, 42, 93, 94, 166, 167] and as a monomer from Desulfovibrio desulfuricans [168]. Two general strategies have been employed for cultivating NapA, expression of the recombinant protein(s) in the native host cells (homologous over-expression), and isolation of naturally occurring proteins found in the native organism (native expression). Native purification has been the traditional method of NapA isolation. [93, 96, 166-168] Homologous over-expression has been employed in Escherichia coli, [42] Rhodobacter sphaeroides, [41] and Cupriavidus necator [94]. In Rhodobacter sphaeroides [41] and Cupriavidus necator [94] the nap operon is naturally located on a megaplasmid, not the organism’s genomic DNA, making genetic manipulations more feasible. In this study, S. barnesii NapA was isolated via native
isolation. The objective was to develop a purification strategy and determine NapAs affinity for nitrate.

2.3. **Experimental**

2.3.1. **Cultivation of S. barnesii**

S. barnesii strain SES-3[156] was grown anaerobically on an enriched media (SES-3 nitrate medium, Appendix V) as originally described by Stolz et al.[169] with a final concentration 15 mM lactate and 20 mM sodium nitrate. The amount of yeast extract was raised to 2 g • L⁻¹ to increase the cell mass. To provide a sterile environment, the growth media was autoclaved. Heat liable solutions (i.e. vitamins, minerals, sodium dithionite and sodium lactate) were sterilized using vacuum filtration (0.22 μm pore size filter), then amended at the time of inoculation. The inoculating culture (1L) was grown on nitrate media until log phase growth was reached, typically 2 days, before adding it to fresh 11 L of nitrate media. Sodium dithionite (1 %w/v) was added at the time of inoculation to ensure an anoxic environment. Under the specified growth conditions, *S. barnesii* reduces nitrate within the first 14 hours of incubation. [161] For that reason, *S. barnesii* was incubated at 30 °C with low agitation (30 rpm) in a 14 L fermenter (New Brunswick) for 12-14 hours. Cells were collected by centrifuging at 8000 g for 15 minutes, then frozen in liquid nitrogen and stored at -80°C.

2.3.2. **Purification of periplasmic nitrate reductase from S. barnesii**

The *S. barnesii* cell paste (typically 10 g wet weight) was suspended in an anoxic buffer (SES-3 lysis buffer, Appendix V) using a dounce (Knotes). The homogenized cell slurry was passed through a French pressure cell press (Thermo Scientific) two times at ~14,000 psi before a protease inhibitor cocktail (Sigma- Aldrich) and deoxyribonuclease I (Sigma- Aldrich) were added. The lysate was then centrifuged at 8000 rpm for 10
minutes to remove unbroken cells and debris. The lysate was centrifuged at 300000 \( g \) (Beckman Coulter Ultracentrifuge, 50.2Ti rotor) for 1.5 hours to separate soluble (periplasm and cytoplasm) and insoluble particles (membrane and ribosomes). The insoluble pellet was homogenized with 10 mM Tris and incubated with 1% (w/v) of 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate (CHAPS) overnight at 0 \(^\circ\)C. The CHAPS insoluble fraction was removed by centrifuging the sample at 245000 \( g \) for 1 hour. The CHAPS soluble fraction was then subjected to stepwise ammonium sulfate (AS) precipitation at 30 %, 45 % and 60 % saturation \((S)\). The weight \((X)\) of solid ammonium sulfate required to reach the desired percent saturation \((S)\) was calculated using \textbf{Equation 2.1}. [170]

\[
X = \frac{533(S_2-S_1)}{100-0.3(S_2)}
\]

The 60% fraction was dissolved (Buffer A, Appendix V) and the excess salt was removed with diafiltration, 30 KDa molecular weight cut off (Millipore), prior to chromatographic separation. The desalted fraction was loaded onto a macroprep\textsuperscript{®} anion exchange resin (BioRad) pre-equilibrated with Buffer A (Appendix V) in a 2.5 cm diameter glass column using the BioLogic LP system (BioRad). A gradient of 0-100 % Buffer B was used to elute proteins over 4 column volumes at 0.5 mL• min\(^{-1}\). Two columns, packed with macroprep resin (BioRad), were used to isolate NapA, and referred to as DEAE I (40 mL resin volume) and DEAE II (10 mL resin volume).

Two detergents were used in this study: the zwitterionic detergent, CHAPS, and the non-ionic detergent, 1% n-octyl-\(\beta\)-D-glucopyranoside (OBGP). \textit{S. barnesii} was incubated with 1% (w/v) CHAPS or OBGP.
2.3.3. **Characterization**

2.3.3.1. **Assays**

Protein concentration was measured using the DC protein assay kit (Bio-Rad). The expected extinction coefficient of *S. barnesii* NapA (accession number 169104652), $\varepsilon_{280\text{nm}} = 191,460 \text{ M}^{-1} \text{ cm}^{-1}$, was used to estimate the protein concentration spectrophotometrically in purified NapA samples.

Fractions were routinely screened for nitrate reductase activity via the reduced methyl viologen linked nitrate reductase assay.[171, 172] Microscale assays were performed inside an inert atmosphere glove box (Vacuum Atmospheres) at 22 °C using the ELx808 absorbance microplate reader (BioTek). The oxidation of methylviologen was monitored at 630 nm using Gen5 Data Analysis Software (BioTek). The reaction buffer contained TrisHCl [100 mM] (pH 8), CHAPS [0.1mM], Na$_2$MoO$_4$ [1mM] and methylviologen [0.8mM]. All assay solutions were purged with nitrogen or argon gas for 20 minutes, and then sealed before transfer into the anaerobic chamber. The reduced methyl viologen was prepared by titrating with a sodium dithionite stock [60 mM] solution to yield a final absorbance of 1.2–1.6 at 630 nm. The enzyme was incubated with the reduced methyl viologen for 10 minutes and the absorbance was monitored to ensure the rate of oxidation was insignificant, prior to addition of nitrate. The reaction was initiated by the addition of potassium nitrate and the absorbance was monitored until the reaction stopped (i.e. Abs =0). Under the given conditions, the rate of reduced methylviologen oxidation by the protein sample alone (i.e., no substrate) was found to be negligible.
The absorbance at 630 nm due to reduced methyl viologen (MVr) was used in obtaining concentration using the Beer-Lambert law \( A = \varepsilon bc \), given the reported extinction coefficient of MVr \((13700 \text{ M}^{-1} \text{ cm}^{-1})\), [173] and the calculated path length \((0.667 \text{ cm}^{-1})\). The rate of methyl viologen oxidation (i.e. decrease in \([\text{MV}_r]\)) was determined by plotting the concentration of \(\text{MV}_r\) over time (seconds). Linear regression (GraphPad Prism) [174] of the initial data points (first 90 seconds after adding nitrate) was used to calculate the rate of methyl viologen oxidation. To estimate the rate of nitrate reduction, the rate of methylviologen oxidation was divided by 2 to correct for the stoichiometric ratio of methylviologen to nitrate (2:1). Each molecule of methylviologen is capable of donating a single electron to NapA for the two electron reduction of nitrate to nitrite (Equation 2.2 and 2.3). Non-linear regression using the Michaelis–Menten equation was performed on the data using GraphPad Prism (v 5.03, San Diego, CA, USA) to a 95% confidence limit. From the fitted equation, substrate affinity (Km), maximum velocity (Vmax) was determined.

\[
[\text{MV}]^{2+} + e^- \rightarrow [\text{MV}]^{+} 
\]

Equation 2.2

\[
2[\text{MV}]^{+} + \text{NO}_3^- + 2\text{H}^+ \rightarrow 2[\text{MV}]^{2+} + \text{NO}_2^- + \text{H}_2\text{O} 
\]

Equation 2.3

In addition to the methyl viologen assay, the concentration of nitrite produced was measured using the diazo coupling technique (Griess assay, Appendix V). [175] Potassium nitrite (Fluka) was used as a standard for nitrite estimation, within the range of 1.6 \(\mu\text{M}-100 \mu\text{M}\).
2.3.3.2. **Native gel electrophoresis and in-gel assays**

Detergent soluble proteins were separated by electrophoresis under non-denaturing conditions. Resolving and stacking gels contained 0.5% of CHAPS, a sample buffer contained 0.7% CHAPS and anode buffer 0.1% CHAPS (recipes in Appendix V). Electrophoresis was performed at 40 V. The in-gel assay was performed in 50 mM Tris-Cl (pH 7.9), with 10 mM methyl viologen as the electron donor, potassium nitrate [0.1M] as the electron acceptor, and sodium dithionite as the reductant. Images of the activity gels were documented using a densitometer (GS-800, Bio-Rad). After the activity assay was finished, gels were incubated for 15 minutes in 12.5% trichloroacetic acid (TCA) before staining with colloidal coomassie stain (Appendix V).

2.3.3.3. **Denaturing protein gel electrophoresis**

Discontinuous sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS/PAGE) was used to analyze fractions for purity and NapA content, using standard protocol (Appendix V). [176] After separation, the gel was incubated in 12% TCA for 30 minutes to precipitate proteins followed by a 10 minute wash in water. Proteins were stained with a colloidal coomassie blue G-250 solution (Appendix V) overnight, washed with methanol (25%) and scanned using a calibrated imaging densitometer (GS-800, BioRad). The relative density and molecular weight of the separated proteins were calculated with Quantity One software (BioRad). Molecular weight standards (Fermentas) were used to estimate the size of unknown proteins.

2.3.3.4. **Metal analysis**

Metal analyses of enzyme samples were conducted at the Chemical Analysis Laboratory at the University of Georgia (Athens, GA., USA) using a Thermo Jarrell-Ash
Enviro 36 Simultaneous Inductively Coupled Plasma-Optical Emission Spectrograph (ICP-OES).

2.4. Results and Discussion

2.4.1. Cultivation of S. barnesii

Growth of S. barnesii strain SES-3 on nitrate enriched media was unpredictable and cell yield was low. The typical cell yield was 0.8 g per liter (wet weight) when the culture reached a peak cell density within 12 hours incubation. When growth was not achieved within this time frame, NapA content was very low. Typically, ~100 ng of NapA was obtained from a 12 L culture. Ideally, the growth medium used for a protein purification procedure would yield maximum quantities of the target protein (NapA in this case) and cell mass. However this was difficult to achieve using a defined medium. S. barnesii, was originally isolated in 1994 from a selenate respiring and acetate oxidizing soil enrichment. While defined mediums such as the SES-3 medium used in this study strive to mimic the natural growth conditions, reproducing an organism’s natural environment is difficult. Additionally, using an acetate and selenate enriched environment for S. barnesii NapA purification would induce the production of selenate reductase (EC: 1.97.1.9), an alternative respiratory enzyme. The presence of SerA, the selenate reductase catalytic subunit, could dilute the efforts to purify NapA. SerA and NapA are molybdopterin, iron sulfur containing enzymes of similar size (c.a. 100 kDa). [177] Moreover, assaying fractions containing both SerA and NapA for nitrate reductase activity could be complicated as S. barnesii SerA is capable of nitrate reduction,[178] and NapA has been reported to reduce selenate in R. sphaeroides.[179] To avoid potential complications during NapA purification, S. barnesii was grown anaerobically on the
nitrate medium. Selenate was provided in the media at low concentrations as it is an essential micronutrient.

A second obstacle to *S. barnesii* growth could be the presence of sulfur oxyanions. In an effort to maintain an anoxic environment, sodium dithionite was added to the *S. barnesii* culture at the time of inoculation. However, addition of dithionite can be problematic. Acidic hydrolysis of dithionite leads to formation of thiosulfate and bisulfite; sulfite and sulfide form under alkaline conditions. [180] Nitrate respiration could be inhibited in the presence of thiosulfate, which *S. barnesii* has been noted to respire. [157]

Also, the elimination of oxygen may have negatively impacted the growth of *S. barnesii*, as indicated by the low cell yield (less than 1g of cells per liter of growth media). The *C. jejuni*, a close relative to *S. barnesii*, contains an oxygen dependent ribonucleoside-diphosphate reductase (RNR), [181] and requires roughly 5% oxygen for optimal growth. [61] *S. barnesii* also encodes a RNR homologue. The translated *S. barnesii* protein shares 75% sequence identity with *C. jejuni* RNR (NCBI accession number YP_002343496) and 93% identity with the *S. delyanium* (YP_003303127). It is possible that the optimal levels of oxygen were not supplied during growth and as a result growth may have been hindered. The effect of oxygen on *S. barnesii* growth was not assessed experimentally in this study.

### 2.4.2. Purification of NapA

Prior to purification, the conditions for the methylviologen assay were established. Specifically, the effects of chemicals used in the purification process were investigated. *S. barnesii* lysate was incubated with CHAPS detergent, ammonium sulfate, EDTA, and a reductant (dithioteritol) (Figure 2.1). The samples were frozen at 0°C.
overnight. One aliquot was also stored in an inert atmosphere glove box at room
temperature (30°C) overnight. Buffer supplemented with ammonium sulfate [0.5 M],
EDTA [25 mM], and CHAPS (1% w/v) doubles the nitrate reductase activity relative to
incubating the lysate in Tris buffer alone (Figure 2.1). It is most likely that ammonium
sulfate and CHAPS improve NapA solublization with-in the assay vessel, increasing the
enzyme activity. EDTA increases the nitrate reductase activity, most likely by chelating
inhibitory metals such as zinc. Zn^{2+} ions (K_i =1 \mu M) can inhibit the nitrate reductase
activity of NapA, EDTA chelates zinc and completely restores activity. [171]
Dithioteritol tripled the nitrate reductase activity (Figure 2.1 & Table 2.2). The aliquot
incubated under anoxic conditions at room temperature overnight also displayed a higher
(more than 2x) nitrate reductase activity than the lysate stored overnight at 0°C. This may
indicate that the air-oxidation of the NapA molybdenum center rendered the enzyme
inactive, and that incubating the enzyme with reductants, such as dithiothreitol, can
reduce the active site. Also, storing the enzyme under inert atmosphere is more important
than freezing the sample. Freezing is used to slow enzyme proteolysis; however
degradation does not appear to be a problem in these experiments.
**Figure 2.1**: The effect of storage temperature, ammonium sulfate, CHAPS detergent, dithiotheritol and EDTA on the specific activity of *S. barnesii* lysate. After overnight (16 hours) storage, the protein lysate was incubated in presence of 0.1 M Tris-HCl buffer, which was supplemented with ammonium sulfate, CHAPS, dithiotheritol, EDTA or water, at room temperature, then the nitrate reductase activity was assayed using the methylviologen active assay. The values used to create this bar graph are presented in Table 2.2.
Table 2.2: The effect of ammonium sulfate, CHAPS detergent, dithiothreitol and EDTA on the specific activity of *S. barnesii* lysate. After an overnight (16 hours) storage, the protein lysate was incubated in presence of 0.1 M Tris-HCl buffer, which was supplemented with ammonium sulfate, CHAPS, dithiothreitol, EDTA or water, at room temperature, then the nitrate reductase activity was assayed using the methylviologen active assay (n=5). This is a tabular format of the data graphed in Figure 2.1.

<table>
<thead>
<tr>
<th>Storage temperature</th>
<th>Compound</th>
<th>Mean rate ± SD (μmoles NO₃⁻ • min⁻¹ • mg⁻¹ protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 °C</td>
<td>No buffer additives</td>
<td>0.071 ± 0.005</td>
</tr>
<tr>
<td></td>
<td>Ammonium sulfate [0.5M]</td>
<td>0.062 ± 0.003</td>
</tr>
<tr>
<td>0 °C</td>
<td>CHAPS [1% (w/v) ]</td>
<td>0.060 ± 0.004</td>
</tr>
<tr>
<td></td>
<td>Dithiothreitol [1 mM]</td>
<td>0.091 ± 0.005</td>
</tr>
<tr>
<td></td>
<td>EDTA [25 mM]</td>
<td>0.061 ± 0.005</td>
</tr>
</tbody>
</table>

The amphoteric detergent CHAPS was routinely used to solubilize NapA in this study. In addition to increasing the nitrate reductase activity in *S. barnesii* lysate, CHAPS detergent has properties which are beneficial in protein purification. Compared to the more common detergents, Triton X and Tween, CHAPS can be used at higher concentrations without the formation of micelles which can complicate chromatographic separations. The critical micelle concentration (CMC) of CHAPS is 0.49 % (w/v). The CMC of Tween and Triton are much lower, 0.002 and 0.021 respectively. CHAPS micelles are also smaller, typically 6 kDa, compared to the large micelles formed by Tween and Triton X (over 76kDa). Unfortunately CHAPS binds to the DEAE resin and is eluted with low NaCl concentration due to the amphoteric nature of the chemical. The elution of CHAPS was monitored by following the absorbance at 280 nm. For this reason the non-ionic detergent, 1% n-octyl-ß-D-glucopyranoside (OBGP) was also investigated because it has similar micelle properties to CHAPS. In an effort to establish the effect of OBGP on nitrate reductase activity, the *S. barnesii* lysate was fractionated using CHAPS and OBGP with differential solubilization techniques. The *S. barnesii* cells were lysed, and then the insoluble fraction was separated from the soluble supernatant using
ultracentrifugation. The insoluble fraction was aliquoted and then incubated with 1% (w/v) detergent, OBGP or CHAPS (Figure 2.2). The insoluble particulate was then removed from the soluble supernatant by ultracentrifugation.

Figure 2.2: Scheme of the differential solublization of *S. barnesii* proteins using CHAPS and OBGP detergents. The insoluble pellet isolated by ultracentrifugation was suspended in 50 mM Tris-HCl buffer (pH= 7.7), then separated into 2 aliquots. Membrane protein aliquots were solubilized with 1% CHAPS or 1% OBGP at 0°C overnight. The detergent soluble proteins were precipitated with subsequent saturation steps of ammonium sulfate (AS) in 10mM Tris-Cl (pH6.6) buffer + 0.1% detergent (OBGP or CHAPS). The saturated AS pellet were resuspended in 10 mM TrisHCl and dialyzed to lower the salt concentration.

The OBGP detergent solubilized more protein than CHAPS; 44 mg of protein was recovered with OBGP compared to 39 mg recovered with CHAPS. The SDS-PAGE gel of the CHAPS and OBGP solubilized fractions (Figure 2.3) indicates that a 51 kDa protein band is more intense in the OBGP fraction. A 31 kDa protein band is more intense in the CHAPS fraction. Each band was extracted from this gel and analyzed by MALDI-TOF MS. The OBGP enriched 51kDa protein was successfully identified as the metalloid reductase, RarA, from *S. barnesii* strain SES-3 (accession number 23394982) with 45% sequence coverage. The function of RarA is unknown function.
**Figure 2.3:** SDS/PAGE separation of proteins from the *S. barnesii* OBGP and CHAPS solubilized fractions illustrating the enrichment of RarA in the OBGP fraction. The ~48kDa protein band in the OBGP solubilized fraction was excised (<), subjected to trypsin digestion, and then MALDI-TOF MS analysis (conducted by a fellow lab member). Using Mascot, the protein was identified as the metalloidreductase, RarA, from *S. barnesii* (MW = 48133) with 45% sequence coverage (accession number 23394982).

The nitrate reductase activity was measure in each fraction by quantifying the nitrite produced from nitrate via the Griess assay. The OBGP and CHAPS detergents solubilize comparable amounts of nitrate reductase activity. In-gel activity assays were also used to determine the effect of each CHAPS and OBGP detergent on nitrate reduction. The detergent solubilized proteins were first separated using native PAGE. Similar to SDS-PAGE, each detergent was used in the polyacrylamide gels and running buffer to maintain solubility. After electrophoresis, the gels were stained with methyl viologen, and then washed with nitrate to locate the protein complex responsible for nitrate reduction. The bleaching of methylviologen indicates an “active” protein band. The active band was excised from native gel, incubated with SDS to release the proteins,
and then concentrated with ultrafiltration. The isolated protein complex was then separated under denaturing conditions, SDS/PAGE,

In contrast with the solution assay, the in-gel nitrate reductase activity assay reveals that only the CHAPS solubilized fraction has nitrate reductase activity (Figure 2.4), not the OBGP fraction (gel not shown). The nitrate reductase active band, from the CHAPS soluble fraction, was extracted from the gel and separated using denaturing electrophoresis (SDS-PAGE) to resolve all of the protein components (Figure 2.4). Only a 100 kDa band is visible, consistent with the predicted size of *S. barnesii* NapA.

**Figure 2.4**: Native gel electrophoresis and in-gel nitrate reductase activity of CHAPS solubilized *S. barnesii* proteins. The active NapA from native PAGE and subsequent separation via SDS/PAGE (lane 2). CHAPS solubilized membrane proteins were first separated via native gel electrophoresis, and then the gel was stained with reduced methylviologen and incubated with a nitrate solution (lane 1). The nitrate reductase activity bleached the methylviologen, indicating the location of nitrate reducing proteins. The gel was scanned with a densitometer (Bio-Rad, GS 800) and then stained with colloidal coomassie blue. The coomassie and viologen stained gels were overlaid to determine the band responsible for NR activity. The band was then excised from a CHAPS native gel and incubated with SDS loading buffer at 90°C for 10 minutes to denature. The sample was separated on a SDS/PAGE gel (Lane 2). The molecular weight of the protein in lane 2, 100 kDa, was calculated by comparison to a molecular weight standard (Lane M).
While this experiment indicated that the OBGP solubilized fraction had no nitrate reductase activity, the OBGP fraction did have high nitrate reductase activity in the in-gel assay. Comparison of the CHAPS and OBGP soluble in-gel nitrite reductase assays (Figure 2.5) illustrates the relatively more active nitrite reductase activity in the OBGP soluble fraction. As previously described, the active nitrite reductase band was extracted from the native gel and separated using SDS-PAGE. No proteins were detected in the SDS-PAGE separation of the CHAPS band. The CHAPS active band was not defined (Figure 2.5), possibly leading to low protein recovery prior to the SDS-PAGE. Multiple proteins were extracted from the OBGP active band. The sizes of the peptides are 98, 78, 68, and 55 kDa (Figure 2.6), conceivably the nitrite reductase (NrfA c.a. 55 kDa).

Unfortunately we were not able to identify any of the proteins using MALDI-TOF MS. The spectra are saved and awaiting the completion of the *S. barnesii* genome.

**Figure 2.5:** Native gel electrophoresis and in-gel nitrite reductase activity assay of the CHAPS and OBGP solubilized *S. barnesii* fractions. The coomassie stained native gels for the CHAPS (lane 1) and OBGP (lane 3) soluble fractions. The in-gel nitrite reductase activity assay was conducted by staining the gel with dithionite reduced benzylviologen after electrophoresis, and then incubated with nitrite. The nitrite reductase assay of the CHAPS (lane 2) and OBGP (lane 4) soluble fractions is presented; the bleached bands are indicative of nitrite reductase activity. The same bands display nitrate reductase activity also (data not shown).
Figure 2.6: SDS/PAGE of nitrite and nitrate reductase active bands excised from the OBGP native gel. The active bands were excised from the OBGP native gel in Figure 2.5, incubated in 2% SDS to solubilize the proteins, and then the acrylamide was removed by microscale diafiltration (Pall). After colloidal coomassie blue staining, the gel was scanned with a densitometer (Bio-Rad, GS 800) and the molecular weights calculated (Quantity One, Bio-Rad). The active band (A) was extracted twice. A BioRad molecular weight marker (M) was used as a standard.

From the coomassie stained N-PAGE separation (Figure 2.5) it was apparent that most protein complexes do not travel far into the gel. To achieve better separation without lowering the acrylamide concentration and diffusing the active band the pH of the resolving gel was lowered from 8.8 to 6.8. While fewer protein bands are in the pH 6.8 gel, two nitrite reductase active bands were resolved (Figure 2.7). The top band is located between the stacking and resolving gels, most likely insoluble proteins which were not able to enter the higher percentage acrylamide matrix of the resolving gel. All of the active bands were extracted and separated using SDS-PAGE (Figure 2.7). A 65 kDa band is enriched in the nitrite reductase band which traveled into the N-PAGE resolving gel (the bottom band in Figure 2.7). The 65 kDa band was identified as RarA by MS.
Figure 2.7: Native gel electrophoresis, in-gel nitrite reductases activity assay, and SDS/PAGE separation of RarA from OBGP soluble S. barnesii fraction. The same process, used to isolate the active bands from OBGP soluble fraction in Figure 2.6 and was repeated, but in this experiment the pH of the resolving gel was lowered to 6.8 from 8.8. The dark 65 kDa band was identified as RarA. A) Two nitrite reductase active bands were resolved ( — ) and ( < ). B) Staining the gel with coomassie blue indicated that three bands are present, numbered 1-3. Each was excised, incubated in 2% SDS to solubilize the proteins, and then the acrylamide was removed by microscale diafiltration (Pall), and then separated using SDS/PAGE. C) The three bands were loaded in lanes 1-3 respectively. The coomassie stained gel was scanned with a densitometer (Bio-Rad, GS 800) and the molecular weights calculated (Quanity One, Bio-Rad). The active band (A) was extracted twice. A BioRad molecular weight marker (M) was used as a standard.

The OBGP and CHAPS soluble fractions were further fractionated using ammonium sulfate precipitation. The OBGP solubilized proteins precipitated over a larger range of salt than the CHAPS soluble fraction. In the CHAPS solubilized fraction most proteins precipitated under 60 % S, and no protein was detected in the 60 % S supernatant. OBGP provided more separation, proteins precipitated from 30 % S to 75 % S, and the 75 % S supernatant also contained protein. In the OBGP fractions, nitrite reductase activity was highest in the 30 % S fraction and nitrate reductase activity was distributed over the 45 % S, 60 % S, and 75 % S fractions. The nitrate and nitrite reductase activity was highest in the 45 % S and 60 % S precipitated CHAPS proteins.
SDS-PAGE analysis indicates that a ~ 100 kDa protein is enriched in the CHAPS fractions precipitated with 45 % S and 60 % S AS, and in the OBGP fractions precipitated with 60 % S and 75 % S AS (Figure 2.8). Although, the nitrate reductase activity measured in the CHAPS fractions was higher (over 10 x) than the OBGP fractions. The ammonium sulfate precipitation and in-gel nitrate reductase activity assays indicate that CHAPS detergent was more successful at solubilizing active nitrate reductase. Therefore CHAPS was used for future purification experiments. The CHAPS solubilized proteins precipitated with 60% and 45 % S ammonium sulfate were desalted and then separated using liquid chromatography.

Figure 2.8: Stepwise ammonium sulfate precipitation of proteins from the S. barnesii OBGP and CHAPS solubilized fractions. Abbreviations: OBGP (O), CHAPS (C), molecular weight marker (BioRad) (M) with the molecular weight (kDa) provided under each band. The ammonium sulfate steps: 0% saturation (S) to 30% S (30), 30% S to 45% S (45), 45% S to 60% S (60), 60% S to 75% S (75), and the supernatant (+)
NapA was isolated from *S. barnesii* by fractionation with CHAPS detergent, ammonium sulfate precipitation, and anion exchange chromatography (Figure 2.9).

![Flowchart of NapA purification process](image-url)

**Figure 2.9**: Overview, flow chart, of the *S. barnesii* NapA purification process. A.S. = ammonium sulfate precipitation; DEAE = anion exchange chromatography.

The purity of NapA was monitored using a combination of denaturing electrophoresis. The reduced methylviologen nitrate reductase activity assay was used to monitor nitrate reductase activity. A summary of the nitrate reductase assay results from a representative NapA preparation is presented in Table 2.2 and illustrated in Figure 2.10.
Figure 2.11 displays the corresponding SDS/PAGE separation of the proteins in each fraction. Briefly, the whole cell lysate was separated into an insoluble pellet and a soluble supernatant. While these fractions recovered comparable quantities of nitrate reductase activity, the in-gel native-PAGE assay suggested that most of the protein derived nitrate reductase activity is isolated in the insoluble pellet. No nitrate reductase band was observed in the in-gel assays using lysate. The soluble fraction may include redox active metabolites which are capable of nitrate reduction or methyl viologen oxidation. The CHAPS soluble extract was prepared by incubating the insoluble fraction overnight with CHAPS. Approximately 88% of the NR activity in the insoluble fraction was recovered in the CHAPS soluble fraction. The nitrate reductase activity was precipitated at 60 % ammonium sulfate saturation ($S$). Approximately 80 % of the NR activity measured in the 45 % $S$ supernatant was recovered in the 60% saturated ammonium sulfate pellet (Figure 2.10, Table 2.3). Buffer exchange using diafiltration was efficient at removing salts, 60 % of the activity was recovered. Overall the yield of active NapA is low. Metal analysis indicates that molybdenum is lost during purification. In the presented preparation, the CHAPS soluble fraction contained $\sim$ 90 % (mole Mo per mole protein). Molybdenum saturation shrunk to 30 % in the 60 %S ammonium sulfate pellet.
Table 2.3: Nitrate reductase activity in *S. barnesii* NapA purification.

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Total activity (μmoles NO₃⁻ • min⁻¹)</th>
<th>± SD</th>
<th>% recovery</th>
<th>% yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>lysate</td>
<td>30.11</td>
<td>8.07</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>Insoluble</td>
<td>17.83</td>
<td>6.37</td>
<td>59</td>
<td>59</td>
</tr>
<tr>
<td>Soluble</td>
<td>20.49</td>
<td>6.16</td>
<td>68</td>
<td>68</td>
</tr>
<tr>
<td>Chaps Insoluble</td>
<td>9.64</td>
<td>2.4</td>
<td>54</td>
<td>32</td>
</tr>
<tr>
<td>Chaps Soluble</td>
<td>15.77</td>
<td>0.87</td>
<td>88</td>
<td>52</td>
</tr>
<tr>
<td>30% S A.S. pellet</td>
<td>0.01</td>
<td>0.13</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>30% S A.S. supernatant</td>
<td>12.89</td>
<td>4.33</td>
<td>82</td>
<td>43</td>
</tr>
<tr>
<td>45% S A.S. pellet</td>
<td>0.19</td>
<td>0.34</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>45% S A.S. supernatant</td>
<td>9.05</td>
<td>3.83</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>60% S A.S. pellet</td>
<td>6.77</td>
<td>2.47</td>
<td>75</td>
<td>22</td>
</tr>
<tr>
<td>desalted A.S. pellet</td>
<td>3.88</td>
<td>0.34</td>
<td>57</td>
<td>13</td>
</tr>
<tr>
<td>60% S A.S. supernatant</td>
<td>0.81</td>
<td>0.18</td>
<td>12</td>
<td>3</td>
</tr>
</tbody>
</table>

SD, The standard deviation. A.S., Ammonium Sulfate, (NH₄)₂SO₄

Figure 2.10: The total nitrate reductase activity measured in crude fractionation of *S. barnesii*. Shaded bars indicate fractions not used for subsequent fractionation. (N = 3) The data is also presented in Table 2.3.
**Figure 2.11:** SDS-PAGE of the crude *S.barnesii* fractions. Lysate (0.6 µg, lane 1); insoluble (0.9 µg, lane 2); soluble (0.3 µg, lane 3); CHAPS insoluble (0.3 µg, lane 4); CHAPS soluble (0.9 µg, lane 5); pellet precipitated at 30 % *S*(NH₄)₂SO₄ (0.3 µg, lane 6); pellet precipitated at 45 % *S*(NH₄)₂SO₄ (0.8 µg, lane 7); pellet precipitated at 60 % *S*(NH₄)₂SO₄ (1.3 µg, lane 8), remaining supernatant at 60 % *S*(NH₄)₂SO₄ (0.2 µg, lane 9), Fermentas molecular weight marker (M).

The 60% saturated ammonium sulfate pellet was applied to a DEAE anion exchange resin (DEAE I), after desalting. The column was developed with a gradient of Buffer B, 0-100% (**Figure 2.12**), and NapA was eluted at ~ 0.2 mS • cm⁻¹ conductivity and a smaller quantity at 0.6 mS • cm⁻¹. The specific activity was calculated to be 80,694 ± 212 µmoles NO₃⁻ • sec⁻¹ • mg⁻¹ protein, post DEAE I. The low salt NapA was loaded onto DEAE II, and NapA was then isolated from the high salt eluent (**Figure 2.13**). A summary of the mass spectroscopy results is provided in Appendix III. The purification procedure was repeated independently ten times, although the yield of NapA varied significantly. As mentioned previously, variation in *S. barnesii* cell yield less than consistent. It is possibly that this is the source of the NapA yield fluctuations.
**Figure 2.12:** The nitrate reductase activity measured in protein fractions separated with anion exchange chromatography. The fractions were eluted from the first DEAE column (DEAE I) by applying a salt gradient (dotted line). Fraction #12 had the most nitrate reductase activity. Only fractions which contained protein were assayed.

The most common unwanted protein contaminant of NapA purification was the metalloid reductase, RarA (accession number AAN31662) by mass spectroscopy analysis. Separation of RarA and NapA was achieved by chromatography (**Figure 2.13**). First, the fractions eluted under low salt concentrations from DEAE I, which contained both NapA and RarA (**Figure 2.13**, fractions 5 - 24), were pooled together, desalted and applied to DEAE II. Next, the NapA was purified by collecting the high salt fractions from DEAE II, which did not include RarA (**Figure 2.13**, lanes A & B). Separation of NapA and RarA was difficult because both proteins elute from the DEAE resin at similar salt concentrations (0.2 mS • cm$^{-1}$). The strong electrostatic interactions between RarA and NapA made the proteins difficult to separate using ion exchange chromatography; RarA is electronegative (pI = 5.49) while NapA is electropositive (pI = 8.7). The
electrostatic interaction was interrupted at high salt concentrations, aiding in separation. However, the majority of NapA elutes under low salt concentration because the protein is overall cationic, and the binding affinity to an anion exchange resin would be poor, causing NapA to elute under low salt concentrations. Hydrophobic interaction chromatography and cation exchange chromatography were also investigated; however, they yielded insufficient separation.

![Figure 2.13: SDS/PAGE of select anion exchange chromatography fractions, including the purified NapA. The DEAE I fractions were eluted with low salt (fractions 5, 8, 12, 18, 24, 26). A major contaminate of NapA purification was identified as RarA (~50kDa) “<” by MS (see Appendix III). The protein band which was identified by MS as S. barnesii NapA is identified with an asterisk (*). Fractions isolated from DEAE II, lanes A and B, contain a 108 kDa band, also identified by MS as S. barnesii NapA.](image)

NapB was not detected in the SDS-PAGE stained with colloidal coomassie blue, although the electronic spectrum of the purified NapA sample indicates that NapB is present (Figure 2.14). Like Haemophilus influenzae NapB, [144] the oxidized protein exhibits a 410 nm absorption peak, which upon reduction with dithionite shifts to 420 nm (Sorret peak). Additionally two peaks appear at 522 nm (α) and 550 nm (β), indicative of
reduced c-type cytochromes [182] Sabaty et al. report that NapB does not stain with coomassie blue and requires silver staining for detection. [179]

![Graph](image)

**Figure 2.14**: The electronic spectra of *S. barnesii* NapA: as-isolated, dithionite reduced and nitrate oxidized.

Given the low yield of purified NapA, the CHAPS soluble fraction was used to determine nitrate affinity. *S.barnesii* is predicted to only encode the Nap type nitrate reductase, as this is a characteristic of Epsilonproteobacteria such as *Campylobacter* species and *S. delyanum*. The velocity data was plotted as a function of nitrate concentration, and fit using the Michaelis-Menten non-linear regression (**Figure 2.15**). The measured affinity for nitrate (314 μM) was lower than that observed by Oremaland et al. with *S. barnesii* membranes (K_m = 0.7 μM & 63.4 μM). [161] However the double reciprocal plot used to estimate the nitrate affinity in these studies often miscalculates the
$K_m$ values due to extrapolation far outside of the measured nitrate concentrations. The current study assayed nitrate reductase activity at a wide span of nitrate concentration, 1.6 μM-14 mM, in triplicate. The $R^2$ value was 0.99, indicating that fitting the data using the Michaelis-Menten equation was appropriate.

![Graph](image.png)

**Figure 2.15:** Michaelis–Menten kinetics of nitrate reduction in the NapA enriched CHAPS soluble fraction using the reduced methylviologen coupled nitrate reductases assay. Data analysis was performed using Prism v 5.03 (Graph Pad).

### 2.5. Conclusions

*S. barnesii* is an ecologically important soil bacterium, as it is capable of concurrently reducing selenate (to elemental selenium), and nitrate (to ammonia). The native isolation of *S. barnesii* NapA, although successful, yields undesirably low quantities of the active protein, too low to preform future studies. Under the specified growth conditions the amount of NapA expressed was low. The kinetic data, collected from the CHAPS soluble fraction, reveals that *S. barnesii*’s NapA has a strong affinity for nitrate. This is consistent with values obtained from other NapA isolates.
CHAPTER 3: Cloning, expression and characterization of the *Campylobacter jejuni* strain RM1221 and *Sulfurospirillum barnesii* strain SES-3 periplasmic nitrate reductase (Nap) proteins.

3.1. Abstract

Prior to this work NapA has only been isolated from the native organism. Genetic manipulations have been employed to homologously overproduce recombinant NapA. In the present study, *Escherichia coli* was used as the host for expression of the recombinant *C. jejuni* and *S. barnesii* NapA. To our knowledge, this is the first successful heterologous expression and purification of a functional NapA. NapD, a well-characterized dedicated NapA-chaperone protein, and NapL, a proposed NapA chaperone, were co-expressed with NapA. *C. jejuni* and *S. barnesii* NapA display Michaelis-Menten type kinetics, with a calculated maximum velocity ($V_{\text{max}}$) of $0.042 \pm 0.004$ and $0.084 \pm 0.009 \mu$moles $[\text{NO}_3^-] \cdot \text{min}^{-1} \cdot \text{mg protein}^{-1}$, respectively. The $K_m$ for nitrate was calculated to be $2.3 \pm 0.68 \text{mM}$ for *C. jejuni* and $7.2 \pm 1.6 \text{mM}$ for *S. barnesii*. 
3.2. Introduction

Periplasmic nitrate reductase (Nap) catalyzes the reduction of nitrate to nitrite in a variety of prokaryotes. The catalytic subunit, NapA, has three classifying features: 1) a molybdenum center, coordinated by a strictly conserved cysteine residue and two pyranopterin cofactors; 2) an iron sulfur cluster (4Fe-4S); 3) an N-terminal twin arginine translocase (TAT) leader sequence, which signals the protein for transportation to the periplasmic space. Although the residues involved in cofactor binding and periplasmic transportation are conserved, NapA is employed by bacteria for various physiological motives: dissimilatory nitrate reduction (both denitrification [80] and nitrate reduction to ammonia [81]), maintenance of cellular oxidation-reduction potential (i.e., redox poise) and nitrate scavenging. [82, 83] Moreover, many human pathogens encode Nap without the respiratory nitrate reductase (Nar) or assimilatory nitrate reductase (Nas). The physiological function of Nap in pathogen is not clear.

In C. jejuni, NapA is a vital metabolic enzyme; C. jejuni can readily generate energy from nitrate reduction via NapA[183], and its growth is dependent on the ability to reduce nitrate.[88] The nap genes (i.e., napBGH) are up-regulated by C. jejuni in response to oxidative stress.[184] NapA is up-regulated in Helicobacter pylori, a gastrointestinal pathogen and a close relative of C. jejuni in response to oxidative stress.[87] Additionally, C. jejuni induces expression of napABG genes during colonization in chickens.[123] Thus, nitrate reduction via NapA appears to relieve oxidative stress in pathogenic microbes and may be very important for the survival of gastrointestinal pathogens such as C. jejuni in the host.
NapA has been isolated as a heterodimer with ε-type cytochrome containing NapB. To date, the Epsilonproteobacterial NapA is yet to be isolated, thus basic enzymatic properties of this protein remain unknown. In order to isolate *C. jejuni* and *Sulfurospirillum barnesii* NapA we have cloned and heterologously expressed the recombinant protein in *E. coli*. Homologous expression of functional NapA and NapB has been reported from *R. sphaeroides* [41] and *Cupriavidus necator* [94]; however, heterologous expression of *Pseudomonas* strain G-179 NapA in *E. coli* resulted in non-functional protein was found in inclusion bodies. [185] To our knowledge this study represents the first successful method of heterologous expression of functional NapA. Herein, we report the details of molecular cloning and expression of NapA from *C. jejuni* and *S. barnesii*. Kinetics of nitrate reduction was also investigated to understand the function of the recombinant enzyme.
3.3. Experimental

3.3.1. Cloning of nap genes

The flow chart in Figure 3.1 provides an overview of cloning procedure used to create the nap plasmids for this study.

![Flowchart of Cloning Procedure]

**Figure 3.1:** An overview of the cloning procedures used to create nap plasmids.
3.3.1.1. **Bacterial strains and media**

*Escherichia coli* strain DH5α (Invitrogen) was used for all standard plasmid manipulations. *E. coli* T7 express (New England Biolabs) and BL21 (DE3) cells (Stratagene) were investigated for protein expression. Lysogenic broth (LB), Lennox recipe (LB media, Appendix V) was used for growth of *E. coli* on liquid or solid media (with agar). The final concentration of ampicillin 100 μg • mL⁻¹ and/or kanamycin 25 μg • mL⁻¹ were used to grow bacteria transfected with a plasmid encoding the respective antibiotic resistant gene, AmpR or KanR.

3.3.1.2. **DNA Electrophoresis**

Electrophoretic separation of DNA was conducted according to standard procedures in TAE buffer at 100V for 20-30 minutes. [186] DNA, stained with ethidium bromide (loading buffer or PCR mixture), was visualized using UV light and photographed. The size of the separated DNA fragments was estimated by comparison to a molecular weight standard (1Kbp DNA ladder, Fermentas). Two gel sizes are used in this study. Preparative gels, which had a 35 μL loading capacity and analytical gels, which had a 20 μL loading capacity.

3.3.1.3. **Amplification nap genes from the genomic DNA**

Genomic DNA of *C. jejuni* strain RM1221 [187] and *S. barnesii* strain SES-3[188] were provided by Dr. William Miller (United States Department of Agriculture, USDA), and Ms Rishu Bansal and Ms. Shrabani Basu (Duquesne University), respectively. The genome of *S. barnesii* strain SES-3 was not complete at the time of the primer design, although a preliminary, shot-gun, sequencing data was available. Unfortunately, the *napB* gene appeared to be truncated or incomplete so primers for *napB*
were designed for the flanking genes, *napH* and *napF*, to amplify the DNA with PCR and obtain a sequence of *napB*. Preparative polymerase chain reaction (PCR) was used to amplify the *napA* genes from the genomic DNA of *C. jejuni* (NCBI Accession No. YP_178873) and *S. barnesii* (AAM21158) and *C. jejuni napB* (YP_178876). The *C. jejuni napLD* maturation genes (YP_178877 and YP_178878) were also amplified.

The oligonucleotides listed in Table 3.1 were used as primers to amplify the target *nap* genes by preparative polymerase chain reaction (PCR). For each gene restriction enzyme sites were introduced within the primer sequences. Two different restriction sites were used for the 3’ and 5’ ends of each gene to ensure the proper insertion of the genes, in the intended orientation and in the promoter reading frame. In order to preserve the N-terminal signal sequences in the NapA and NapB proteins the His$_{6x}$ affinity tag was introduced at the C-terminus of each protein. To place the genes in the correct reading frame with the hexahistidine (His$_{6x}$) coding sequence the XhoI and BglII restriction sites were used in the reverse primers of *napA* and *napB* respectively. Plasmid maps for each construct are provided in Appendix I to illustrate the location of the relevant genetic features (i.e., promoters, restriction sites, and affinity tag coding regions.

A Taq DNA polymerase mixture (ReadyMix$^\text{TM}$, Sigma) was used as instructed, with the addition of Pwo DNA polymerase. The details on the PCR reaction mixture and thermocycler parameters are in Appendix V. Amplified constructs were purified by preparative electrophoresis. A DNA standard (Fermentas) was used to estimate the size of unknown DNA bands. The DNA was then extracted from the gel by manual excision and purified using the NucleoSpin® kit (Macherey-Nagel) according to manufacturer’s
guidelines. [189] Briefly, agarose was melted at 50 °C in a buffer solution. DNA is bound to the membrane by centrifuging at 11,000 x g for 1 minute. The membrane was washed with a 60% ethanol solution (300 µL x 2) by centrifuging at 11,000 x g quickly. After removing the eluent, the membrane is dried at 11,000 x g for 3 minutes. The DNA is eluted by incubating the membrane with 20-50 µL of elution buffer and centrifuging the column in a sterile eppendorf tube at 11,000 x g. The DNA concentration of the eluent was measured in 2 µL volume using a nanodrop spectrophotometer by measuring the absorbance at 260 and 280 nm.

**Table 3.1**: Polymerase chain reaction (PCR) conditions and primers used to amplify *nap* genes.

<table>
<thead>
<tr>
<th>Organism</th>
<th>Gene target (NCBI Accession number)</th>
<th>Size (bp)</th>
<th>RE/direction</th>
<th>Primer nucleic acid sequence (5’ to 3’)</th>
<th>PCR conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Elongation time (sec)</td>
</tr>
<tr>
<td><em>C. jejuni</em></td>
<td><em>nap</em> (YP_17873)</td>
<td>2800</td>
<td>NdeI/ forward</td>
<td>CAG ACC ATA TGA ATA GAA GGG ATT T</td>
<td>180</td>
</tr>
<tr>
<td>RM12221</td>
<td></td>
<td></td>
<td>XhoI/ reverse</td>
<td>GGT GCT CGA GAG CCT TAT AAA TTT TTA C</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td><em>napL</em> (YP_17877, YP_17878)</td>
<td>1250</td>
<td>NcoI/ forward</td>
<td>GAC ACC ATG GAT GAA AAA ATT TCT TT</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EcoRI/ reverse</td>
<td>GAG CTC GAA TTC AGA AAA TTG ATT AAA TAC</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>napL</em> (YP_17876)</td>
<td>522</td>
<td>NcoI/ forward</td>
<td>GAC ACC ATG GAT GAA GAA ATT G</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BglII/ reverse</td>
<td>GTG ATG AGA TCT CTT TAC ACC CTC ATT</td>
<td></td>
</tr>
<tr>
<td><em>S. bamesii</em></td>
<td><em>nap</em> (AAM2158)</td>
<td>2800</td>
<td>NdeI/ forward</td>
<td>GCA CTG CAT ATG TCG CTT TCA AGA AG</td>
<td>180</td>
</tr>
<tr>
<td>SES-3</td>
<td></td>
<td></td>
<td>XhoI/ reverse</td>
<td>CTA GTC TCG AGG CCT TTA TAG AGC TTA ACA G</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>napFD</em></td>
<td>~1100</td>
<td>NcoI/ forward</td>
<td>GTC ACC ATG GAT CAG CCG GGT ACC GG</td>
<td>70’</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PstI/ reverse</td>
<td>GGT ACT GCA GGG CAT TTT GGA GCT TTT C</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>napHF</em></td>
<td>~1000</td>
<td>Blunt end</td>
<td>CAA ATG AAA ACA TGG ATT CG</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CCA AAT ACT TCA TGA CTC</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>napO</em></td>
<td>550</td>
<td>NcoI/ forward</td>
<td>GCA GAC CAT GGA TGA TGA GAA AA</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BglII/ reverse</td>
<td>GTG ATG AGA TCT CTT CAC GCC CTC ATT</td>
<td></td>
</tr>
</tbody>
</table>

* Internal binding primers used for sequencing of the *napO* genes

Multiple elongation times and annealing temperatures were explored.
3.3.1.4. **Restriction digestion and purification of digested DNA**

The amplified *nap* gene constructs were digested with two restriction endonucleases (RE), in order to create complementary and cohesive “sticky” ends. Restriction assays were performed according to a standard protocol (Appendix V, preparative restriction assay), as directed by the manufacturer (New England Biolabs). The expression vectors, pET-21α, pQE-60 and pRSF Duet-1 (Table 3.2) were also cleaved by this method in order to prepare the plasmid for *napA, napB* and *napLD* construct insertion, respectively. After digestion was complete, the enzymatically treated DNA was purified by gel electrophoresis, excised from the agarose and isolated via the NucleoSpin® kit (Macherey-Nagel) as previously described. [189]

3.3.1.5. **Ligation of *nap* gene constructs and expression vectors**

Ligation of the *nap* gene constructs and vector DNA was performed by incubating a 4:1 mixture, respectively, for 5 minutes at 45°C. The mixture was then cooled using an ice bath. Ligation buffer was added, followed by T4 ligase. The mixture was incubated for 2 hours at 15°C (ligation reaction, Appendix V). The entire mixture was used for transformation in *E. coli DH5α*.

3.3.1.6. **Ligation of *nap* gene constructs and pJet 1.2 cloning vector**

In tandem, the same *nap* gene constructs were ligated into the pJet2.1 vector. Ligation of genes directly into expression vectors, which have low copy numbers, is risky. So to ensure that the amplified *nap* genes were ligated into a plasmid the pJet 2.1 high copy cloning vector was used. The inserts are digested with a blunting enzyme (provided in kit) prior to ligation into the pJet 1.2 (Fermentas). The ligated *nap* gene pJet 1.2 constructs were used to transform *E. coli DH5α* cells.
Table 3.2: Summary of plasmids used in this study.

<table>
<thead>
<tr>
<th>Plasmids</th>
<th>Pertinent information</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>pET21α</td>
<td>5443 bp plasmid with Amp^R and a lacI gene</td>
<td>Novagen</td>
</tr>
<tr>
<td>pRSFDuet-1</td>
<td>3829 bp plasmid with Kan^R and a lacI gene</td>
<td></td>
</tr>
<tr>
<td>pQE-60</td>
<td>3431 bp plasmid with Amp^R</td>
<td>Qiagen</td>
</tr>
<tr>
<td>pREP4</td>
<td>3740 bp plasmid with Kan^R . Constitutively expresses the lacI repressor gene, used in conjunction with pQE-60</td>
<td>Fermentas</td>
</tr>
<tr>
<td>pJET 1.2</td>
<td>2974 bp blunt ended high copy cloning vector with Amp^R</td>
<td></td>
</tr>
<tr>
<td>pCnapA</td>
<td>The 2.8 kbp NdeI- XhoI napA gene construct amplified from C. jejuni , then cloned into pET-21α at the corresponding restriction sites (Amp^R)</td>
<td>This work</td>
</tr>
<tr>
<td>pJCnapA</td>
<td>The 2.8 kbp NdeI- XhoI napA gene construct amplified from C. jejuni, digested with blunting enzymes &amp; cloned into pJET 1.2 using the blunt ended cloning site (Amp^R)</td>
<td>This work</td>
</tr>
<tr>
<td>pCnapB</td>
<td>The 522 bp Ncol- BglII napB gene construct amplified from C. jejuni, then cloned into pQE-60 at the corresponding restriction sites (Amp^R)</td>
<td>This work</td>
</tr>
<tr>
<td>pJCnapB</td>
<td>The 522 bp Ncol- BglII napB gene construct amplified from C. jejuni, digested with blunting enzymes &amp; cloned into pJET 1.2 using the blunt ended cloning site (Amp^R)</td>
<td>This work</td>
</tr>
<tr>
<td>pCnapLD</td>
<td>The 1.25 kbp Ncol- EcoRI napLD gene construct amplified from C. jejuni, then cloned into pRSF Duet-1 at the corresponding restriction sites (Kan^R)</td>
<td>This work</td>
</tr>
<tr>
<td>pJCnapLD</td>
<td>The 1.25 kbp Ncol- EcoRI napLD gene construct amplified from C. jejuni, digested with blunting enzymes &amp; cloned into pJET 1.2 using the blunt ended cloning site (Amp^R)</td>
<td>This work</td>
</tr>
<tr>
<td>pSnapA</td>
<td>The 2.8 kbp NdeI- XhoI napA gene construct amplified from S. barnesii, then cloned into pET-21α at the corresponding restriction sites (Amp^R)</td>
<td>This work</td>
</tr>
<tr>
<td>pSnapB</td>
<td>The 522 bp Ncol- BglII napB gene construct amplified from S. barnesii, then cloned into pQE-60 at the corresponding restriction sites (Amp^R)</td>
<td>This work</td>
</tr>
<tr>
<td>pJSnapHBF</td>
<td>The ~1 kbp napHBF gene construct amplified from S. barnesii, digested with blunting enzymes &amp; cloned into pJET 1.2 using the blunt ended cloning site (Amp^R)</td>
<td>This work</td>
</tr>
</tbody>
</table>

Amp^R, resistance to ampicillin
Kan^R, resistance to kanamycin
bp, base pair

3.3.1.7. Amplifying genes from the pJET 1.2 cloning vector

For two genes, C. jejuni napA and S. barnesii napB, ligation of the construct directly into the expression vector was not successful, therefore the pJET 1.2 construct was used as a template for PCR amplification. The C. jejuni napA and S. barnesii napB genes were then digested, and ligated into expression vectors, pET21α and pQE-60, respectively, as previously in the previous section.

3.3.1.8. Transformation of E. coli DH5α

Chemically competent DH5α (Invitrogen) cells, were thawed and incubated with the plasmid DNA for 30 minutes on ice. After incubation, the cells are shocked by heating at 42°C for 90 seconds. After cooling, the heat shocked cells were resuspended in
800 µl LB (liquid) medium (without antibiotic) and incubated with agitation at 37°C for 45-90 minutes. The culture was spread onto a LB (agar) plate with the appropriate antibiotic (ampicillin 100 µg • mL⁻¹ or kanamycin 25 µg • mL⁻¹) and incubated overnight at 37°C. Only the colonies with the plasmid encoding the resistance to the antibiotics are able to grow; providing a method of screening. Colonies, which were able to grow on the antibiotic supplemented agar plates, were also analyzed for the presence of the full length nap genes by colony PCR.

3.3.1.9. Colony PCR

Colonies were scraped with a sterile pipette tip and mixed directly with 20 µl of the PCR mixture (Colony PCR, Appendix V) by swirling, and then the tip was ejected into 5 mL LB media (with antibiotic) and incubated overnight with shaking at 37°C. The PCR settings used to amplify the genes from organisms genomic DNA was repeated (Table 3.1), the entire reaction mixture loaded onto a 1% agarose gel and electrophoretically separated.

3.3.1.10. Plasmid extraction from E.coli

Cultures inoculated during colony PCR, were collected by centrifugation at 11,000 x g for 5-10 minutes. The resulting cell pellets were lysed and the plasmid DNA was purified with the NucleoSpin® kit for plasmid preparation according to the manufacturer’s protocol. [189] The plasmid was eluted into ~50 µL of buffer. The concentration of DNA was determined spectrophotometrically and the sample was stored at -20°C.
3.3.1.11. **Restriction enzyme assay**

The plasmid constructs were subjected to a restriction digestion assay to confirm the sequence (Test restriction assay, Appendix V). DNA management software, GENtle [190], was used to predict which enzymes could cleave the constructed plasmids at two sites, one cleavage site within the nap gene sequence and a second cleavage site within the corresponding plasmid sequence, producing two unequally sized fragments of DNA. The digestion buffer and ratio of enzyme used for each assay differed according to the RE combination exploited (Table 3.2). The double digest™ tool, provided by Fermentas (http://www.fermentas.com/en/tools/doubledigest) was utilized to determine the recommended assay conditions such as type of buffer, ratio of RE, and incubation time and temperature. After completion the reaction was analyzed by gel electrophoresis. The entire assay mixture was loaded onto an agarose gel to purify the DNA and determine the size of the resulting DNA fractions.

**Table 3.3:** Restriction endonuclease (RE) assay conditions for the nap plasmids

<table>
<thead>
<tr>
<th>Plasmid ID</th>
<th>Gene target</th>
<th>Vector</th>
<th>RE</th>
<th>Volume (μL)</th>
<th>Buffer</th>
<th>Expected sizes (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>C. jejuni</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pJCnapA</td>
<td>napA</td>
<td>pJET 1.2</td>
<td>NcoI(^N)</td>
<td>0.5</td>
<td>#3(^N)</td>
<td>4527 1237</td>
</tr>
<tr>
<td>pJCnapB</td>
<td>napB</td>
<td>pJET 1.2</td>
<td>PstI(^N)</td>
<td>0.3</td>
<td>#3(^N)</td>
<td>3112 404</td>
</tr>
<tr>
<td>pCnapB</td>
<td>napB</td>
<td>pQE-60</td>
<td>NcoI(^N) &amp; BglII(^F)</td>
<td>0.3</td>
<td>Tango(^F)</td>
<td>2959 985</td>
</tr>
<tr>
<td>pJCnapLD</td>
<td>napLD</td>
<td>pJET 1.2</td>
<td>HindIII(^F)</td>
<td>0.5</td>
<td>#3(^N)</td>
<td>2819 1420</td>
</tr>
<tr>
<td>pCnapLD</td>
<td>napLD</td>
<td>pRSFDuet</td>
<td>HindIII(^F)</td>
<td>0.5</td>
<td>#3(^N)</td>
<td>3848 1187</td>
</tr>
<tr>
<td><strong>S. barnesii</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pSnapA</td>
<td>napA</td>
<td>pET21</td>
<td>Accl(^N)</td>
<td>0.2</td>
<td>#4(^N)</td>
<td>4620 3534</td>
</tr>
</tbody>
</table>

Fermentas\(^d\) or New England Biolabs\(^N\) supplied the enzymes and buffers.
3.3.1.12. DNA Sequencing

DNA sequencing was performed by GATC Biotech (Konstanz, Germany). For *S. barnesii napA*, a T7 promoter-binding primer was used to confirm insertion of the gene construct into the reading frame of the promoter. An internal binding primer was also used to ensure complete coverage of the 2.8 kbp gene (Table 3.1). The Clone JET™ (Fermentas) forward and reverse primers were used for sequencing genes cloned into the pJET 1.2 cloning vector (*C. jejuni napA, napB* and *napLD* and *S. barnesii napHBF*). The PCR primers used to amplify the *C. jejuni napLD* and *napB* were used to sequence the genes cloned into the pRSF and pQE-60 expression constructs (pCnapLD and pCnapB), correspondingly.

The DNA sequence data were compared to the target gene sequences by preforming a primary sequence alignment with the published sequences using GENtle [190]. Sequence data is included in the Appendix II. Only the *S. barnesii napA* gene sequence was published. Therefore, the DNA sequencing data obtained from the *napH, B, F, L* or *D* genes was analyzed by comparison to the *S. delyanium* genome. The *S. barnesii nap* genes should share high identity to those in *S. delyanium*.

3.3.2. Protein expression and purification

3.3.2.1. Co-transformation of the *E. coli* expression strains

Two *E. coli* expression strains, T7 express and BL21 were investigated. Cells were co-transformed with two plasmids: pCnapA and pCnapLD; pSNapA and pCnapLD; or pCNapB and pREP. Both of the plasmids (< 5 ng) were incubated with 100 µL of competent cells on ice for 30 minutes. The cells were subjected to a heat shock by placing the Eppendorf tubes in a 42 °C block heater for 90 seconds, and then cooling for
1-2 minutes on ice. LB media (200 µL) was added to the cells before the entire suspension was spread onto a LB agar plate with ampicillin and kanamycin, and then incubated overnight at 37 °C. Colonies were transferred with a pipette tip to a fresh 5 mL liquid culture of LB. The expression strain stocks were prepared by diluting the cultures using sterile glycerol to a final concentration of roughly 50% (v/v), then quickly freezing the culture by submerging the tube in liquid nitrogen. Expression cultures were stored in the -80°C freezer.

### 3.3.2.2. Pilot expression studies

The expression strain and optimum growth conditions used for NapA and NapB expression was established by varying the temperature and time of incubation after inducing the cultures with 0.1 mM isopropyl-β-D-thiogalactopyranoside (IPTG). The induction conditions were established using a small scale liquid culture. *E. coli* expression cell strains T7 express and BL21 (DE3) were used for each expression study (i.e., Napa or NapB). For each strain a single inoculating culture was used. From the inoculating culture 3 mL was transferred into fresh media. Each expression culture contained 50 mL of LB media in a 300 mL Erlenmeyer flask. The expression cultures were grown to log phase (A<sub>600nm</sub> = 1.2) at 37 °C with agitation (200 rpm). IPTG was added to induce expression. Cultures were then transferred to the one of the following three temperatures: 20, 30 and 37 °C and incubated for 24 hours. In addition, each strain was grown at 20 °C for 48 hours post induction. All liquid media was sterilized by autoclaving in the 300 mL Erlenmeyer flask used for growth. Ampicillin and kanamycin were added at the time of inoculation; sodium molybdate (1mM) was added to NapA.
expression cultures. Cells were collected by centrifuging the culture at 6000 x g for 20 minutes and washed with buffer before freezing at -80°C.

Cells were fractionated by creating spheroplasts, and collecting the periplasmic contents in a soluble fraction.[191] Salts and ethylenediaminetetraacetic acid (EDTA) introduced in the periplasmic isolation were removed by passing the periplasmic fraction through a PD10 desalting column (Amersham Biosciences) according to the manufacturer’s guidelines. A phosphate lysis buffer (Ni-lysis buffer, Appendix V) was used to elute the protein fraction. The protein eluent was then incubated with 1 mL nickel-nitrilotriacetic acid (Ni-NTA) superflow resin (Qiagen) for 1 hour to bind the His$_{6x}$ tagged protein. The Ni- lysis buffer was used to wash the resin using 4 column volumes. Using an imidazole - phosphate buffer (Ni-elution buffer, Appendix V) the bound protein was eluted into 0.5 mL fractions. Fractions which contained a detectable amount of protein, as determined via Bradford protein assay, were analyze for the presence of the NapA or NapB using SDS-PAGE, western blotting and mass spectrometry. The nitrate-coupled methyl viologen activity assay was also used to determine NapA content.

### 3.3.2.3. Large scale expression of NapA

The napA constructs (i.e., pCjnnapA and pSbnnapA) were co-expressed with pCjnnapLD in the E. coli “T7 express” (New England Biolabs) cells. Expression cultures were maintained on LB Lennox media with ampicillin (100 µg/ mL) and kanamycin (25 µg/ mL). Inoculating cultures were generally grown overnight, 14-16 hours, at 37°C. To isolate NapA, 1.5 L LB media was prepared in 6L Erlenmeyer flask. Following inoculation with 100 mL of an overnight culture, the expression culture was incubated at room temperature (20-23 °C) with vigorous shaking until the culture reached an
optimized cell density ($\text{Abs}_{600\text{nm}} = 0.9$). Sodium molybdate (1 mM) was then added and the cells were induced for 48 hours by adding IPTG to a final concentration of 0.75 mM. The cells were collected by centrifugation (8,000 x g for 20 minutes) and washed with a phosphate buffer (Ni-lysis buffer, Appendix V) prior to flash freezing the cell pellet in liquid nitrogen. Approximately 8 g wet weight per 1.6 L culture was obtained.

3.3.2.3. Purification of NapA

Purified NapA was obtained by resuspending the frozen cell pellet in the phosphate buffer (Ni-lysis buffer, Appendix V) buffer (pH 8.0) immediately prior to passage through a French pressure cell press (Thermo Fisher). Insoluble particles were pelleted by centrifuging the lysate (6,000 x g for 20 minutes) and the soluble supernatant was passed through a filter (0.44 μm pore size, Millipore) to reduce the viscosity of the sample. The supernatant was incubated with nickel-nitrilotriacetic acid (Ni-NTA) superflow resin (Qiagen) for one hour with agitation at 4°C to bind the His$_{6x}$ tagged NapA. Chromatographic separation of NapA was achieved with the LP BioLogic (Bio-Rad) system. To remove unbound proteins from the column, the resin was washed with the same loading buffer (Ni-lysis buffer, Appendix V) at 2.5 mL • min$^{-1}$ until a stable baseline absorbance was obtained and protein elution minimized (i.e., $\text{Abs}_{280} = 0$). A second wash step was performed, in the phosphate buffer the concentration of imidazole was elevated slightly, [30 mM], and the pH lowered to 7.0, (Appendix V, “Ni-wash buffer”). NapA was eluted by increasing the concentration of imidazole (400 mM) and raising the pH to 7.5, (Ni-elution buffer, Appendix V). The protein was immediately
concentrated using centrifugal filters with a 30 kDa MWCO (Millipore) and stored in 10% glycerol at -80°C after flash freezing in liquid nitrogen.

### 3.3.3. Detection and characterization

#### 3.3.3.1. Protein gel electrophoresis

Discontinuous sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE, Appendix V) was used to analyze fractions using standard protocol. [176] After separation, the gel was incubated in 12% trichloroacetic acid for 30 minutes to precipitate proteins. Proteins were stained with a colloidal coomassie blue G-250 solution (0.1% coomassie G-250, 2% H₃PO₄, 5% methanol, 10% (NH₄)₂SO₄) overnight, then washed with methanol (25%) and scanned using a calibrated imaging densitometer GS-800 (Bio-Rad). The relative density and molecular weight of the separated proteins were calculated with Quantity One software (BioRad). Molecular weight standards (Fermentas) were used to estimate the size of unknown proteins.

#### 3.3.3.2. Western blotting

Proteins were separated by SDS-PAGE as described earlier using a 6% acrylamide resolving gel for NapA and 10% acrylamide for NapB separation. Immunoblotting was conducted according to standard procedures [186] using a mouse anti- His₆x primary antibody (Dianova) and goat anti-mouse alkaline phosphatase conjugate secondary antibody (Sigma). Molecular weight standard was used to estimate molecular weight of the protein and a positive His₆x tag was included as a positive control.
3.3.3.3. **Mass spectrometry**

Protein bands were excised manually from the SDS-PAGE gel; further processing and analysis was conducted by an outside source (Bruker, Germany) or co-worker (refer to Appendix V for this supplementary protocol [192]).

3.3.3.4. **Metal analysis**

Metal analyses of enzyme samples were conducted at the Chemical Analysis Laboratory at the University of Georgia (Athens, GA., USA) using a Thermo Jarrell-Ash Enviro 36 Simultaneous Inductively Coupled Plasma-Optical Emission Spectrograph (ICP-OES).

3.3.3.5. **Molybdenum cofactor determination**

To quantify molybdenum cofactor (Moco) content in the NapA protein, the molybdopterin molecule was oxidized (Moco oxidation, Appendix V). Detection of the dephosphorylated Moco, Form A, by its characteristic emission spectra [193] was performed by another lab member (refer to Appendix V for this supplementary protocol).

3.3.3.6. **Protein assays**

Protein concentrations were determined using the DC protein assay kit (Bio-Rad) with bovine serum albumin standard (Pierce). Additionally, purified NapA concentration was spectrophotometrically determined using the calculated extinction coefficients for NapA from *C. jejuni* and *S. barnesii*, 178,800 M$^{-1}$ cm$^{-1}$ and 191,460 M$^{-1}$ cm$^{-1}$, respectively.

Nitrate reductase activity was measured by monitoring the oxidation of reduced methyl viologen ($\lambda_{\text{max}}=610$ nm) in an inert atmosphere glove box at 22 °C using an ELx808 absorbance microplate reader (BioTek). The buffer contained TrisHCl [100 mM]
Methylviologen was partially reduced with a sodium dithionite stock [60 mM] solution to yield a final absorbance of 1.2–1.6 at 630 nm prior to incubation with 80-100 μg of protein. The rate of methyl viologen oxidation was probed by monitoring the absorbance at 630 nm using Gen5 Data Analysis Software (BioTek). The reaction was initiated by the addition of potassium nitrate and monitored until the reaction stopped (i.e., Abs = 0). Under this condition, the rate of oxidation of the reduced methylviologen by the protein sample alone (i.e., no substrate) was found to be insignificant. In addition to monitoring the oxidation of reduced methyl viologen the production of nitrite was confirmed with the Griess assay (Appendix V) [175] using potassium nitrite (Fluka) as a standard.

### 3.3.3.7. Kinetic analysis and data treatment

The absorbance data were converted to concentration following the Beer-Lambert law \( A = \varepsilon bc \), \( \varepsilon = 13,700 \text{ M}^{-1}\text{cm}^{-1} [173] \) and path length, \( b = 0.667 \text{ cm} \) Linear regression of the initial rate data (first 90 seconds) were used in determining the rate of methylviologen oxidation. The data were analyzed with non-linear regression of the Michaelis–Menten equation using GraphPad Prism [174] (v5.03, San Diego, CA, USA) to a 95% confidence limit to determine the substrate affinity (\( K_m \)), maximum velocity (\( V_{max} \)), and catalytic efficiency (\( K_{cat} \)). The concentration of molybdenum, determined by ICP-OES (see section 3.3.3.4), was used to as an estimate of the total amount of enzyme active sites (\( E_t \)) in each assay. \( E_t \) was used to estimate the catalytic efficiency (\( K_{cat} \)).
3.4. Results and Discussion

3.4.1. Amplification, cloning and transformation of napA, napB and napLD

In *C. jejuni*, all gene targets, *napA*, *napB* and *napLD*, were successfully amplified. Only *napA* and *napB* were amplified from the genome of *S. barnesii* (Figure 3.2). Amplification of *S. barnesii* maturation proteins, *napFLD*, was not successful. At the time of this investigation, complete genome of *S. barnesii* was not available, which presumably led to the design of non-complimentary primers. Care was taken to preserve the TAT leader sequence in the NapA constructs. The *C. jejuni* NapA TAT leader sequence, SRRxFLK [194] has been demonstrated to be required for maturation of functional NapA. [195].
Figure 3.2: Preparative gel electrophoresis of the nap genes amplified from *S. barnesii* and *C. jejuni*. (a) *C. jejuni* napA, (b) *C. jejuni* napB, (c) *C. jejuni* napLD, (d) *S. barnesii* napA, (e) the attempted amplification of *S. barnesii* napFLD and the amplification of the napHBF fragment from *S. barnesii*, and (f) *S. barnesii* napB. Aliquots of the same PCR reaction, which were loaded into multiple wells on the agarose gel, are numbered (lanes 1-3) above the respective lane. *S. barnesii* napB (f) was amplified from the genomic DNA (lanes 1-4) and the napHBF construct pJSnapHBF (lanes 5-10). M= GeneRuler™ 1kb DNA ladder, 250-10,000 bp (Fermentas). After PCR, the entire mixture was loaded onto a TAE 1% agarose gel. DNA was stained with ethidium bromide and the bands subsequently extracted from the gels to isolate the DNA. Table 3.1 lists the expected sizes of the amplified nap gene constructs.

As a precautionary measure, napA, napB and napLD from *C. jejuni* and napHBF from *S. barnesii* were inserted into a cloning vector, pJET 1.2, creating pJCnapA, pJCnapB, pJCnapLD, pJSnapHBF, respectively. pJET 1.2 is a blunt ended high copy cloning vector, therefore, gene insertion is usually more successful than direct insertion into an expression vector which convey low copy number. This was the case with *C. jejuni* napA; therefore, pJCnapA plasmid was used as the template to amplify *C. jejuni*
napA with PCR. After PCR, preparative gel electrophoresis was used to purify the napA gene (Figure 3.3), which was subsequently digested with XhoI and NdeII, before insertion of the gene into the expression vector (pET21α).

**Figure 3.3:** Agarose gel electrophoresis of the C. jejuni napA gene amplified from pJCnapA. The ~2.8 kbp napA band (←) was excised from the gel and ultimately inserted into pET21α. The pJCnapA plasmid band, ~6 kb is marked indicated (→). Cloning of the amplified napA gene from C. jejuni and S. barnesii into the pET21α vector produced two constructs, pCnapA and pSnapA, respectively. The maturation genes, napLD, from C. jejuni were cloned into the pREP vector, creating pCnapLD for co-expression with NapA. The amplified napB genes from C. jejuni and S. barnesii were cloned into pQE-60, creating pCnapB and pSnapB.

**Table 3.4:** The predicted sizes of each nap gene amplified by colony PCR. M, GeneRuler™ 1kb DNA ladder (Fermentas).

<table>
<thead>
<tr>
<th>Plasmid ID</th>
<th>Expected size of nap gene construct amplified by PCR (kbp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) pJCnapA</td>
<td>2.9</td>
</tr>
<tr>
<td>(b) pCnapLD</td>
<td>1.3</td>
</tr>
<tr>
<td>(c) pJCnapLD</td>
<td>1.4</td>
</tr>
<tr>
<td>(d) pCnapB</td>
<td>0.5</td>
</tr>
<tr>
<td>(e) pSnapA</td>
<td>2.8</td>
</tr>
<tr>
<td>(f) pSnapB</td>
<td>0.5</td>
</tr>
<tr>
<td>(g) pJSnapHBF</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Immediately after ligation, the plasmids were used for transformation of E. coli DH5α for screening and selection. Antibiotic resistant colonies were selected and analyzed for the presence of the nap gene construct by colony PCR (Figure 3.4). Colonies positive for nap gene insertions were proliferated and the plasmid was purified.
Test restriction assays confirmed the insertion of the genes into the respective plasmids. The sizes of the DNA fragments resolved using gel electrophoresis (Figure 3.5) were in agreement the predicted sizes of the digestion fragments (Table 3.2). Sequence data was aligned with the expected nap sequences and checked for mutations (Appendix II). Colonies with the most similar DNA sequence to the targeted gene were selected. The sequence of S. barnesii napB was derived from the sequencing of the pSnapHBF (pJET 1.2 plasmid with the inserted S. barnesii napHBF genes). The S. barnesii napHBF gene construct was also compared to S. delyanum napHBF. The sequence of S. barnesii napB is provided in Figure 3.6a (see Appendix II for napHBF sequence data). The S. barnesii napB shares 87% sequence identity with the S. deleyianum NapB protein (Figure 3.6b).
Figure 3.4: DNA gel electrophoresis of colony PCR. The nap genes were amplified from antibiotic resistant *E. coli* DH5α colonies containing (a) pJCnapA, (b) pCnapLD, (c) pJCnapLD, (d) pJCnapB, lanes 1-8 and pCnapB, lanes 9-11; (e) pSnapA, (f) pSnapB, and (g) pJSnapHBF. Each lane number represents a separate colony. The sizes of the amplified gene vary according to primer position in the plasmid. Specifically, the pJET1.2 primers are further away from the *napB* gene than the primers used for pQE-60 amplification, resulting in a larger sized DNA fragment in pJET colonies.
Figure 3.5: Gel electrophoresis of restriction digest assays preformed on *C. jejuni* nap plasmids. Each lane represents a separate plasmid preparation, originating from a single colony (a) pJCnapB digested with PstI, five colonies (lanes 1-5). (b) pCnapB digested with PstI and BamHI, three colonies (lanes 1-3). (c) pJCnapA digested with NcoI, three colonies (lanes 1-3); pCnapLD digested with HindIII, eight colonies (lanes 4-11); and pJCnapLD, two colonies digested with HindIII (lanes 12-13). The DNA was stained with ethidium bromide and separated on 1% agarose gel. M= GeneRuler™ 1kb DNA ladder (Fermentas).
>S. barnesi napB
atgatgtagaagaacattaattagccctttattaggttataggatttttagttgcntcaggatgtgccgtgtcacaatcgtataa
agagagaagattcggcttgaagaagggactataacagtaaaacacagtagtagctagtaaatcaacagccactcaaggtgt
cgctgacggtctagtcaaaagtttaggcgcttcttggtaaaatgctctctcaaaaggttccttcagtagttgagggattg
tgtggatatgcaaaaaagagataaattgctcagggattgtacaccctcacaaggtggcagaaagcgagatacagat
cgtacaccgctcaacacccaccttttataacgtagttaccaaaaaagtttaacagagtagtcaagctgttataactgtatagc
atgccatgcaccaacatactagcgtcattgggtcaaaaaatgagttgaacagagagatcgtttcaacagaggctgtgcacgcgtcaacacccaccttttgataaccttaatgagggcgtgaagtag

(a) The gene sequence of S. barnesi napB determined by sequencing of pJSnapHBF. The DNA sequence was determined to be 525 bp long, similar to S. deleyianum DSM 6946 napB. (b) Using the NCBI database, a blast search with the translated NapB sequence (Query) identified S. deleyianum DSM 6946 NapB as the closest match (Subject).

Figure 3.6: S. barnesi napB sequence.
3.4.2. Expression and growth conditions

For NapA expression, pCnapA and pCnapLD, the maturation gene-containing plasmid, were co-transformed into *E. coli* strains T7 express and BL21 (DE3). Due to the absence of the *S. barnesii* maturation proteins, the *C. jejuni* construct, pCnapLD was co-transformed with pSnapA into *E. coli* strain T7 express and BL21 (DE3). For NapB expression, pSnapB and pCnapB were co-transformed with pREP4 into *E. coli* strains T7 express and BL21 (DE3).

The pilot expression experiment established that only the *E. coli* T7 express strain was able to express detectable amounts of NapA. The expression of NapA from *S. barnesii* was monitored by SDS-PAGE (Figure 3.7), nitrate reductase activity assays, and Western blot (Figure A.1). The identity of *S. barnesii* NapA was confirmed by mass spectroscopy (MS) (Bruker Corporation, Germany). A detailed report of the MS analysis is located in Appendix III. The cofactor content of the protein samples in Figure 3.7 were estimated using florescence spectroscopy. The protein was approximately 11% saturated with the molybdopterin cofactor. Of the conditions tested in the pilot expression, optimal NapA was isolated from the periplasmic fraction when incubated at 20°C for 44 hours with shaking, although, NapA was also detected in of cells grown at 30°C for 19 hours (Table 3.5 and Figure 3.7). All cultures were induced with 0.1 mM IPTG, and the inoculating culture was the same for each strain.
Table 3.5: Summary of results from the *S. barnesii* NapA pilot expression. Temperature during incubation, Temp). Incubation time (Time). NapA detectable in the Ni-NTA eluent was determined by protein assay, SDS-PAGE and Western blot.

<table>
<thead>
<tr>
<th>Wet weight of cells (g)</th>
<th>E. coli strain</th>
<th>Time (hours)</th>
<th>Temp (°C)</th>
<th>NapA detectable in Ni-NTA eluent</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>BL 21</td>
<td>19</td>
<td>37</td>
<td>No</td>
</tr>
<tr>
<td>0.3</td>
<td>BL 21</td>
<td>19</td>
<td>30</td>
<td>No</td>
</tr>
<tr>
<td>0.3</td>
<td>BL 21</td>
<td>19</td>
<td>20</td>
<td>No</td>
</tr>
<tr>
<td>0.6</td>
<td>BL 21</td>
<td>44</td>
<td>20</td>
<td>No</td>
</tr>
<tr>
<td>0.4</td>
<td>T7 express</td>
<td>19</td>
<td>37</td>
<td>No</td>
</tr>
<tr>
<td>0.4</td>
<td>T7 express</td>
<td>19</td>
<td>30</td>
<td>Yes</td>
</tr>
<tr>
<td>0.4</td>
<td>T7 express</td>
<td>19</td>
<td>20</td>
<td>No</td>
</tr>
<tr>
<td>0.3</td>
<td>T7 express</td>
<td>44</td>
<td>20</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Figure 3.7: SDS-PAGE of *S. barnesii* NapA purified from *E. coli* strain T7 express during the pilot expression experiment. NapA was only isolated from T7 express cells which were incubated at (a) 30 °C for 19 hours and (b) 20 °C for 44 hours, following induction with 0.1 mM IPTG. NapA is indicated by a black line (–), the photographed bands were excised and identified, by mass spectrometry, as NapA.

The pilot expression of *C. jejuni* NapB indicated that NapB was expressed at all tested temperatures, 20, 30 and 37 °C, as indicated by Western blot (Figure A.2) and SDS-PAGE (Figure 3.8) of the periplasmic fraction. Purification of NapB using IMAC was not successful. It is possible that the protein degraded during purification; however this experiment must be repeated to confirm.
**Figure 3.8:** SDS/PAGE of the periplasmic extract from the *C. jejuni* NapB pilot expression experiment. Lane 1, T7 express cells incubated for 19 at 37 °C; lane 2, T7 express cells incubated for 19 at 30 °C; lane 3, T7 express cells incubated for 19 at 20 °C; lane 4 is 29 kDa western blot control; lane 5 is the molecular weight marker; lane 6, BL21 star cells incubated for 19 at 37 °C; lane 7, BL21 star cells incubated for 19 at 30 °C; lane 8, BL21 star cells incubated for 19 at 20 °C.

**Table 3.6:** Summary of results from the *C. jejuni* NapB pilot expression. WB, western blot; Temp, temperature during incubation; Time, duration of incubation.

<table>
<thead>
<tr>
<th>Wet weight of cells (g)</th>
<th><em>E. coli</em> strain</th>
<th>Time (hours)</th>
<th>Temp (°C)</th>
<th>WB</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>BL 21</td>
<td>19</td>
<td>37</td>
<td>+</td>
</tr>
<tr>
<td>0.5</td>
<td>BL 21</td>
<td>19</td>
<td>30</td>
<td>+</td>
</tr>
<tr>
<td>0.6</td>
<td>BL 21</td>
<td>19</td>
<td>20</td>
<td>+</td>
</tr>
<tr>
<td>0.4</td>
<td>T7 express</td>
<td>19</td>
<td>37</td>
<td>+</td>
</tr>
<tr>
<td>0.4</td>
<td>T7 express</td>
<td>19</td>
<td>30</td>
<td>+</td>
</tr>
<tr>
<td>0.4</td>
<td>T7 express</td>
<td>19</td>
<td>20</td>
<td>+</td>
</tr>
</tbody>
</table>
*C. jejuni* and *S. barnesii* NapA were expressed by incubating the cells for 48 hours at 23 °C after IPTG induction (**Figure 3.9**). Because molybdenum salts are required in the growth media to express Moco proteins, [196, 197] LB media was supplemented with 1mM sodium molybdate at the time of induction. Induction of *S. barnesii* NapA and *C. jejuni* NapA expression cultures with IPTG provided inducible expression of a 106 kDa proteins, the predicted size of the recombinant NapA protein with the TAT leader sequence and polyhistidine tag. The presence of the His<sub>6α</sub>-Tag epitope in the 106 kDa protein was confirmed by western blotting, indicating the production of the full length protein (**Figure A.1**). Relative to *S. barnesii* NapA, expression of *C. jejuni* NapA was greater under the given conditions. In SDS-PAGE gel 18% of total protein density is attributed to the 106 kDa band in *C. jejuni* while that accounts for 11% in *S. barnesii*. Overexpression of *C. jejuni* NapL and *C. jejuni* NapD in response to IPTG was not detected by SDS-PAGE (**Figure 3.9**). Expression at higher temperatures (over 30°C) and shorter induction times (less than 24 hours) did not produce detectable quantities of NapA. Slow growth at relatively low temperatures is favorable for expression of large proteins which have a high propensity to accumulate in inclusion bodies.
Figure 3.9: SDS-PAGE illustrating the IPTG concentration-dependent expression of *S. barnesii* and *C. jejuni* NapA in *E. coli*. The density of a 106 kDa NapA band (arrow) is clearly more intense in lanes exposed to IPTG when compared to uninduced cultures (0mM). Expression *C. jejuni* NapA (top) increases 18%, while *S. barnesii* NapA (bottom) intensity is only 11% greater in cells induced with IPTG. Whole cell lysate was separated by SDS-PAGE and stained with Colloidal Coomassie Blue G-250. All cells were incubated at 23 °C for 48 hours post induction. Fermentas pre-stained molecular weight marker (M) contains bands at the following molecular weights: 170, 130, 100, 70, 55, 40 and 25 kDa.
3.4.3. Purification of NapA

The flow chart in Figure 3.10 provides an overview of protein expression and purification procedures conducted to independently isolate the polyhistidine tagged NapA and NapB using the *C. jejuni* and *S. barnesii* nap plasmids created previously.

**Figure 3.10:** An overview of the expression and purification of affinity tagged NapA and NapB.

Purification of the recombinant NapA via immobilized metal affinity chromatography (IMAC) from cell cultures induced with 0.75 mM IPTG had a significantly larger yield (12-14 mg per 1.5 liter of culture) of NapA relative to cultures induced with 0.1 mM IPTG (5 - 7 mg per 1.5 liter of culture), therefore large scale production was conducted at 0.75 mM IPTG. Purified NapA from *C. jejuni* and *S. barnesii* was electrophoretically pure, as evidenced by protein band densitometry (analyzed gel is in Figure 3.11). The identities of the 106 kDa proteins as the target
proteins, periplasmic nitrate reductase from *C. jejuni* (gi 57237625) and *S. barnesii* (gi 169104652) were confirmed by mass spectrometry.

**Figure 3.11**: SDS-PAGE of fractions obtained during the purification of *C. jejuni* and *S. barnesii* NapA from *E. coli* using immobilized metal affinity chromatography. Separation of *E. coli* protein fractions, Ni-NTA eluent (E), flow through (F) and Lysate (L) of, via SDS-PAGE and proteins were stained with CCB. The Fermentas protein standard (M) has the following protein sizes; 200, 150, 120, 100, 85, 70, 60, 50, 40, 30, 25, 20, 10 kDa.

During the optimization of NapA expression, two interesting differences between *C. jejuni* NapA and *S. barnesii* NapA were observed. First, the *C. jejuni* NapA appears on the SDS-PAGE as a single band, while *S. barnesii* NapA appears as a doublet. Second, *C. jejuni* NapA is co-purified with CjNapD whereas no NapD could be detected in *S. barnesii* NapA expression (**Figure 3.12**). The two protein bands (106 kDa and a 98 kDa), resolved in the SDS-PAGE gel of *S. barnesii* NapA (**Figure 3.12**), were both identified as NapA from *S. barnesii*. We suggest that the 106 kDa *Sb*NapA in the precursor state with the TAT leader sequence. The 103 kDa band is most likely the protein (**Figure 3.12**) without the TAT leader sequence (3 kDa), which is cleaved after NapA is exported to periplasm.[198]
The small 13 kDa protein, shown in Figure 3.12, was identified as NapD (YP_178878) from *C. jejuni* RM1221. Mass spectroscopy results are included in Appendix III. The presence of *C. jejuni* NapD in the eluent indicates that the protein was expressed and is able to bind to NapA. The Cj\NapD protein does not have any histidine residues, so it is not expected to associate with the Ni-NTA resin.

A similar experiment performed by Nilavongse *et al.* used an nickel immobilized His6x-tagged NapF to purify NapA.[138] The interaction between NapA and the NapF chaperone protein was confirmed using the bacterial two hybrid system. Their experiments suggest that NapF and NapD interact strongly with NapA, not NapG, NapH or NapC. [138]

The presence of *C. jejuni* NapD in the *S. barnesii* NapA eluent could not be positively confirmed by mass spectrometry. The lack of *C. jejuni* NapD in the *S. barnesii* NapA eluent may be due to poor interactions between *C. jejuni* NapD and *S. barnesii* NapA. The homology of NapD between *C. jejuni* and *Sulfurospirillum* species (*S. barnesii* and *S. delyanum*) exhibits less than 30% sequence identity. Lanciano *et al.* have suggested the catalytic subunit that harbors the molybdenum cofactor (NapA in this case) requires species-specific maturation proteins for proper folding and cofactor insertion. [199, 200]
Figure 3.12: SDS-PAGE of the purified *C. jejuni* NapA and NapD complex, and the purified *S. barnesii* NapA. **Lane 1**, *C. jejuni* (Cj) NapA (106 kDa) and *C. jejuni* NapD (13kDa) isolated by nickel affinity chromatography; only NapA contained the His<sub>6x</sub> tag. **Lane 2**, NapA from *S. barnesii* (Sb) separates into 2 bands on denaturing electrophoresis, the premature “<” (106 kDa), mature “*” (98 kDa). Bands were excized from this gel and identified by mass spectrometry. Molecular weight marker (Fermentas) indicated by M.

In addition to the presence of NapD, the size of *C. jejuni* NapA (~106 kDa) on the SDS-PAGE gel (Figure 3.12) suggests that the TAT leader sequence had not been cleaved. Taken together, suggesting that the *C. jejuni* NapD inhibited the export of NapA, as a result *C. jejuni* NapA is not fully mature. NapD, a cytoplasmic protein, [127, 145] is a dedicated NapA maturation protein [201] that impedes the periplasmic export of NapA via the TAT pathway, possibly attenuating export until NapA is properly folded and the molybdenum cofactor inserted. [131] The *S. barnesii* NapA expression did not have the appropriate chaperone, *S. barnesii* NapD, therefore NapA was able to be exported and the TAT leader sequence cleaved faster than the *C. jejuni* NapA expression.
3.4.4. Spectral Characterization

The electronic absorption spectra of *C. jejuni* NapA (Figure 3.13) shows a band at 400 nm, indicating the presence of iron-sulfur cluster. No such band was resolved in the spectrum of *S. barnesii* NapA. The electronic spectrum of *C. jejuni* NapA appears similar to that reported for the *D. desulfuricans* NapA [168] that exhibits bands at 400 nm, 340 nm, and low intensity band at 510 nm. The 510 nm band was not observed in the *C. jejuni* NapA, possibly due to low concentrations. The $A_{400}/A_{280}$ ratio for *C. jejuni* NapA and *S. barnesii* NapA are calculated to be 0.22 and 0.19, respectively. This value is comparable to the monomeric NapA from *D. desulfuricans* (0.17) [168] and *Shewanella gelidimarina* (0.19) [96].

The purified enzymes were subjected to molybdenum and iron analyses by ICP-OES. The molybdenum concentration in the NapA isolates was found to be 2.53 µM and 1.88 µM, for the *C. jejuni* and *S. barnesii*, respectively. From these data, molybdenum incorporation into NapA was determined to be 30 % in *C. jejuni* NapA and 43% in *S. barnesii* NapA. The iron concentration was determined to be 6.68 uM and 6.08 µM for *C. jejuni* and *S. barnesii*, respectively. The Fe: Mo ratio was 2.6 in *C. jejuni* NapA and 3.2 in *S. barnesii* NapA. Thus the ratio of iron to molybdenum was less than the theoretical value (4:1) in each isolate. This indicates that iron-sulfur cluster incorporation is low. Sodium molybdate was provided in the growth media, iron was not.

NapA cofactor insertion is predicted to occur in the cytoplasm. When present, the cytoplasmic NapF is the predicted insert the iron-sulfur cluster into NapA.[139] While no napF homolog could be found in the *C. jejuni* genome, the spectroscopic data on *C. jejuni* NapA indicates the presence of iron-sulfur cluster in the purified protein (*vide infra*). Thus, mechanism of iron-sulfur insertion in *C. jejuni* NapA maturation remains an
open question. As found in the majority of the Epsilonproteobacteria, S. barnesii and S. delyanium are predicted to encode the napF gene in the nap operon (napAGHBFLD). Interestingly, deletion of napF in the Epsilonproteobacterium W. succinogrenes resulted in a higher quantity of the precursor NapA. [136, 139] This is consistent with our findings, S. barnesii NapA can exist in both precursor and mature state.

![Figure 3.13: The electronic spectra of the purified NapA proteins. S. barnesii NapA (black line), C. jejuni NapA (red line). The as-isolated fractions were analyzed using a Carry 500 spectrophotometer.](image)

**3.4.5. Kinetic analysis of recombinant NapA**

Both C. jejuni NapA and S. barnesii NapA display Michaelis-Menten type kinetics (Figure 3.14), with a calculated maximum velocity (Vmax) of 0.042 ± 0.004 and 0.084 ± 0.009 μmoles · min⁻¹ · mg protein⁻¹, respectively. The Km for nitrate was calculated to be 2.3 ± 0.68 mM for C. jejuni and 7.2 ± 1.6 mM for S. barnesii. The kcat
was calculated to be $0.09 \pm 0.01 \text{ s}^{-1}$ and $0.23 \pm 0.03 \text{ s}^{-1}$ for \textit{C. jejuni} and \textit{S. barnesii}, respectively. The production of nitrite was confirmed via the Griess assay (data not shown), and confirmed that \textit{S. barnesii} NapA produced a larger amount of nitrite than \textit{C. jejuni} NapA in the allotted time, a consequence of the different velocities.

![Figure 3.14: Michaelis-Menten, non-linear, plot of the enzyme rate versus substrate concentration for \textit{C. jejuni} and \textit{S. barnesii} NapA. Analyses were performed using the Prism v 5.01 (Graph Pad).](image)

Comparison of the $K_m$ and $V_{max}$ of \textit{C. jejuni} NapA and \textit{S. barnesii} NapA, with values previously reported for NapA isolates (Table 3.7), reveals dramatic differences in the kinetic properties. The velocity and affinity for nitrate is lower. The $K_m$ value for NapA isolates is typically in the micro molar range (3.2-240 μM), while in the present study the values are in the millimolar range.
The possibility that the kinetics behavior of *C. jejuni* and *S. barnesii* NapA is not physiologically relevant has been considered. Mutational studies on the *W. succinogenes* and *C. jejuni* nap operon provide insight into the nitrate reductase activity of premature NapA. In both organisms mutating the maturation genes (i.e., *napF*, *napL* and *napD*) decreases the rate of nitrate reductase activity in lysates, [141] [139] [136] as measured by the methylviologen coupled nitrate reductase assay. In *Wolinella*, *napL* and *napD* mutants exhibited less than half the nitrate activity of the wild type strain, *napF* mutants also had attenuated activity. [139] [136] Similarly, *C. jejuni* *napL* mutants exhibited half nitrate reductase activity compared to the wild type cells. [141] To summarize, the absence of maturation proteins (NapF, NapL and NapD) does not completely inactivate NapA, it only decreases the velocity of nitrate reduction. This appears to be the case in the current study. Both NapA isolates have low velocities. In *C. jejuni* both maturation proteins were cloned, however the expression of NapL was not confirmed. As mentioned above, the *S. barnesii* NapF, NapL and NapD were not expressed as the gene amplification was not successful. Therefore it is possibly that NapA may have low activity due to the absence of maturation proteins.
Table 3.7: A summary of kinetic properties from NapA enzymes. All data was obtained using the methylviologen coupled nitrate reductase assay. Organisms are organized according to proteobacteria class: Alpha-(α), Beta-(β), Gamma-(γ), Delta-(δ) and Epsilon-(ε). *note: The presence of NapB was not confirmed in the NapA enriched S. barnesii fraction studied in Chapter 2 (CH 2). Data not available (-NA-)

<table>
<thead>
<tr>
<th>Class</th>
<th>Organism</th>
<th>Subunit(s)</th>
<th>$K_m$ (μM)</th>
<th>$V_{max}$ (μmol · min$^{-1}$ · mg$^{-1}$)</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td><em>Magnetospirillum magnetotacticum</em></td>
<td>NapAB</td>
<td>3.2</td>
<td>-NA-</td>
<td>[202]</td>
</tr>
<tr>
<td></td>
<td><em>Rhodobacter sphaeroides</em></td>
<td>NapAB</td>
<td>120</td>
<td>39</td>
<td>[179]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NapAB</td>
<td>170</td>
<td>25</td>
<td>[41]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NapA</td>
<td>45</td>
<td>5.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>Paracoccus pantotrophus</em></td>
<td>NapAB</td>
<td>240 [3μM Mo]</td>
<td>3.4</td>
<td>[50]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3910 [100μM W]</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>Paracoccus denitrificans</em></td>
<td>NapAB</td>
<td>280</td>
<td>50</td>
<td>[203]</td>
</tr>
<tr>
<td></td>
<td><em>Thiosphaera pantotropha</em></td>
<td>NapAB</td>
<td>--</td>
<td>95</td>
<td>[167]</td>
</tr>
<tr>
<td>β</td>
<td><em>Achromobacter fischeri</em></td>
<td>NapAB</td>
<td>65</td>
<td>1.5</td>
<td>[166]</td>
</tr>
<tr>
<td></td>
<td><em>Alcaligenes eutrophus</em></td>
<td>NapAB</td>
<td>120</td>
<td>-NA-</td>
<td>[93]</td>
</tr>
<tr>
<td>γ</td>
<td><em>Escherichia coli</em></td>
<td>NapAB</td>
<td>--</td>
<td>70</td>
<td>[50]</td>
</tr>
<tr>
<td>δ</td>
<td><em>Desulfovibrio desulfuricans</em></td>
<td>NapA</td>
<td>116</td>
<td>-NA-</td>
<td>[204]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NapA</td>
<td>32</td>
<td>18.6</td>
<td>[205]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NapA</td>
<td>12</td>
<td>-NA-</td>
<td></td>
</tr>
<tr>
<td>ε</td>
<td><em>C. jejuni</em></td>
<td>NapA</td>
<td>2300</td>
<td>0.04</td>
<td>This work</td>
</tr>
<tr>
<td></td>
<td><em>S. barnesii</em></td>
<td>NapA</td>
<td>7290</td>
<td>0.08</td>
<td>work</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NapAB *</td>
<td>314</td>
<td>0.41</td>
<td>CH 2</td>
</tr>
</tbody>
</table>

The possibility that the kinetics behavior of *C. jejuni* and *S. barnesii* NapA is not physiologically relevant has been considered. Mutational studies on the *W. succinogenes* and *C. jejuni nap* operon provide insight into the nitrate reductase activity of premature NapA. In both organisms mutating the maturation genes (i.e., napF, napL and napD) decreases the rate of nitrate reductase activity in lysates, [141] [139] [136] as measured by the methylviologen coupled nitrate reductase assay. In *Wolinella*, napL and napD mutants exhibited less than half the nitrate activity of the wild type strain, napF mutants.
also had attenuated activity.\cite{139,136} Similarly, \textit{C. jejuni napL} mutants exhibited half nitrate reductase activity compared to the wild type cells.\cite{141} To summarize, the absence of maturation proteins (NapF, NapL and NapD) does not completely inactivate NapA, it only decreases the velocity of nitrate reduction. This appears to be the case in the current study. Both NapA isolates have low velocities. In \textit{C. jejuni} both maturation proteins were cloned, however the expression of NapL was not confirmed. As mentioned above, the \textit{S. barnesii} NapF, NapL and NapD were not expressed as the gene amplification was not successful. Therefore it is possibly that NapA may have low activity due to the absence of maturation proteins.

A kinetic study with \textit{Paracoccus pantotrophus} NapA can also give some insight into the effect of improper NapA cofactor incorporation on K\textsubscript{m}. In the study, Gates \textit{et al.} were interested in determining the effect of tungsten on the nitrate reductase activity, as replacing tungsten for molybdenum in the active site can deactivate molybdopterin enzymes. \textit{P. pantotrophus} was grown on media supplemented with 100 μM tungsten or 3 μM molybdenum, presumably yielding “W-NapA” and “Mo-NapA”. The reduced methyl viologen coupled nitrate reductase assay was used to study the functionality of NapA. The W-NapA had a lower rate (V\text{max} = 0.058 μmole [NO\textsubscript{3}⁻] • min\textsuperscript{-1} • mg\textsuperscript{-1}) and nitrate affinity (K\text{m}=3.9 mM) than the Mo-NapA (V\text{max}= 3.418 μmole [NO\textsubscript{3}⁻] • min\textsuperscript{-1} • mg\textsuperscript{-1}, and K\text{m}= 0.24 mM).\cite{50} While the actual incorporation of tungsten into the active site of NapA was not confirmed, this study does demonstrate the effect of improper cofactor insertion on the affinity for nitrate in NapA. As in the \textit{P. pantotrophus} W-NapA, the from has a similar dissociation constant and velocity to the \textit{C. jejuni} and \textit{S. barnesii} NapA isolates presented in this study (Table 3.7). Thus, the relatively high K\text{m} values of \textit{C. jejuni} and \textit{S. barnesii} NapA isolates presented in this study (Table 3.7). Thus, the relatively high K\text{m} values of \textit{C. jejuni} and \textit{S. barnesii} NapA

115
jejuni and S. barnesii NapA isolates presented in this study are most likely due to improper cofactor insertion and maturation of NapA.

The kinetic analysis of S. barnesii fractions (see Chapter 2) supports this theory. In the native isolate the affinity for nitrate is consistent with published data (Table 3.7) Table 3.8 summarizes the kinetic data from the native and recombinant NapA enzymes. While the Kcat values are similar in both enzymes, the recombinant enzymes are clearly not active as the native isolates.

Table 3.8: Summary of the kinetic data from the recombinant and native NapA isolates.

<table>
<thead>
<tr>
<th></th>
<th>Recombinant NapA</th>
<th>Native NapA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C. jejuni</td>
<td>S. barnesii</td>
</tr>
<tr>
<td>( V_{\text{max}} ) ((\mu\text{moles} \cdot \text{min}^{-1} \cdot \text{mg protein}^{-1}))</td>
<td>0.042 ± 0.004</td>
<td>0.084 ± 0.009</td>
</tr>
<tr>
<td>Kcat ((s^{-1}))</td>
<td>0.09 ± 0.009</td>
<td>0.23 ± 0.03</td>
</tr>
<tr>
<td>KM (\text{(mM)})</td>
<td>2.3 ± 0.68</td>
<td>7.2 ± 1.6</td>
</tr>
<tr>
<td>Kcat/ KM ((\text{mM}^{-1} \cdot \text{s}^{-1}))</td>
<td>0.04</td>
<td>0.03</td>
</tr>
</tbody>
</table>

3.5. Conclusions

The native isolation of S. barnesii NapA (see chapter 2) yielded low quantities of the active protein. Because the yield was low to perform future studies, heterologous expression of NapA was re-investigated. Previous attempts to heterologously express S. barnesii NapA in an E.coli host were unsuccessful. [206] In the current study the molecular cloning approach was adjusted to encourage the natural post-translational modification of NapA. The twin-arginine translocase signal peptide was included in the napA gene constructs to ensure periplasmic translocation of the protein. The C. jejuni napLD genes were also cloned. NapD, a well-characterized dedicated NapA-chaperone protein, and NapL, a proposed NapA chaperone, were co-expressed with NapA in Escherichia coli strain T7 express. With this approach we were able to isolate the full
length NapA; however kinetic analyses indicate that the recombinant enzymes have attenuated activity. Typically NapA isolates have a strong affinity for nitrate, while the recombinant enzymes display a low affinity for nitrate. The NapA enriched *S. barnesii* fractions display a high affinity for nitrate (see Chapter 2). Characterization of the NapA proteins indicate that the enzymes may be in a precursor state (*i.e.*, TAT leader sequence attached and low cofactor incorporation). Thus the attenuated activity is most likely the result of low quantities of mature NapA, underscoring the importance of proper NapA maturation.
CHAPTER 4: Characteristics of the Epsilonproteobacteria periplasmic nitrate reductase: theoretical modeling of Campylobacter jejuni NapA

4.1. Abstract

The Epsilonproteobacteria are a diverse group of prokaryotes that includes both free-living (e.g., *Sulfospirillum, Wolinella, Nautilia*) and pathogenic (e.g., *Campylobacter, Helicobacter, Arcobacter*) species. Many are capable of using nitrate as a terminal electron acceptor during respiration using the periplasmic nitrate reductase (Nap). Sequence analysis of the catalytic subunit, NapA, indicates that the Epsilonproteobacteria NapA the largest (102 kDa) and forms a unique clade, distinct from other Proteobacteria NapA. To investigate possible structural differences, the *C. jejuni* NapA protein sequence was used to generate a three dimensional structural NapA model. The crystal structures of NapA from *Escherichia coli, Rhodobacter sphaeroides, Desulfovibrio desulfuricans* and *Cupriavidus necator* were used to create the *C. jejuni* NapA. Using the Molecular Operating Environment (MOE) software, the structure of *C. necator* NapA was used as the templates for building the folded protein structure. The electrostatic surface potentials were calculated for the *C. jejuni* NapA and structurally characterized NapA proteins. The most notable structural aspect of the *C. jejuni* NapA is the location of a large sequence insertion above the active site cavity. The close proximity of the loops to the active site cavity raises the possibility that the insertions could, in principle, affect the function of the protein. Furthermore, the unique genes (e.g., *napL*) and insertion sequences in NapA may be useful for design of diagnostic tools for *C. jejuni* identification.
4.2. Introduction

The Epsilonproteobacteria class of gram negative proteobacteria includes both free-living and host-associated species. Currently, the Epsilonproteobacteria are grouped into two orders, the *Nautiliales* and the *Campylobacterales*. Some species remain unclassified (i.e. *Sulfurovum, Nitratiruptor*, and *Thioreductor*). *Nautiliales* is comprised of marine species, some thermophiles (e.g., *Caminibacter, Nautilia, Lebetimonas*). The larger of the two orders, *Campylobacterales* contains both free-living (e.g., *Sulfurospirillum*) and host-associated species (e.g., *Campylobacter, Helicobacter*, and *Wolinella*). Two of the most prominent Epsilonproteobacteria, *Campylobacter jejuni* and *Helicobacter pylori*, are human gastrointestinal pathogens. *C. jejuni* is one of the leading causes of food-borne bacterial gastroenteritis in the United States; infection can also develop into chronic conditions, such as Guillian-Barré syndrome and reactive arthritis. [207] Studies with *H. pylori*, conducted by Marshall and Warren, established that *Helicobacter* infection can produce stomach ulcers and predispose the carrier for stomach cancer, [208] introducing the relationship between chronic infection, inflammation and cancer. Consequently, the researchers received the 2005 Nobel Prize in medicine and physiology.

Many of the Epsilonproteobacteria are capable of respiratory nitrate reduction. During nitrate respiration, nitrate is reduced to nitrite via a periplasmic nitrate reductase (Nap). Nitrite can then be transformed by nitrite reductases, Nrf or Nir, producing ammonia or dinitrogen, respectively. [78] In most organisms, multiple nitrate reductases are present. The Epsilonproteobacteria only encode Nap. Interestingly, Nap was found to be a crucial component of *H. pylori’s* defense mechanism against oxidative stress. [87]
Sequence analysis of the catalytic subunit, NapA, indicates that the Epsilonproteobacteria NapA forms a distinct clade. [164] This is somewhat unusual as the NapA phylogeny typically diverges from the phylogenetic classification, especially in the Alpha-, Beta-, and Gamma- proteobacteria.

Furthermore, the Epsilonproteobacterial nap operon exhibits unusual continuity. Typically Epsilonproteobacterial nap operon take one of the following forms: napAGHBFLD, napAGHBBLD, or napAGHBFSLD (collectively referred to as the napA operon). The Alpha-, Beta-, Gamma-, and Delta- proteobacteria do not exhibit similar conservation of gene content and organization (see Table A.1 for a complete list of all available nap operons). The well-studied nap operons are napEDABC (Paracoccus pantotrophus, formerly Thiosphaera pantotropha), [145] napFDAGHBC (Escherichia coli), [118] and napKEFDABC (Rhodobacter sphaeroides). [209] In these operons, napA is preceded by the chaperone genes, napD and napF, which encode proteins involved in NapA maturation. Conversely, napA is the initial gene in the Epsilonproteobacteria napA operon, a possible indication of transcriptional or translational differences. It is pertinent to mention that a few organisms outside of the Epsilonproteobacteria contain the napA operon, they are: Aquificae species, Sulfurihydrogenibium sp. YO3AOP1, Persephonella marina EX-H1, and Hydrogenivirga sp. 128-5-R1-1, and one Deinococcus species, Oceanithermus profundus.

Two unique nap genes are exclusive to the napA operon, napL, which encode a 35 kDa periplasmic chaperone protein, [78, 86] and, napS, which is predicted to encode a 17 kDa signal peptide. While the functions of napL and napS are unclear, studies with Wolinella succinogenes suggest that NapL is involved in NapA maturation. [86] No
experimental evidence is available to confirm if NapS is translated, and if so, what the function may be. The napS gene, found in *Arcobacter butzleri* (YP_001489295.1 or ZP_07891038.1), *Sulfurovum* sp. (YP_004049825.1), Nitratiruptor sp. SB155-2 (YP_001357263.1) and *Sulfurimonas denitrificans* (YP_003892305.1), is annotated as a methyl-accepting chemotaxis sensor protein, part of the PAS (Per-ARNT-Sim) superfamily. The putative NapS proteins exhibits significant homology with the structurally characterized region of *Azotobacter vinelandii* NifL (Figure 4.1). NifL is the redox sensor domain of the NifLF two-component regulatory system, which, along with NifA, regulates nitrogen fixation genes in response to oxygen.[3] NapS may be involved in regulation of the *nap* operon; however, this is yet to be experimentally determined.
Figure 4.1: The sequence alignment of *Azotobacter vinelandii* NifL with the putative NapS proteins from Epsilonproteobacteria. NifL is a crystallographically characterized (PDB IA: 2GJ3) redox sensor protein and transcriptional regulator of nitrogen fixation. [3] The NapS protein sequences used in the alignment are: *Arcobacter butzleri* (YP_001489295.1), *Sulfurovum* sp. (YP_004049825.1), *Nitratiruptor* sp. SB155-2 (YP_001357263.1) and *Sulfurimonas denitrificans* (YP_003892305.1). The alignment was performed using ClustalX alignment software with the BLOSUM 62 matrix. GeneDoc was used to display the alignment and shade identical residues (Black) and similar residues (Grey).
In addition to the unique *napA* operon organization and gene content, the catalytic subunit, NapA, exhibits distinguishing physiochemical features, such as a relatively larger size and more basic isoelectric point (Table 4.1). Typically, the unprocessed NapA is roughly 90 kDa. The Epsilonproteobacteria NapA is larger, approximately 105 kDa. The isoelectric point of the Epsilonproteobacteria NapA is typically in the basic range (for example, *C. jejuni* NapA pI = 9), as a result of differences in the amino acid composition (i.e. more charged residues, specifically lysine and arginine, and less non-polar). Conversely *R. sphaeroides* (pI = 6) is more acidic. While differences in the amino acid content and size have the potential to effect protein function, these differences may not have any effect on catalysis in the folded protein. Therefore the objective of this study was to examine the possible location of the Epsilonproteobacterial NapA sequence inserts on the three dimensional protein structures, and compare the structure to experimentally characterized homologues from other bacterial classes.

**Table 4.1:** Comparison of the NapA physical properties among each class of proteobacteria: Alpha (α), Beta (β), Gamma (γ), Delta (δ), and Epsilon (ε). One representative species is presented; however, multiple organisms were evaluated from each class. The values presented were estimated using the Protein calculator v3.3 from the Scripps Research Institute (scripps.edu)

<table>
<thead>
<tr>
<th>Proteobacteria class</th>
<th>γ</th>
<th>α</th>
<th>β</th>
<th>δ</th>
<th>ε</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Organism name</strong></td>
<td><em>E. coli</em></td>
<td><em>R. Sphaeroides</em></td>
<td><em>V. fischeri</em></td>
<td><em>D. desulfuricans</em></td>
<td><em>C. jejuni</em></td>
</tr>
<tr>
<td>MW (kDa)</td>
<td>93</td>
<td>93</td>
<td>93</td>
<td>83</td>
<td>105</td>
</tr>
<tr>
<td>pI</td>
<td>8</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>Charge at pH7</td>
<td>+8</td>
<td>-9</td>
<td>+12</td>
<td>+7</td>
<td>+16</td>
</tr>
</tbody>
</table>

At the time of this study, the Epsilonproteobacteria NapA had not been structurally characterized, thus theoretical modeling was used to create a three
dimensional structural model of the Epsilonproteobacteria NapA. Using molecular modeling approaches it is possible to predict the three dimensional structure of a protein if a suitable three dimensional template structure has been determined experimentally (e.g. X-ray crystallography). Ideally, the template protein sequence should share a high degree of sequence identity (greater than 40%) when aligned with the structurally uncharacterized protein sequence.[210-212] Although significant structural models have been created with lower sequence identity.[213] Creating a theoretical model of the Epsilonproteobacteria NapA should be straightforward, as the structure of several pterin-containing molybdenum enzymes are available (see Chapter 1) including four functional homologues of NapA.[39, 40, 146, 147] Thus, sufficient structural data is available to facilitate the selection of a trustworthy NapA template structure. Of the Epsilonproteobacteria, Campylobacter jejuni has the most sequence data available. Sixteen strains of C. jejuni have been sequenced completely. In addition to the significance of C. jejuni as a human pathogen, the purification and kinetic analysis C. jejuni NapA is presented in Chapter 4; therefore we selected the structure of C. jejuni NapA as a target.

4.3. Experimental

4.3.1. Bioinformatics investigation of the nap operon

All gene and protein searches were performed using the National Center for Biotechnology Information (NCBI) database (http://www.ncbi.nlm.nih.gov). The nap operon composition was investigated using the NCBI Gene database, which provides chromosomal and plasmid gene maps. Although the genes can be annotated, in some organisms, the identity of each potential nap gene was confirmed individually, whether
annotated or not, by performing a blast search. The Molecular Evolutionary Genetics Analysis (MEGA) Software [214] Version 5.03 was used to align proteins sequences and create phylogenetic trees.

4.3.2. **Theoretical modeling of the *C. jejuni* NapA enzyme structure**

Molecular modeling experiments were performed entirely with the Molecular Operating Environment (MOE) 20010.10 [1] using a Windows 7 operating system. As expected, the best candidates for the *C. jejuni* NapA structural template were NapA homologues, isolated from *Cupriavidus necator* (PDB ID: 3ML1),[40] *E. coli* (PDB ID: 2NYA),[42] *R. sphaeroides* (PDB ID: 1OGY),[215] and *D. desulfuricans* (PDB ID: 2NAP).[39] Templates were selected by performing a blast search on NCBI website using the *C. jejuni* NapA sequence as the query and limiting the search to only structurally characterized proteins within the PDB database.

The structural coordinates (.pdb files) for all four structures (PDB IDs: 3ML1, 2NYA, 1OGY, and 2NAP) were downloaded from the research collaboratory for structural bioinformatics protein data bank (RCSB-PDB) at pdb.org. All files were opened using MOE. To isolate a single NapA molecule and the associated cofactors, all additional protein chains (i.e., NapB or additional NapA molecules) were deleted. The NapA structures were superimposed and aligned using the default settings. The RSMD of all aligned atoms was 1.09 Å. The NapA protein sequence from *C. jejuni* strain RM1221 (NCBI accession number YP_178873), which was derived from the organism’s complete genome sequencing, was downloaded from the NCBI database. Next the *C. jejuni* NapA sequence was aligned with the four template structures using the alignment feature within MOE 2010.10 (Figure A.3).[1] A BLOck SUbstution Matrix[216] (BLOSUM62) matrix
was used with the following default settings: for the sequence alignment (gap start = 7, gap extend = 1, a tree-based build-up, iteration limit = 100, failure limit = 10, and secondary structure = actual), and for the structural alignment (gap start = 1, and Gap extent = 0.1). Based on this alignment, *C. jejuni* NapA had the highest percentage of identical residues in common with *C. necator* NapA (57.9 %), thus *C. necator* NapA was chosen to act as a template to build *C. jejuni* NapA. Finally, the *E. coli*, *R. sphaeroides*, and *D. desulfuricans* NapA structures were removed from MOE.

The pairwise alignment of the *C. jejuni* and *C. necator* NapA (3ML1) sequences, used to generate the three dimensional *C. jejuni* NapA structure, is presented in Figure 4.2. Features, such as the iron-sulfur (4Fe-4S) binding motif (C-X2-C-X3-C-X24-26-C), located at the N-terminus, the conserved cysteine residue, which has been crystallographically demonstrated to coordinate the molybdenum atom,[39, 146] and a conserved lysine residue, proposed to transport electrons from the 4Fe-4S cluster to the PGD, were used to evaluate the alignment of *C. jejuni* NapA with the template sequence. After alignment, the twin arginine translocase (TAT) leader sequence (MNRRDFIKNTAIASAVAGLSVPSS) was removed from the N-terminus of the putative *C. jejuni* NapA sequence. The post translational cleavage of the TAT leader sequence occurs naturally after periplasmic export.
**Figure 4.2:** The protein sequence alignment of *C. jejuni* and *C. necator* NapA used to create the *C. jejuni* NapA structure. The alignment, which was performed using MOE[1], is displayed using GeneDoc software.[2] Identical residues are shaded black, and a consensus sequence, of all identical residues, is provided below the sequences.
The *C. jejuni* NapA homology model was created by folding the peptide in the presence of the stationary prosthetic groups, one molybdenum- bispyranopterin guanine dinucleotide (Mo-bisPGD) cofactor and one 4Fe-4S cluster, the coordinates for which were provided by the *C. necator* structure. In general, the default homology modeling settings were used: ten independent models were created and minimized using the medium minimization. The final model generated had the lowest potential energy. The AMBER 99 force field was selected.

4.3.3. Determining the surface charge of NapA proteins: electrostatic potential calculations

The potential energy for each NapA protein was calculated using MOE2010.10. For each isolated NapA molecule, hydrogen’s were added, then the partial charges calculated using an Amber99 force field and default settings. Next the surface was determined and the electrostatic surface potential, which is calculated using the Poisson-Boltzmann equation, was mapped onto Gauss-Connolly surfaces of the protein.

4.4. Results and Discussion

A three dimensional model of the *C. jejuni* NapA structure was created. The structure of *C. necator* NapA was used as a template due to the close sequence homology (58 % amino acid identity), well above the threshold for creating a reliable homology model. When superimposed, the *C. jejuni* and *C. necator* NapA structures have a low root mean square deviation (RMSD) between the carbon backbones of the two structures, 0.89 Å. The large sequence inserts, characteristic the Epsilonproteobacteria NapA, were the principal obstacle to creating the 3D structure of *C. jejuni* NapA. The regions flanking the sequence inserts exhibit poor sequence homology with the template, which complicated
the precise placement of the inserts onto the template structure; moreover, determining the confirmation of the sequence inserts from the know structures is not possible, as no template is available from a structurally characterized protein. To address these challenges the following approach was taken: first, a consensus sequence alignment, using the sequences from the four structurally characterized NapAs, was used to generate the sequence alignment between \textit{C. jejuni} and \textit{C. necator} NapA (Figure 4.2). Next, after the \textit{C. jejuni} NapA model was created, the three dimensional confirmation of the sequence inserts was determined using the LowModeMD feature in MOE 2010.10. The inserts range in size from 2 to 30 amino acids long. The five, significantly large sequence inserts, were then isolated and relaxed, while the coordinates of the remaining atoms in the \textit{C. jejuni} NapA structure were the fixed. Inserts which were smaller than 5 residues, were disregarded. All inserts are located on the surface of the protein.

Interestingly, the two larger inserts in the Epsilonproteobacteria NapA expand upon the same polypeptide inserts found in heterodimeric NapAs like \textit{R. sphaeroides} and \textit{E. coli} (insets 1 and 3 in Figure 4.4).[42] Jepson \textit{et al.} described the two inserts as an evolutionary feature, which can be used to distinguish the smaller monomeric NapAs (i.e. \textit{D. desulfuricans}) from larger heterodimer NapAs (i.e., \textit{R. sphaeroides} and \textit{E. coli}).[126] In accordance with Jepson’s prediction, the Epsilonproteobacteria NapA is predicted to function as heterodimer, based on the presence of a \textit{napB} gene.

In the \textit{C. jejuni} NapA structure, the insertion sequences are not directly involved in the binding of the cofactors (i.e. molybdenum center, iron sulfur cluster) or intermolecular electron transport. Based on the structure, the insertion sequences present in Epsilonproteobacterial NapA, are predicted to lie on the outer surface of the protein.
(Figure 4.3). This would be expected as molybdopterin proteins which share a high degree of sequence similarity and are relatively larger distribute the extra residues, sequence inserts, over the molecular surface. [13]

Figure 4.3: The theoretical three-dimensional model of C. jejuni NapA. The sequence inserts (red) are located on the outside of the NapA structure, and do not appear to affect NapB binding. The structure of NapB is represented with a green ribbon diagram, and the two inclusive cytochrome-c ligands are purple. NapA is displayed as a blue ribbon diagram, the Mo-bisPGD cofactor is displayed as a yellow stick model, molybdenum is a yellow circle, and the 4Fe-4S cluster is a brown stick model. This figure was created in VMD version 1.8.7. [217]
Figure 4.4: A global sequence alignment of the relatively larger Epsilonproteobacteria NapA from *C. jejuni*, *W. succinogenes*, *A. butzleri*, *S. deleyianum*, and *S. barnesii* with the smaller NapA sequences from crystallographically studied organisms, *R. sphaeroides*, *E. coli* and *D. desulfuricans*. This figure illustrates sequence inserts, located in the middle of the proteins, in all Epsilonproteobacteria. The sequence inserts are not located close to important regions of the peptide; such as the iron-sulfur cluster (4Fe-4S) binding motif (red), the conserved cysteine residue which is covalently bound to molybdenum in the active site (orange), and residues which are involved in electron transport (green): the lysine residue that is involved in electron transfer from the 4Fe-4S cluster to the Mo active site, and the tyrosine residue implicated in electron transfer from the heme in NapB to the 4Fe-4S cluster in NapA. The Epsilonproteobacteria twin arginine translocase (TAT) signal...
Because of the superficial location of the sequence inserts on the *C. jejuni* NapA structure, we can theorize that the sequence inserts could, in principle, effect external interactions. The known NapA protein-protein interactions are between NapA and NapB (heterodimer formation), between NapA (homodimer formation) and between maturation proteins (i.e. NapD and NapF), and NapA.[138] To address the significance of the inserts in each of the listed external interactions, the *C. jejuni* NapA structure will be compared to crystallographically determined structures of NapA.

The ability of NapA to homodimerize has been demonstrated in vitro, [138] although the location for the NapA-NapA interaction on the three dimensional protein structure is not clear. Conceivably, the interaction may be similar to that of the *R. sphaeroides* NapA structure (PDB ID: 1OGY), which includes eight NapAB molecules in the asymmetric unit; however, crystalized proteins sometime become immobilized in unnatural confirmations during the crystallization process. This could be determined experimentally by comparing the homodimerization properties of the native *C. jejuni* NapA with that of insert mutants. In any case, the structure of *C. jejuni* NapA was superimposed onto one monomer in *R. sphaeroides* NapAB octomer (Figure 4.5). From this representation, it appears as though the inserts do not disturb the interaction between adjacent NapA molecules. Also, the *C. jejuni* NapA sequence inserts are clearly not located in the proximity of the NapB binding site of *R. sphaeroides* NapA (Figure 4.3), suggesting the insertion loops are not involved in heterodimer formation. The superimposition of *C. jejuni* NapA and the heterodimeric NapAB from *R. sphaeroides* suggests that the sequence inserts are located on the opposite side of NapAs’ NapB docking site, and are closer to the active site cavity.
Figure 4.5: Superimposition of the *C. jejuni* NapA model onto the *R. sphaeroides* NapAB octomer. *R. sphaeroides* NapA and NapB are grey ribbons, the From this representation, it appears as though the inserts do not disturb the interaction between adjacent NapA molecules. The insert in the photograph was not subjected to lengthy molecular dynamics simulations; therefore, the presented fold is not intended to represent the actual structure, but provide a location of the sequence inserts on the surface of NapA.
The active site of NapA is buried roughly $14\,\text{Å}$ below the surface of the protein; a large funnel shaped cavity directs nitrate to the molybdenum active site. The most prominent sequence insert in \textit{C. jejuni} NapA structure, approximately 30 amino acids long (insert # 1 in \textbf{Figure 4.4}) are located particularly close to the entrance of the active site funnel. The close proximity to the active site cavity raises the possibility that the insertions could, in principle, affect the catalytic function of the protein; in the event the loops fold over the cavity and modulate the substrate entrance, or product release. Still, the \textit{C. jejuni} NapA active site appears to be the same as structurally characterized NapA; the residues involved in the construction of the catalytic pocket, directly above the molybdenum active site, are conserved (\textbf{Figure 4.6}).
Figure 4.6: Superimposition of the *C. jejuni* and *R. sphaeroides* NapA structures. The protein backbones of each NapA structures are displayed. *R. sphaeroides* NapA is represented a teal ribbon. The *C. jejuni* NapA as grey lines with the sequence inserts highlighted in red. In the *R. sphaeroides* NapA structure, molybdenum is displayed as a pink circle, the *bis*PDG cofactor as green stick figure, and the residues which line the active site funnel, directly above the active site, are displayed as blue stick figures. The lower panel, in which the *R. sphaeroides* NapA backbone has been removed, shows the superimposition of the active site residues from *C. jejuni* NapA, represented as grey stick figures, with the active site residues from *R. sphaeroides* NapA. The active site residues are conserved in both NapA sequences and the superimposition the two NapA structures illustrates the almost indistinguishable location of the active site residues in each structure. VMD was used to create this illustration.
Figure 4.6 (continued): The C. jejuni and R. sphaeroides NapA structures.

A second possibility, is that the sequence inserts could affect maturation of NapA; however, the mechanism of cofactor insertion (i.e., bisPGD and 4Fe-4S), and post translational modification (i.e., N-terminus TAT leader sequence cleavage) is not completely understood. The currently accepted theory is that NapD inhibits transport of NapA to the periplasmic space by binding to the N-terminus TAT leader sequence of NapA; [131] the NapD-NapA interaction has been structurally confirmed (see PDB ID: 2PQ4). NapD, a cytoplasmic protein, is believed to retain NapA in the cytoplasm until
the cofactors are inserted, as the TAT export system transports the folded NapA into the periplasm. Currently, the mechanism of bisPGD cofactor insertion is not known. NapF is believed to insert the 4Fe-4S cluster into NapA; however, C. jejuni does not encode a NapF homologue. Also, the possibility that NapL interacts with the sequence inserts cannot be overlooked; NapL is proposed to be NapA chaperone protein which is only found in organisms with large NapA proteins, such a C. jejuni. Future experiments with C. jejuni NapA should explore the significance of the sequence inserts in catalysis and maturation.

The polarity and hydrophobicity of amino acids located on the protein surface play a fundamental role in chemistry of proteins, especially protein-protein interactions. [218] The electrostatic potential was calculated for C. jejuni NapA, and, for comparison, the C. necator, R. sphaeroides, D. desulfuricans, and E. coli NapA structures. In all structures, a dense region of positive charge is localized in the active site funnel,[40] possibly used to attract and facilitate the transport of nitrate into the cavity for catalytic transformation; however, C. jejuni NapA is relatively more basic, a characteristic that may influence the product binding and substrate release. Of the four NapA structures investigated in this current study, C. jejuni was found to have the most basic global charge; R. sphaeroides was the most acidic. The acidic nature of R. sphaeroides is consistent with an earlier description by Jepsen et al., [147, 219] in which they suggest that monomeric NapA proteins (i.e. D. desulfuricans) have a relatively more basic surface charge than heterodimeric NapA’s (i.e. R. sphaeroides and E. coli). Contradictory, our calculations indicate that NapA from C. jejuni, which is expected to be a heterodimeric protein, is the most basic of the four structures. Thus, Epsilonproteobacterial NapA is unique in this
regard; models of *S. barnesii* NapA proteins supported this observation (data not included).

Richardsen *et al.* demonstrate that an evolutionary link, between the assimilatory nitrate reductase NarB and the monomeric NapA from *D. desulfuricans*, is evident in the biophysical properties of the active subunit.[126] Specifically, they found that the monomeric NapA, found in the delta proteobacteria *Desulfovibrio desulfuricans*, is more similar in size and electrostatic surface charge to the monomeric NarB, than the dimeric NapAs, which are relatively larger and exhibit a more negative surface charge.[126] However that study neglected to include the Epsilonproteobacteria NapA, which is also a close relative to assimilatory nitrate reductases.[75] We have found that the Epsilonproteobacteria NapA is relatively more negative than the monomeric NapA from *D. desulfuricans* (**Figure 4.7**) in disagreement with the generalization that heterodimeric NapAs are more positive.
**Figure 4.7:** The electrostatic surface potential of NapA proteins. The structures of *R. sphaeroides* (1OGY), *D. desulfuricans* (2NAP), and *E. coli* (2NYA) were downloaded from the RSCB PDB (pdb.org). The structures of *C. jejuni* and *S. barnesii* (data not included) NapA were created using the same methods. Surface potential was calculated and plotted to the protein surface for each NapA protein separately using MOE. All proteins were superimposed to assume the same orientation for this figure; the *bis*PGD cofactor was included to illustrate the orientation of the proteins. The active site funnel is perpendicular to the plane of this page, leading to the Mo atom.

As mentioned, NapA has a close phylogenetic relationship with the catalytic subunit of the assimilatory nitrate reductases. [75, 126] Three types of bacterial assimilatory nitrate reductase have been identified; the active subunits, NasA, NasC and NarB, [47] have different biochemical properties. NarB is the closest phylogenetic relative of NapA.[126] The active site of NarB and NapA is predicted to be similar; molybdenum is coordinated by conserved cysteinylic sulfur and dithiolene sulfurs provided
by a pterin (one in NarB and two in NapA); however, many differences exist. The cellular location differs, NarB is cytoplasmic and NapA is found primarily in the periplasm, a result of an N-terminal TAT leader sequence of NapA. The source of electrons, required for the reduction of nitrate to nitrite, also differs; NarB accepts electrons from a reduced ferrodoxin, and NapA typically collects electrons indirectly from a membrane quinone pool. The operon content also varies, \textit{narB} is the only nitrate reductase gene in the \textit{nar} operon, while, the \textit{nap} operon has recruited several additional genes, typically more than four additional genes. Despite the differences between the two enzyme systems, NarB is the closest phylogenetic relative of NapA. Interestingly, the \textit{nap} operon is associated with transposase genes in some organisms; therefore it is conceivable that NapA has evolved from assimilatory nitrate reductases, via horizontal gene transfer, and, in the process, NapA acquired more genes which aid in catalytic efficiency and maturation.

Computational phylogenetics was used to determine the relatedness of NapA sequences. A neighbor joining tree was constructed from the multiple sequence alignment of over 288 NapA sequences and, as outliers, three assimilatory nitrate reductases and formate dehydrogenase (Figure 4.8). The monomeric NapA, typified by \textit{D. desulfuricans} NapA, is clearly the most similar to the assimilatory nitrate reductase. The deepest branch in the NapA tree (most similar to assimilatory nitrate reductases) is comprised mainly of Deltaproteobacteria, along with some non-proteobacteria (\textit{i.e.}, Firmicutes, Deferrribacteres, Bacteroidetes and Chrysiogenetes). A second, deep branch in the NapA tree is comprised of mainly Epsilonproteobacteria, Aquificae and one Deinococcus also cluster into this branch. NapA from the Alpha-, Beta- and Gamma- proteobacteria are
located in one large branch, indicating a relatively less similar sequence to the assimilatory nitrate reductases than the delta branch.

Interestingly, the phylogeny of NapA correlates with the \textit{nap} operon structure (Figure 4.8). Examining the presence, or absence, of \textit{nap} genes, which encode proteins involved in post-translational modification of NapA (i.e. NapD, NapF and NapL) and electron transport to NapA (i.e. NapB, NapC, NapG, NapH), can provide fundamental information on how the mechanism of NapA maturation and electron transport differs in each organism. While the presence of dedicated \textit{nap} chaperone proteins and electron transport proteins would increase the overall efficiency of nitrate reduction via NapA, it is possible that, in the absence of these dedicated genes, the organism can uses more undefined proteins to fulfill the same role. For example, in \textit{Shewanella oneidensis} uses CymA, a \textit{c} - type cytochrome containing membrane protein similar to NapC, to transfer electrons from the quinone pool to NapA [220] The interaction between NapAB and membrane-bound Nap proteins (i.e. NapGH or NapC), has been described as “transient”, [46] compared to molybdopterin containing enzymes which have stable interactions with membrane-bound complexes (i.e. formate dehydrogenase (FdhGHI) and respiratory nitrate reductase (NarGHI)). The correlation between \textit{nap} operon gene content and organization, and NapA phylogeny suggests an evolutionary progression of the \textit{nap} operon, possibly away from the monomeric assimilatory nitrate reductase operon of NarB, into more complex operons, such as found in the Epsilonproteobacteria (\textit{napAGHBFLD}).
**Figure 4.8** (next page): Phylogenetic tree of NapA. The Neighbor-Joining method was used to infer the evolutionary relationship among the 292 protein sequences analyzed. Positions containing gaps were eliminated, yielding a total of 600 amino acid positions in the final dataset. The Poisson correction method was used to calculate the number of amino acid substitutions per site. The tree branches are drawn to scale (lower left corner) and the branch lengths correspond to the number of amino acid substitutions per site, values greater > 0.05 are listed above each respective branch. The bootstrap consensus tree (inferred from 100 replicates) is presented. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test is provided above each node. MEGA5 software was used for alignments and phylogenetic analyses. Formate dehydrogenase was included in the analysis as an outlier. Three assimilatory nitrate reductases were also included for reference. NapA sequences were collected from the NCBI database. Branches corresponding to similar species (sp.) or subspecies (ssp.) are collapsed. The colored circles indicate the type quinone oxidase (NapH or NapC) found with NapA in the nap operon (see Table A.1 for details). NapC (green circle) and if NapC + NapF (blue circle). NapC and NapH (pink circle). NapH (brown circle) and if NapH + NapL (red circle). No quinone oxidase (grey circle).
4.5. Conclusions

Periplasmic nitrate reductase has been proposed to carry out a variety of physiological functions. While operon composition may play a role in the functionally diverse nature of Nap, differences in the structure and the electrostatic potential of the NapA could also influence the catalytic function of NapA. [221] The results presented here provide evidence that the periplasmic nitrate reductase from the Epsilonproteobacteria has differentiating features. The Epsilonproteobacterial NapA is the largest of all known NapA proteins; the primary amino acid sequence contains several insertion sequences which are predicted to lie on the protein surface. Because these inserts are found exclusively in Epsilonproteobacterial NapA, they could be exploited to target pathogens (i.e. *C. jejuni* or *H. pylori*) in diagnostics or therapeutic approaches.

The *napA* operon has unique gene organization, typically taking the form of *napAGHBFD*, and can include the *napL* and *napS* genes (i.e. *napAGHBFLDS*). The *napS* gene, which is predicted to be a regulatory protein, is only found in four Epsilonproteobacteria, and the *napL* gene, which is predicted to encode a NapA chaperone protein, are exclusive to the *napA* operon. Phylogenetic analysis of all known NapA proteins confirms that the Epsilonproteobacteria NapA form a defined phylogenetic clade, along with species of Aquifae and interestingly the presence of the *napA*-type operon is segregated to this clade.
CHAPTER 5: Conclusions

NapA is a molybdopterin and iron sulfur protein that typically has a high affinity for nitrate, $K_m < 300 \text{ uM}$. Even though NapA is one of the most extensively studied molybdopterin proteins, more experimental evidence is needed to fully understand the catalytic mechanism of nitrate reduction.[19] A proposed mechanism of nitrate reduction by NapA is shown in Figure 5.1.[38] From this mechanism it is clear that the many aspects require additional information. Thus the global aim of our research is to elucidate the mechanism of nitrate reduction in the molybdenum center of NapA.

![Diagram of NapA mechanism](image)

Possible alternative intermediates (X):

(i) ![Intermediate (i)](image)
(ii) ![Intermediate (ii)](image)
(iii) ![Intermediate (iii)](image)

**Figure 5.1:** The proposed mechanism of nitrate reduction by NapA. [38] The possible species (X) are provided at the bottom of the figure. Y was not provided. This figure was used with permission from the Royal Society of Chemistry. [17]
The main objective of this study was to isolate and characterize NapA from the Epsilonproteobacteria, *Campylobacter jejuni* and *Sulfurospirillum barnesii*. We explored two methods of NapA purification: native expression and purification of NapA from the non-pathogenic Epsilonproteobacteria *S. barnesii* (Chapter 2), and the cloning, heterologous expression and purification of *C. jejuni* and *S. barnesii* NapA from *E. coli* (Chapter 3).

The heterologous expression of molybdenum enzymes is not straightforward, partially due to the complex nature of the pyranopterin cofactor and insertion of iron-sulfur cluster. Over the last decade, the involvement of dedicated chaperone proteins in the maturation of periplasmic molybdopterin proteins has been discovered. In NapA, two dedicated chaperone proteins have been identified, NapD and NapF. A third predicted NapA chaperone, NapL, is found primarily in the Epsilonproteobacteria. In all chaperone proteins the association with NapA is believed to be species-specific. To promote NapA maturation we integrated chaperone proteins into the molecular cloning approach. A NapLD construct was created for co-expression with NapA. The active *C. jejuni* NapA and *S. barnesii* NapA were isolated with metal affinity chromatography. From the characterization and kinetic analysis is clear that the recombinant enzyme has attenuated activity.

The experiments with *S. barnesii* cells indicate that NapA also has a tight affinity for nitrate, consistent with reports from other NapA isolates. In *C. jejuni* and *S. barnesii* NapA is predicted to be involved in respiratory nitrate reduction. [78] NapA’s tight affinity for nitrate should not hinder the efficiency of nitrate respiration.
The Epsilonproteobacterial NapA is the largest NapA isolate to date, approximately 100 kDa. The extra amino acid residues (over 10 kDa) are distributed in the middle of the protein sequence. Sequence analysis of NapA proteins indicates that the Epsilonproteobacteria NapA form a unique clade, distinct from other bacterial NapA. In this clade, the napAGHBFLD operon is predominant. The napA operon contains a few unique features. NapC is not present in any Epsilonproteobacterial nap operons. NapC transfer electrons to NapA during nitrate respiration, although NapGH can fulfill this role. Also NapL is only found in this NapA clade. The unique napL gene and the NapA insertion sequences may be useful for design of diagnostic tools for C. jejuni identification.

In lieu of crystallographic data, the structure of C. jejuni NapA was investigated using theoretical modeling (Chapter 4). The amino acid residues in the active site of C. jejuni NapA are conserved. The large sequence inserts, which are characteristic of the Epsilonproteobacteria, are located close to the active site cavity and do not appear to be involved in NapB docking. The close proximity of the insertion sequence to the active site cavity raises the possibility that the extra residues in the C. jejuni NapA could, in principle, affect the function of the protein. A better understanding of how the additional residues may affect the structure and function of NapA is the first step towards revealing the chemistry of nitrate reductase.

5.1. Future directions

NapA was isolated from S. barnesii (see Chapter 2) with limited yield of the active protein. We isolated the NapA from a membrane enriched fraction; an alternative approach would be to focus on the periplasmic fractionation. This would reduce the
complexity of the sample prior to chromatographic separations. To determine the selectivity of the *S. barnesii* NapA for nitrate, the protein can be assayed for selenate, arsenate, tellurite, TMAO and DMSO reductase activity. NapA has been reported to reduce selenate and tellurite in *Rhodobacter sphaeroides*. [222] This is of particular significance to *S. barnesii*, which would encounter these oxyanions in the environment.

The cloning, expression and purification of *C. jejuni* and *S. barnesii* NapA, is the most promising avenue for future experiments. A method for cultivating and purifying *C. jejuni* and *S. barnesii* NapA in *E. coli* was established. The recombinant enzymes displayed a lower affinity for nitrate, decreased velocity, and less than ideal metal content, consistent with incomplete cofactor content. Future work should optimize the purification procedure to increase the recovery of active NapA. In the large scale expression and purification of NapA, NapA was isolated in complex with NapD. This indicates that NapA is cytoplasmic, as NapD acts as a NapA anti-porter in the cytoplasm and should not be translocated to the periplasmic space. Cytoplasmic NapA presumably has low cofactor content, therefore lower activity. One possible avenue to increasing the recovery of active NapA would be to isolate the NapA from the periplasm. The periplasmic isolation of NapA was successful in the small scale expression experiments (*Figure 3.7*). We were not able to successfully scale-up the periplasmic isolation procure.

The catalytic properties of *C. jejuni* and *S. barnesii* NapA can also be investigated. Other NapA isolates are capable of reducing tellurite and selenate, although with poor affinity and rates. [222] Non-competitive inhibition by Zinc has also been reported to be specific for NapA, not other DMSO reductases.[171] In high
concentrations (> 0.25M), potassium and sodium have an activating effect on NapA in *D. desulfuricans*. Calcium and magnesium are reported to decrease NR activity. [205]

Ultimately, future work should focus on determining the mechanism of nitrate reduction by periplasmic nitrate reductase (NapA). This could include crystallographic studies and more detailed spectroscopic studies which require larger quantities of enriched NapA. Protein film cyclic voltammetry can provide a more physiologically relevant measure of electron transfer. Furthermore, probing the redox chemistry of the molybdenum active site in is typically monitored by electron paramagnetic resonance spectroscopy in other molybdopterin enzymes, as the transformation of MoVI to the MoIV state involves the paramagnetic MoV.

We have created multiple nap plasmids in this study. The *C. jejuni* napA, napLD, and napB genes and *S. barnesii* napA and napB genes have been inserted into expression vectors and in some cases the pET 1.2 cloning vector. The *S. barnesii* napFLD genes were not amplified successfully. This was most likely the result of uncomplimentary primer design. The *S. barnesii* genome has been completed during the preparation of this dissertation. The primers can now be redesigned to amplify the *S. barnesii* maturation genes. This would provide a more direct comparison to the *C. jejuni* NapA-NapD interaction.

The napL and napD genes were amplified directly from *C. jejuni* as a single construct (i.e., napLD). Later review of the sequence data revealed that the two genes are out of frame from one another and overlap, napL and napD are transcriptionally coupled. The NapD protein was identified in the purified NapA fractions from *C. jejuni*. NapL was never detected. The sequencing data collected from the pCnapLD plasmid does not
include the sequence of the pRSF promoter (Figure A.21); therefore we could not confirm that this region was free of mutations. The sequence of the T7 promoter region in the pCnapLD plasmid should be confirmed by DNA sequencing. A conserved -10 region (TATAAT) was identified upstream from napD, within the napL sequence (Figure A.14). This indicated that NapD expression may have occurred using the natural transcriptional regulators of E. coli, as IPTG induced expression of NapD was not observed. To improve the maturation of NapA, one could address these potential problems and create separate napL and napD expression plasmid. Furthermore, the napL gene would have to be cloning and expressed separately from NapD to elucidate the function of NapL in NapA maturation. The co-expression of NapA with NapD or NapL can then be compared to determine the effect of maturation proteins on NapA cofactor content and the catalytic function.

Mutation of NapA, NapD, and NapL or NapB can be investigated to determine the mechanisms of protein-protein interaction. Plasmids containing these nap genes were created in this study, making mutational studies easy. To determine the significance of the NapA insert sequences, which were predicted to be located in the vicinity of the C. jejuni active site (see Chapter 4), these regions of the C. jejuni NapA protein should be mutated.

S. barnesii and C. jejuni napB were cloned into a pQE-60 expression vector. The preliminary NapB expression studies suggest that napB was expressed; however, NapB was never identified by mass spectroscopy. Future work on NapB will have to optimize the expression conditions, before the purification of the recombinant protein is possible. Cytochrome c maturation proteins (ccm) have been found to be important in the
maturation of the recombinant *H. influenzae* NapB. [144] We have obtained a plasmid which includes the *ccm* operon, pEC86. The expression of NapB may benefit from the inclusion of pEC86. Once NapB is isolated, binding studies between NapA and NapB can be conducted.
Appendix I: Supplemental Tables and Figures

Table A.1: The nap operon gene content and organization in bacteria. The nap operons categorized into four groups based on the presence or absence of a membrane quinone oxidase (napC or napH). The gene order in each organisms nap operon was provided by the NCBI gene and phenotype mapping database (http://www.ncbi.nlm.nih.gov/gene), and in a few cases the JGI database (http://img.jgi.doe.gov). The identity of each translated Nap protein was confirmed by preforming a blast search within the NCBI database. In each operon the nap genes are listed by the order in which they are found. Organisms which encode two separate nap operons are in bold (*). Abbreviations: Class, refers to the bacterial phylogenetic class; the alpha-, beta-, gamma-, and epsilon-proteobacteria are abbreviated with the corresponding Greek letters (\(\alpha\), \(\beta\), \(\gamma\), \(\delta\), \(\varepsilon\)); clostridia (Clos.); Deferrribacteres (Defer.); Chrysiogenetes (Chry.); Sphingobacteria (Sphin.); Aquificae (Aquif.); Deinococci (Dein.); Flavobacteria (Flav.); Ubiquinone oxidase (U ox.).

<table>
<thead>
<tr>
<th>Quinone oxidase</th>
<th>nap Operon</th>
<th>Class</th>
<th>Organism</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGHBF_LD</td>
<td>(\varepsilon)</td>
<td>Sulfurovum sp. Autotrophic</td>
<td></td>
</tr>
<tr>
<td>AGHBFLD</td>
<td>Aquif.</td>
<td>Hydrogenivirga sp. 128-5-R1-1, Persephonella marina EX-H1, Sulfitrihydrogenibium sp. Y03AOP1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dein.</td>
<td>Oceanithermus profundus DSM 14977</td>
<td></td>
</tr>
<tr>
<td>AGHBFLDS</td>
<td>(\varepsilon)</td>
<td>Arcobacter butzleri RM4018, Ar. Nitrofigilis, Campylobacter concis, C. curvis, C. hominis, C. fetus, Helicobacter mustelae 1219, Nautilia profundi cola, Sulfuricurvum kuijien sedum, Sulfurospirillum barnesii, S. dele vianum, Wolinella succinogenes</td>
<td></td>
</tr>
<tr>
<td>AGHBFLSD</td>
<td>(\varepsilon)</td>
<td>Nitratiruptor sp. SB155-2, Caminibacter mediatlanticust</td>
<td></td>
</tr>
<tr>
<td>AGHBLD</td>
<td>(\varepsilon)</td>
<td>Thiomicrospira (formerly Sulfurimonas) dentificans DSM 125</td>
<td></td>
</tr>
<tr>
<td>DAGHB</td>
<td>(\beta)</td>
<td>Burkholderiales bacterium 1_1_47</td>
<td></td>
</tr>
<tr>
<td>DAGHB_{\text{F}}</td>
<td>(\beta)</td>
<td>Shewanella amazonensis SB2B*, Sh. halifaxensis HAW-EB4, Sh. loihica PV-4*, Sh. oneidensis MR-1, Sh. pealeana ATCC 700345*, Sh. sediminis HAW-EB3*, Sh. sp. ANA-3*, Sh. sp. MR-4*, Sh. sp. MR-7, Sh. sp. W3-18-1*</td>
<td></td>
</tr>
<tr>
<td>DAGHF</td>
<td>(\delta)</td>
<td>Geobacter lovleyi</td>
<td></td>
</tr>
<tr>
<td>DGBAH:G</td>
<td>Clos.</td>
<td>Desulfitobacterium hafniense strains (2 DCB-2 &amp; 2 DCB-1)</td>
<td></td>
</tr>
<tr>
<td>FDAGHB</td>
<td>(\alpha)</td>
<td>Magnetospirillum magnetotacticum AMB-1</td>
<td></td>
</tr>
<tr>
<td>GBAH:G</td>
<td>Clos.</td>
<td>Desulfitobacterium hafniense Y51</td>
<td></td>
</tr>
<tr>
<td>MADGH</td>
<td>Chr.</td>
<td>Desulfitospirillum indicum</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Defer.</td>
<td>Calditerrivibrio nitroreducens, Deferrribacter desulfuricans, Denitrovibrio acetiphilus</td>
<td></td>
</tr>
</tbody>
</table>
Table A.1 (continued): The *nap* operon gene content and organization in bacteria.

<table>
<thead>
<tr>
<th>Quinone oxidase</th>
<th><em>nap</em> Operon</th>
<th>Class</th>
<th>Organism</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC</td>
<td>γ</td>
<td></td>
<td><em>Photobacterium damselae</em> CIP 102761, <em>Ph. profundum</em> SS9*</td>
</tr>
<tr>
<td>AC</td>
<td>Sphin.</td>
<td></td>
<td><em>Rhodothermus marinus</em></td>
</tr>
<tr>
<td>CDAG</td>
<td>Clos.</td>
<td></td>
<td><em>Symbiobacterium thermophilum</em></td>
</tr>
<tr>
<td>DABC</td>
<td>β</td>
<td></td>
<td><em>Dechloromonas aromatica</em> RCB</td>
</tr>
<tr>
<td></td>
<td>γ</td>
<td></td>
<td><em>Hahella chejuensis</em> KCTC 2396, <em>Photobacterium sp.</em> SKA34*, <em>Shewanella piezotolerans</em> WP3*, <em>Sh.sediminis</em> HAW-EB3*, <em>Sh.violacea</em> DSS12, <em>Vibrio vulnificus</em> CMCP6</td>
</tr>
<tr>
<td>DABC_F</td>
<td>Flav.</td>
<td></td>
<td><em>Maribacter</em> Sp. HTCC2170</td>
</tr>
<tr>
<td>EABC</td>
<td>γ</td>
<td></td>
<td><em>Photobacterium profundum</em> 3TCK*</td>
</tr>
<tr>
<td></td>
<td>γ</td>
<td></td>
<td><em>Marine γ proteobacterium</em> HTCC2148, <em>Pseudomonas mendocina</em> ymp, <em>Pseudomonas stutzeri</em> A1501, <em>Saccharophagus degradans</em> 2-40, <em>Shewanella amazonensis</em> SB2B*, <em>Sh. baltica</em> OS155, <em>Sh. baltica</em> OS185*, <em>Sh. baltica</em> OS195*, <em>Sh. baltica</em> OS217, <em>Sh. frigidimarina</em> NCIMB 40, <em>Sh. loihica</em> PV-4*, <em>Sh. pealeana</em> ATCC 700345*, <em>Sh. sp.</em> ANA-3*, <em>Sh. sp.</em> MR-4*, <em>Sh. sp.</em> W3-18-1*, <em>Sh. woodyi</em> ATCC 51908*</td>
</tr>
<tr>
<td></td>
<td>γ</td>
<td></td>
<td><em>Colwellia psychrerythraea</em> 34H, <em>Pseudomonas aeruginosa</em> (strains LESB58, UCBPP-PA14, PAO1 &amp; PA7), <em>Reinekeea</em> sp. MED297</td>
</tr>
<tr>
<td>FDABC_ABC</td>
<td>γ</td>
<td></td>
<td><em>Moritella</em> sp. PE36</td>
</tr>
<tr>
<td>KEFDABC</td>
<td>α</td>
<td></td>
<td><em>Rhodobacter sphaeroides</em> strains (2.4.1 &amp; ATCC 17025*)</td>
</tr>
</tbody>
</table>
Table A.1 (continued): The *nap* operon gene content and organization in bacteria.

<table>
<thead>
<tr>
<th>Quinone oxidase</th>
<th><em>nap</em> Operon</th>
<th>Class</th>
<th>Organism</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMADGH</td>
<td>Aquif.</td>
<td></td>
<td><em>Thermovibrio ammonificans</em></td>
</tr>
<tr>
<td>DAGHBC</td>
<td>δ Desulfovibrio desulfuricans, Desulfovibrio sp. 3 1 syn3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAGHBC</td>
<td>β</td>
<td></td>
<td><em>Leptothrix cholodnii</em></td>
</tr>
<tr>
<td>DABGHBC</td>
<td>γ Aggregatibacter aphrophilus, Citrobacter koseri, Cit. rodentium, Escherichia coli IAI3, Salmonella typhimurium, Shigella flexneri (2 strains)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDABGHBC</td>
<td>α Rhodobacter sphaeroides ATCC 17025</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDAGHBC</td>
<td>α Dinoroseobacter shibae DFL 12, Laribacter hongkongensis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDAGHBC</td>
<td>β Azoarcus sp. BH72*, Thauera sp. MZ1T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDAGHBC</td>
<td>γ Aeromonas hydrophila, Edwardsiella ictaluri, Ed. tarda, Escherichia coli (16 strains), Grimontia hollisae CIP 101886, Haemophilus influenza, Pectobacterium atrosepticum, P. carotovorum (2 strains), P. wasabiae, Providencia alcalifaciens, Pro. Retgeri, Pro. rustigianii, Pro. Stuartii, Salmonella enterica, Serratia odorifera DSM 4582, Shigella boydii (2 strains), Sh. dysenteriae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>γ Photobacterium sp. SKA34*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AB</td>
<td>ε Helicobacter felis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAB</td>
<td>δ Sorangium cellulosum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAB</td>
<td>γ Shewanella baltica OS185*, Sh.baltica OS195*, Sh. Piezotolerans WP3*, Sh. woodyi ATCC 51908*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA</td>
<td>δ Anaeromyxobacter sp. K, An. dehalogenans strains (2CP-1 &amp; 2CP-C)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure A.1: A western blot of the purified *S. barnesii* NapA protein isolated from *E. coli* strain T7 express during the pilot expression experiments. *(see Chapter 3)* Molecular weight marker (M), the size (kDa) of each protein band is given in the figure. The purple protein bands are positive for the His$_{6x}$–tagged proteins. **Lane 1**, the protein purified from T7 express cells incubated for 19 at 30 °C; **lane 2**, the protein purified from T7 express cells incubated for 44 at 20 °C A coomassie stained SDS/PAGE fractions of the same samples are shown in Figure 4.9. A 10% polyacrylamide gel was used for separation. This western blot was prepared by Katrin Schrader. The ~110 kDa band in lanes 1 and 2 is the His$_{6x}$ –tagged NapA.
Figure A.2: A western blot of the periplasmic extract from the *C. jejuni* NapB pilot expression experiment. (see Chapter 3) Molecular weight marker (M), the size (kDa) of each protein band is given in the figure. The purple protein bands are positive for the His6x–tagged proteins. **Lane 1**, BL21 star cells incubated for 19 at 30 °C; **lane 2**, BL21 star cells incubated for 19 at 20 °C; **lane 3**, a 29 kDa His6x–tagged western blot control; **lane 4**, BL21 star cells incubated for 44 at 20 °C; **lane 5**, T7 express cells incubated for 44 at 20 °C. A coomassie stained SDS/PAGE fractions of the same samples are shown in Figure 6.3.2.2. This western blot was prepared by Katrin Schrader. A 15% polyacrylamide gel was used for separation. The 14 kDa band in lanes 1 and 2 may be the His6x–tagged NapB which is predicted to be ~16.
**Figure A.3:** The multiple sequence alignment of *C. jejuni* NapA (Cjej) with the sequences of the four structurally characterized NapA proteins from *D. desulfuricans* (Ddes), *R. sphaeroides* (Rsph), *E. coli* (Ecol) and *C. necator* (Cnec). This alignment was used to select the best template structure for the *C. jejuni* NapA, and, by providing multiple sequences that have associated structures, strengthening the alignment of the *C. jejuni* sequence inserts. The figure was created using clustal 2.0.11. Identical residues are marked above with an asterisk (*), and similar residues with a period (.) or semicolon (;). The bar graph, below the sequence alignment, illustrates the degree of sequence conservation as a function of residue number.
Figure A.4: A plasmid map of the pCnapA vector. The amplified C. jejuni napA construct (blue arrow) was digested with the Ndel and XhoI restriction endonucleases and inserted into the pET21α plasmid using the corresponding RE sites (red). The DNA sequence of the napA construct and translated protein are in Figure A.5. The vector features which are relevant to this study are illustrated: the lacI gene (grey arrow), the ampicillin resistance gene (white arrow), the f1 origin (black arrow) hexa-histidine tag (His tag), the T7 terminator, the T7 promoter, and the lac operator. The DNA sequences of the plasmid, primers, and nap gene were downloaded into the GENtle software program.[190] The in silico cloning was conducted to reproduce the experimental procedure used in this study.
**Figure A.5:** The DNA and protein sequences of the recombinant *C. jejuni* NapA. The translated protein sequence is provided above the *napA* gene DNA sequence (blue line). The restriction endonuclease sites are indicated in red. GENtle was used to create this illustration.[190]
**Figure A.6**: A plasmid map of the pSnapA vector. The amplified *S. barnesii napA* construct (blue arrow) was digested with the NdeI and XhoI restriction endonucleases and inserted into the pET21α plasmid using the corresponding RE sites (red). The DNA sequence of the *napA* construct and translated protein are in **Figure A.7**. The vector features which are relevant to this study are illustrated: the *lacI* gene (grey arrow), the ampicillin resistance gene (white arrow), the f1 origin (black arrow) hexa-histidine tag (His tag), the T7 terminator, the T7 promoter, and the *lac* operator. The DNA sequences of the plasmid, primers, and *nap* gene were downloaded into the GENtle software program. [190] The *in silico* cloning was conducted to reproduce the experimental procedure used in this study.
**Figure A.7:** The DNA and protein sequences of the recombinant *S. barnesii* NapA. The translated protein sequence is provided above the *napA* gene DNA sequence (blue line). The restriction endonuclease sites are indicated in red. GENtle was used to create this illustration. [190] GENtle was used to create this illustration. [190]
**Figure A.8**: A plasmid map of the pCnapB vector. The amplified *C. jejuni napB* construct (red arrow) was digested with the Ncol and BgII restriction endonucleases and inserted into the pQEQ-60 plasmid using the corresponding RE sites (red). The sequence of the *napB* insert is in **Figure A.9**. The vector features which are relevant to this study are illustrated: the ColE1 origin (black arrow), the ampicillin resistance gene (white arrow), the T5 promoter/ lac operator (white box), hexa-histidine tag (green box), and the lambda *t*<sub>0</sub> terminator. The DNA sequences of the plasmid, primers, and *nap* gene were downloaded into the GENtle software program. [190] The *in silico* cloning was conducted to reproduce the experimental procedure used in this study.
Figure A.9: The DNA and protein sequences of the recombinant *C. jejuni* NapB. The translated protein sequence is provided above the *napB* gene DNA sequence (red line). The restriction endonuclease sites are indicated in red. GENtle was used to create this illustration. [190]
Figure A.10: A plasmid map of the pSnapB vector. The amplified *S. barnesii* napB construct (red arrow) was digested with the Ncol and BglII restriction endonucleases and inserted into the pQE-60 plasmid using the corresponding RE sites (red). The sequence of the napB insert is in Figure A.11. The vector features which are relevant to this study are illustrated: the ColEI origin (black arrow), the ampicillin resistance gene (white arrow), the T5 promoter/ lac operator (white box), hexa-histidine tag (green box), and the lambda *t*~o~ terminator. The DNA sequences of the plasmid, primers, and *nap* gene were downloaded into the GENTle software program. [190] The *in silico* cloning was conducted to reproduce the experimental procedure used in this study.
Figure A.11: The DNA and protein sequences of the recombinant *S. barnesii* NapB. The translated protein sequence is provided above the *napB* gene DNA sequence (red line). The restriction endonuclease sites are indicated in red. GENTle was used to create this illustration. [190]
Figure A.12: A plasmid map of pCnapLD. The amplified *C. jejuni* *napLD* construct (*napL*, purple arrow and *napD*, green arrow) was digested with the **NcoI** and **EcoRI** restriction endonucleases and inserted into the RSF-duet plasmid using the corresponding RE sites (red). The sequence of the *napLD* insert is in Figures A.13 and A.14. The vector features which are relevant to this study are illustrated: the RSF origin (black arrow), the *lacI* gene (light grey arrow), the kanamycin resistance gene (grey arrow), the T7 promoter/ *lac* operator (white boxes), and the T7 terminator (white rectangle). The DNA sequences of the plasmid, primers, and *nap* gene were downloaded into the GENtle software program. [190] The *in silico* cloning was conducted to reproduce the experimental procedure used in this study.
Figure A.13: The DNA sequence of the *C. jejuni* napLD construct and protein sequence of the recombinant *C. jejuni* NapL. The translated protein sequence is provided above the napL gene DNA sequence (Purple line). The napD gene is indicated also (green line). The restriction endonuclease sites are indicated in red. GENtle was used to create this figure. [190]

Figure A.14: The DNA sequence of the *C. jejuni* napLD construct and protein sequence of the recombinant *C. jejuni* NapD. The translated protein sequence is provided above the napD gene DNA sequence (green line). A conserved -10 region (TATAAT) upstream of the napD gene (blue line). The napL gene is indicated also (purple line). The restriction endonuclease sites are indicated in red. GENtle was used to create this figure. [190]
Appendix II: DNA sequencing data

Figure A.15: Alignment of the *S. barnesii* *napA* gene with the sequencing data obtained from the pSnapA plasmid using the T7 promoter-binding primer. The pET21α T7 promoter-binding primer from Novagen was used for sequencing (T7). The sequence of *S. barnesii* *napA* (blue line) was inserted into the pET21a plasmid (pSnapA). Identical residues are indicated below the alignment (*). Gentle was used to align the sequences.
Figure A.16: Alignment of the S. barnesii napA gene with the sequencing data obtained from the pSnapA plasmid using the S. barnesii napA internal binding primer. The S. barnesii napA internal binding primer (IBP) was used for sequencing (see Table 3.1 for sequence). The sequence of S. barnesii napA (blue line) was inserted into the pET21α plasmid (pSnapA). Identical residues are indicated below the alignment (*). Gentle was used to align the sequences.
**Figure A.17:** Alignment of the *C. jejuni napA* gene with the sequencing data obtained from the pJCnapA plasmid using the pJET 1.2 forward primer. Two colonies were examined (FPa and FPb) the later was used for expression. The pJET 1.2 forward primer from Fermentas was used for sequencing, the data collected is labeled (FP). The sequence of *C. jejuni napA* (pJCnapA). Identical residues are indicated below the alignment (*). Gentle was used to align the sequences.
Figure A.18: Alignment of the *C. jejuni* napA gene with the sequencing data obtained from the pJCnapA plasmid using the pJET 1.2 reverse primer. Two colonies were examined (RpA and RpB) the later was used for expression. The pJET 1.2 reverse primer from Fermentas was used for sequencing, the data collected is labeled (FP). The sequence of *C. jejuni* napA (pJCnapA). Identical residues are indicated below the alignment (*). Gentle was used to align the sequences.
Figure A.19: Alignment of the *C. jejuni* napL gene with the sequencing data from the pJCnapLD plasmid using the pJET 1.2 forward primer. The pJET 1.2 forward primer from Fermentas was used for sequencing, the data collected is labeled (FP). The sequence of *C. jejuni* napL (purple line) is labeled (pJCnapLD). Identical residues are indicated below the alignment (*). Gentle was used to align the sequences.
Figure A.20: Alignment of the *C. jejuni* *napB* gene with the sequencing data from the pCnapB plasmid using a pQE-60 sequencing primer. The pQE-60 reverse primer from Qiagen was used for sequencing; the data collected is labeled (RP). The sequence of *C. jejuni* *napB* gene inserted into pQE-60 was used (pCnapB). Identical residues are indicated below the alignment (*). Gentle was used to align the sequences.
Figure A.21: Alignment of the *C. jejuni* napLD genes with the sequencing data from the pCnapLD plasmid using a pRSF reverse primer. A pRSF reverse primer from Novagen was used for sequencing; the data collected is labeled (RP). The sequence of the *C. jejuni* napLD inserted into the pRSF vector (pCnapLD). Identical residues are indicated below the alignment (*). Gentle was used to align the sequences.
Figure A.22: Alignment of the *S. barnesii* *napH* gene with the sequencing data from the pJSnapHBF plasmid using the pJET 1.2 forward primer. The pJET 1.2 forward primer from Fermentas was used for sequencing; the data collected is labeled (FP). The sequence of the *S. barnesii* *napGH* gene was obtained from the primary shotgun sequencing of *S. barnesii*’s genome therefore may be error prone. To confirm the sequences, the data was aligned with *S. delyaniunum* genes in Figure A.24. The sequence data which is not aligned corresponds to a portion of *napB*. Identical residues are indicated below the alignment (*). Gentle was used to align the sequences.
**Figure A.23:** Alignment of the *S. barnesii* napF gene with the sequencing data from the pJSnapHBF plasmid using the pJET 1.2 reverse primer. The pJET 1.2 reverse primer from Fermentas was used for sequencing; the data collected is labeled (RP). The sequence of the *S. barnesii* napF gene was obtained from the primary shotgun sequencing of *S. barnesii's* genome therefore may be error prone. To confirm the sequences, the data was aligned with *S. delyanium* genes in Figure A.25. The sequence data which is not aligned (top) corresponds to *napB*. Identical residues are indicated below the alignment (*). Gentle was used to align the sequences.
Figure A.24: Alignment of the *S. delyanum napHBF* genes with the sequencing data from the pJSnapHBF plasmid using the pJET 1.2 forward primer. The pJET 1.2 forward primer from Fermentas was used for sequencing; the data collected is labeled (FP). Identical residues are indicated below the alignment (*). Gentle was used to align the sequences.
Figure A.25: Alignment of the *S. delyanium* napHBF genes with the sequencing data from the pJSnapHBF plasmid using the pJET 1.2 reverse primer. The pJET 1.2 reverse primer from Fermentas was used for sequencing; the data collected is labeled (RP). Identical residues are indicated below the alignment (*). Gentle was used to align the sequences.
Appendix III: Protein mass spectroscopy data

Chapter 2 Mass spectroscopy data: Bands were excised from the gel in Figure 2.6. Mass spectroscopy analysis performed by Peter Chovanec. The results are presented below.

SDS-PAGE SAMPLE CES_01

Search file: CES01
Database: NCBI nr 20080314 (6307426 sequences; 2155784383 residues)
Timestamp: 17 Mar 2008 at 16:36:56 GMT
Top Score: 84 for gi|169104652, periplasmic nitrate reductase [Sulfurospirillum barnesii]

Probability Based Mowse Score
Protein score is $10^P \log(P)$, where $P$ is the probability that the observed match is a random event. Protein scores greater than 81 are significant ($p<0.05$).

| gi|169104652 Mass: 105393 | Score: 84 | Expect: 0.024 | Queries matched: 31 |
|---------------------------------|-------------|--------------|---------------------|
| periplasmic nitrate reductase [Sulfurospirillum barnesii] |

Nominal mass ($M_r$): 105393; Calculated pI value: 8.77
Fixed modifications: Carbamidomethyl (C)
Variable modifications: Oxidation (M)
Cleavage by Trypsin: cuts C-term side of KR unless next residue is P
Number of mass values searched: 134
Number of mass values matched: 31
Sequence Coverage: 34%
Matched peptides shown in Bold Red

1 MQLSRDQFLK TTAASAXAAG UGCGUPAEAL KAGQAEANW KWDHAKCREC
2 GSTGQINWAT KEKTVAVK DPAAPVRGL NCIGKYNAK IMYSADRLKQ
101 PLLMNIDKEF EDKEQFPKPV SWKEAFDRE KIHAALKVG GPEAIQVYG
151 GOYIQEQYAA AANHKGAFR ANIGDFRHH CMPSAVAGEM QTFGIDRFAP
201 CDIDGIDDTT IITWGDANNA MHILWRRSVS DRKLTSPDRV KIVNLSTYTH
251 RQDSLADLEI IPSFDTDLAI WNTIARIEVY NHPEAIDWDF VKKNIFTTG
301 FANIGQOMMT EKAEKLGYS AKMLEYKNE DAVISSEKE FGIALHOLYKA
351 GDPYQKMRAD AAGAHWEISF EBPKALESFY TLEYKAKSK GNQJEKLDIF
401 KVQDQLELNL TIEKRNKVS FWQSMFHOQH RGTWNRQCGY MVHFLLGKQA
451 RQGQGAPSLT QOQPAGATOR EWTPRTHLP XDKVSIIFKH REVSEKXWL
501 EAGTINMPSQ QHRNMRHQRQI ESXKIFKAWV WUCNPQYDGA NAMNIAAN
551 EIDNFYVCSD AYGPISAKVS DLLLFSAMY EKKGEGYNAE RTQHMRRQOV
601 LPQGDMADST QMQVELSKRF TIQDVQEGQP IKGKLPNVI EAAAMGKYKE
651 TQMYDVLFA TEFAQEFKAD DACGKFNDNS EYFVFAKRVG GSDGKEDTGY
701 RTQIQGKINE EYQFGLGHS HDADETDYH KVRGLKWEV YGKKTQMRFN
751 KYARYAYAKA GNG3DFPQG QFAXALKKGNL VYPANNYETS LKNSAIKFFR
801 PHDRCMEMED KEYTDWLCGT RRLEAHNSOT MTRKIPELIL AVPEALCYNH
851 PDAARQGQFK QAGMINLQSR RGSCIVRVEG RGRNATRERL VYFPWDFERV
901 MIAKVCCLDAT CFISEQFYDK KCAVWLYKA

179
SDS-PAGESAMPLE CES_02

Search title : CES02
Database : NCBIir 20080314 (6307426 sequences; 2155784383 residues)
Taxonomy : Proteobacteria (purple bacteria) (1856845 sequences)
Timestamp : 17 Mar 2008 at 16:43:11 GMT
Top Score : 79 for gi:23594982, metalloid reductase RarA [Sulfurospirillum barnesii]

Probability Based Mouse Score
Protein score is -10*Log(P), where P is the probability that the observed match is a random event. Protein scores greater than 75 are significant (p<0.05).

gi:123394982  Mass: 48133  Score: 79  Expect: 0.024  Queries matched: 12
metalloid reductase RarA [Sulfurospirillum barnesii]

Nominal mass (Mw): 48133; Calculated pI value: 5.49
Fixed modifications: Carbamidomethyl (C)
Variable modifications: Oxidation (M)
Cleavage by Trypsin: cuts C-terz side of K, unless next residue is P
Number of mass values searched: 63
Number of mass values matched: 12
Sequence Coverage: 34%

Matched peptides shown in Bold Red

1 MKIAKLSLA MIVAGLASSS FAADLTADAF KNGKVSGEIK AMTFDRTVEN
51 TDAKDKRENN AMIANFGLTL GFVTDLSYGF YAGATFQGSA TPIIINDABG
101 KTNNKGDKHAD TANFOTITHA SGAVLSEALY GTELGKTDVK VGRQFISTFL
151 VNGCCGRPFYK ESFGAVLBN TDLFGMTTVAF GYAGKQGRT SAPFEGDGLGD
201 AFPSMKHAVY AGLHATSYGK SATDDTSRPG GYTAGAINES3 LMLTLYKY
251 LFVINDHDTD GDVQYTTREAN VVLMQFFGKL GFIATFRRSH TRDDLDALNA
301 SGHMFSGRVS LSGLAFGQAS FAATTSSDH VLLGAGNGFT TYPATMIAAG
351 ATFPAANNTD SYLFQVTYDF SKGVTGLTA VAGYMWTEQG TQPQKLDLETG
401 NSKVKGTRD TTYAGVTVYA VPALKGLTTS LQYEVQGEADS KTACTKTVDT
451 DEMFKASYK F
SAMPLE CS_02
Search title : sample_CS1
Database : NCBI nr 20080221 (5122577 sequences; 2096233148 residues)
Timestamp : 29 Feb 2008 at 19:21:29 GMT
Top Score : 92 for gi|22651592, periplasmic nitrate reductase
[Sulfurospirillum barnesii]

**Probability Based Mowse Score**

Protein score is -10*Log(P), where P is the probability that the observed match is a random event.
Protein scores greater than 80 are significant (p<0.05).

![Probability Based Mowse Score](image)

**gi|22651592**
Mass: 99749 Score: 92 Expect: 0.0035 Queries matched: 34
periplasmic nitrate reductase [Sulfurospirillum barnesii]
Nominal mass (M): 99749; Calculate pI value: 8.67
NCBI BLAST search at gi|22651592 against nr
Unformatted sequence string for pasting into other applications
Taxonomy: Sulfurospirillum barnesii
Fixed modifications: Carbamidomethyl (C)
Variable modifications: Oxidation (M)
Cleavage by Trypsin: cuts C-term side of KR unless next residue is P
Number of mass values searched: 137
Number of mass values matched: 34
Sequence Coverage: 36%
Matched peptides shown in Bold Red

1 WWDKAVCRF GTCGCGGMA TKEKIVAVK GDPAAPVNRG LNCIGYFNA
51 KMYGADRLK QFLLRMDIQG EFDKKQPPKT VSWKAFDAM EKHIKAALKV
101 GPEEAIVFGQ SQYTIQEGY AAAMKMGAF RANGIDPNAR HCMAA7AGF
151 QFTGIDEPA GYDDEIEITD TITWGAAMA EMMFILKSQV SRKLTSPDR
201 TIVNLSSTTP HRCSDLADLE LIFSPSTDLA IWINNTALIV YNHPEAIDWD
251 PFKNNTPTFT SGRANIGGMR TVEAAKGLGY SKEEIYIKK EDAKVISEK
301 AGPLHAHVKG ACVMKMDKA DAAGAHWEIS FEHPPKALEP YITLEYVAIKS
351 KNFQPERLED FPKVQELAN LYEKRRKVSP WITQFIQEH QRGTVWNEQS
401 TMRNFILQKQ ARFGDAFGSL TQQPSACGTA RXBGIFITHAL PXMDMVSHPK
451 EBSVEKKBK LEACFLPMQG YQHIMNHKQGIESGKLPMVX VNVCNFPQDT
501 ANAHWNIKA REZLNFIVCVS DAYGISHAVK SLNIFPAMK YHKGQSN
551 ERRTQFRWQQ VLPVGDAMSQ TQWVELSRRK FTIKIVMWEQQ PIKGKKKLNPW
601 IEAAARMGYK ETDTNYDLP VPPARQFKSA DAAIKGIFDN SEVFGDARKV
651 MSDDGKWEQMG YGFGFQKSIT EERIQPGQGH GDNLADFEY TKVQGNKFWP
701 VDGRTQWDRP NAKYDPPYAK AGHSDDPACTD EPDKFLKQGN EQKPTT7ETY
751 SLKMAKIFF RFYMDPCEMP DREYDFWLCG GRVLKHHSQG TMMRPVELY
801 RAVFEACLCM HEEDAKAKGF FGQGMINWESS RRGSCARVE TRGRNRPFRG
851 LVPVFVFWDEK VMINKVCLDA TCRF
Chapter 3 Mass spectroscopy data:

Bruker MS analysis of the protein isolated in the *S. barnesii* NapA pilot expression and purification study.

---

**Detailed Protein Report**

**Project Info**
- Name: ZBA LCAS 2009
- Date: Thursday, February 5, 2009
- Note:

**Search Result Info**
- Name: HCT_bacteria_Mascot_2009-09-08 15:54:09

**Protein 1:**  periplasmic nitrate reductase [Sulfurospirillum barnesii]
- Accession: gij16914052
- Database: NCBIInr
- Database Date: 2009-06-10
- Modification(s): Carbamoyl methylation, Oxidation
- Score: 2027.58
- MW: 104.43 kDa
- pI: 9.45
- Sequence Coverage: 58.88%
- No. of unique Peptides: 66

---

**Peptide Sequences:**

<table>
<thead>
<tr>
<th>Peptide</th>
<th>Score</th>
<th>MW</th>
<th>pI</th>
<th>Coverage</th>
<th>Unique Peptides</th>
</tr>
</thead>
<tbody>
<tr>
<td>HNIVDKKL WTVSNKLH PRGPDHF QRTIVGQK</td>
<td>1027.58</td>
<td>104.43</td>
<td>9.45</td>
<td>58.88%</td>
<td>66</td>
</tr>
</tbody>
</table>

---

*Note: The image contains a detailed protein sequence and peptide information which is not transcribed here.*
<table>
<thead>
<tr>
<th>Compd. No. of Compd.</th>
<th>mol. wt.</th>
<th>A ref.</th>
<th>E ref.</th>
<th>R1</th>
<th>Score</th>
<th>P</th>
<th>Charge</th>
<th>Sequence</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>183</td>
<td>171,280</td>
<td>128.04</td>
<td></td>
<td>1</td>
<td>12.99</td>
<td>73.20</td>
<td>0</td>
<td>KGKCI</td>
<td>KGKCIKGKCI</td>
</tr>
</tbody>
</table>

Detailed Protein Report

<table>
<thead>
<tr>
<th>Compd. No. of Compd.</th>
<th>mol. wt.</th>
<th>A ref.</th>
<th>E ref.</th>
<th>R1</th>
<th>Score</th>
<th>P</th>
<th>Charge</th>
<th>Sequence</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>184</td>
<td>157,420</td>
<td>128.04</td>
<td></td>
<td>2</td>
<td>12.99</td>
<td>73.20</td>
<td>0</td>
<td>KGKCI</td>
<td>KGKCIKGKCI</td>
</tr>
</tbody>
</table>

... (Continued)
Mass spectrometry analysis report identifying *S. barnesii* NapA, which isolated from *E. coli* T7 express. A) Coverage map, B) peptide list. See the recombinant *S. barnesii* NapA pilot expression and purification protocol in Chapter 3. After SDS-PAGE separation, the NapA band was extracted from the gel, and then sent for analysis (Bruker Corporation, Germany). The only significant hit was periplasmic nitrate reductase (NapA) from *S. barnesii* with 59% sequence coverage.
Mass spectroscopy analysis and identification of NapA and NapD. Four samples were extracted from the SDS/PAGE gel below (see Figure 3.12) numbered 1-4. The MS data collected for these samples is provided below. Mass spectroscopy analysis performed by Peter Chovanc.
Sample 1
Match to: gi|57237625 Score: 1217
nitrate reductase [Campylobacter jejuni RM221]
Found in search of C:\Documents and Settings\Administrator\Desktop\CS11269.mgf
Nominal mass (m/z): 105561; Calculated pI value: 8.76
NCBI BLAST search of gi|57237625 against nr
Unformatted sequence string for pasting into other applications

Taxonomy: Campylobacter jejuni RM221
Fixed modifications: Carbamidomethyl (C)
Variable modifications: Oxidation (M)
Cleavage by Trypsin: cuts C-term side of KR unless next residue is P
Sequence Coverage: 45%

Matched peptides shown in Bold Red

1 MNRRFDTNMT ALIASASVAG LSVPSSSLGA QEERKWKWDQV VCFRGSTGCG
51 IMIARPDQXI VATKEDPAAP VNQGNCIKG YPNAFIMGGE DRULVNPILRM
101 NEKGFEDMKG KFOQTVSQRA FDEMEKQKFKK AYNELVGTGIF GFGSSQYTI
151 QEGYAAFLA KAGFRTNNID FNARHCASAV VGGRMZTFGVD EPEQSCYDDI
201 ELTDTIITKG ANMAEMHPIIL WSRVSDRKLS NLDKVKVNNI STSFHRTSNI
251 ADIEIFIFEN TDLAANWYIA REIVYNHEHPA MMKREIKDHC VFAFYGADIG
301 YGRQNNNHMP KEQREKEDTV EKENYITLDD BKAAALSLLYG VKGDKFEMK
351 MDYKGVSTAC VAFDEEYCTAA VAKCDDVQGIE HQDKQNLQRL
401 ANYLIEKSK VVQFIVTSQNNQHTRSWWWG1 QAYMEMHFLLG EQAECQGSQAF
451 SŁTQQFSKGO TARETVGSF9H LPLAMVVAGF REISEKIKWVFPAKTINP
501 KPQSGFLZTM RLEDGKIEF AAVQVRPLNQF MNANANWIA AAREMDNFTV
551 VSQCYPGISA KVADLILFSA MIYENQWAGY NAERERTQHMK QQVLFVGAAAM
601 SDTWQILEFA KRFKLRKWEQ EQKVNKLTLGSVLEEAKAM GYSEDDTLDFO
551 VLFRKPEKSP FNGNDAIAEQ FNMTDVKGDS RKLQGSQDKF ETOYGFVQOK
701 YLSIEEYRFG LSGHMILADDF DTERKWOAA WWVVNGKEWI WWENFHYXYD
751 AK1AARHPDP AFYDPHMLV MNDDLLAPK EKEMINSKMP KIPPEPMMKA
801 PERESEKPVF NLATGRULHV WHSSTMTRV PELYPFNPFA LCTMSERKEDGE
851 KGELNWQELV MVESRGRKVK ARVMQVRKSK DFPVGLYVVPF FDENVYINKV
901 TLDACFISK QTDFKCGAVK IYKA
Sample 2
Match to: gi|169104652 Score: 1367
periplasmic nitrate reductase [Sulfurospirillum barnesii]
Founds in search of C:\Documents and
Settings\Administrator\Desktop\CS21269.mgf
Nominal mass (M): 105393; Calculated pI value: 8.77
NCBI BLAST search of gi|169104652 against nr
Unformatted sequence string for pasting into other applications

Taxonomy: Sulfurospirillum barnesii

Fixed modifications: Carbamidomethyl (C)
Variable modifications: Oxidation (M)
Cleavage by Trypsin: cuts C-term side of KR unless next residue is P
Sequence Coverage: 49%

Matched peptides shown in Bold Red

1  MSLSRREDLKL TAAASAAAAL VGIGVPAELK AAGEQAEANN KWDKAVCRFC  
51  QFTCCGIMAT KEKTVAVEG DPAFPVHRLG NCKKGYNAK IMYGADRLEK  
101  PLLRMNOKGE FDKKGQFKPV SMKRAFEDNE KHKAAAKVGG PGEAIGVFQG  
151  QYQTIGQGA AAAMKAGFGR ANGIDPHARN CMAASAVAFPI QTFGIDEPAG  
201  CYDDQIETDD IITWGMAMAE MHPIPSRSVS DRKLTSFRDY KVNLSTYTX  
251  RGDADIIE LIIFSSTDLOI WNYIARETVY NHPEAIDMDF VKIINTFITTG  
301  FANLQGRQAT EAAERKLGTS AKELEVRNQ DAVI3EREA FQLAHLFVQG  
351  GEDMIDVAYD AAASHEISIP EDFKISALEFY TLSEYVAKSX GNPDKLEDIF  
401  KVRQSLGLAY YIEAKRNVGS FWTMEFGAQG ROTTWNEQSY MYHLLLGKQAL  
451  KPCDGAPSIL GQPSACQGAR EVQPTTHLPL XDQVY1P4K4 REVSEKTW1L  
501  FAPZLTMNYG QHDIMKRIQI ESQKTKFAMV NVCNYPQDRA NANNHIEKA0E  
551  ELDNFVSCID AYPGSSAKVS DLILPSAMY EIWKGSYGA3E R8TQHMRQQV  
601  LPVGDAMSST WQQVELK3EF TIKDW9EQP IKGGKLNPVI EAAKAMGYK3  
651  TTDYMTVIFAP TPFARQFKAD DA1GKQGDNS ESVGFADRVHM GSDKQETSGY  
701  GFFIQKSIHE EYRQGLGHG HDLADFDTYH KVRGLNKFV7 DGKETQNRFPN  
751  AKYDPYABA GNDDFPAYGD FAKALKGNL VRKPTTEETY3 LKNKAK11FRR  
801  PYMDFCEMFD REYTDW1CGR VRLEWHSUT MMTVPFELYR AYPEALCDMG  
851  PEDAKAKFC QGSMQNLGR RGSCKARVET RGNRR7F0GGL VVVFPHFDEK1  
901  MIHVKLLIAT CF2EQ2TDYK KCAVXLYKA
Sample 3
Match to: gi|16104652 Score: 1154
periplasmic nitrate reductase [Sulfurospirillum barnesii]
Found in search of C:\Documents and Settings\Administrator\Desktop\CS31265.mgf
Nominal mass (M): 105393; Calculated pI value: 8.77
NCBI BLAST search of gi|16104652 against nr
Unformatted sequence string for pasting into other applications
Taxonomy: Sulfurospirillum barnesii
Fixed modifications: Carbamidomethyl (C)
Variable modifications: Oxidation (M)
Cleavage by Trypsin: cuts C-term side of KR unless next residue is P
Sequence Coverage: 43%
Matched peptides shown in Bold Red

1  MSLSRRDFK TAAASAAAA VGIGVPAELK AAGEQEAEANW KWHKAVCRF
   51  QTGCQIDVAT KEKIVAVEG DPAAPFPNRL GCXIGYNAK IMYGRDLKQ
   101  PLLRMDNDE FDKQGQPQFV KWRFSPFDE KHIKAAFKV GPEAILVGFG
   151  QYTTIQCERA AANKMKAGFR ANGIDPNAAH CMASAVAGM QTFGIDEPA
   201  CYDDEIDITT ITTFGANMMA MHPIWSRVS DAKLTFPDRW KTVNLSTYTH
   251  RCSDLADLS IFSFSTDLAI WNYAIERY YHFEEAMDF VRRMTIFIGS
   301  PAFTNTQYDNT AKLPVTKTSP AKPELVTFKR TKKLTQSPFPQ PSKAALNSRKA
   351  GDHMRMDRFD AAAADNEHIS EFKQFLAIET TLEIYAVKLS GFNPDKLED
   401  KVIQLEGALL YEEKPKAIVYS PFMGFHYQHQ RCTWNEQGSY MHPNFLKQA
   451  KPCQGAPSST QTSPASCGTAR EVGRTFTTHF YDMVISIPKH RVSEKPLWHL
   501  PAGTINMUESQHDKMRQI ESKTQPAFV NVCNPYQDTA NANNWKLAA
   551  ELDNPITSCD AYPOISAKYCS DLILPAMHIE EKWGSYNAE RRTQHNRQVQ
   601  LPGVDANST WQVNEILSKK EIKDVWNEQK IPKGKLPNI EAAKAMGYKE
   651  TDKMYLDVFLA TFFAFQKFKD DAIKGNQFS EVFQDARKVM GSDGRKLEFG
   701  QFPTQKINDE EYRIGQGLGhh HDLADFTDHY KVRGLKMPV VDGKETQWRFN
   751  AKYDNPYAAA GNQDGFAYID FAKALKGGEL KRPIETEYTS LNNKAIFFR
   801  FYMIDCPEMD KEDMFWLCTG RVLEHWHSSOT MDHETFELRF AVFEPALCITH
   851  PEDAKAKQFK QGTHINWLSR KGSCKARVET RGRNRTFLGL VFYEFDEKY
   901  MINKVCLDAT CPSEKQDTGY KCAVVKLYKA

Sample 4
Match to: gi|57237630 Score: 193
NapD [Campylobacter jejuni RM221]
Found in search of C:\Documents and Settings\Administrator\Desktop\CS41269.mgf
Nominal mass (M): 12950; Calculated pI value: 4.23
NCBI BLAST search of gi|57237630 against nr
Unformatted sequence string for pasting into other applications
Taxonomy: Campylobacter jejuni RM221
Links to retrieve other entries containing this sequence from NCBI
Entrez: gi|57166434 from Campylobacter jejuni RM221
Fixed modifications: Carbamidomethyl (C)
Variable modifications: Oxidation (M)
Cleavage by Trypsin: cuts C-term side of KR unless next residue is P
Sequence Coverage: 52%
Matched peptides shown in Bold Red

1  MNRILSLSLL AKEYINDK KAIIEIFCGS VELCNEKII VVIESNLED
   51  ELNSYK4L5K LPHISINMW FSQDLDNDDI QKAINSGAE TIEKMNINAEN
   101  IRYYGSVFQ FS
Appendix IV: The effect of hexavalent chromium on dissimulatory nitrate reduction to ammonia by the soil bacteria: *Sulfurospirillum barnesii*, *Geobacter metallireducens* and *Desulfovibrio desulfuricans*.

6.1. Introduction

Chromium has been considered to be both a toxin and an essential micronutrient to humans; [223] however, the benefits of chromium are still under debate. High valence states of chromium are notoriously toxic; Cr\textsuperscript{VI} is a known mutagen and carcinogen. [224] Chromium deficiency has been associated with metabolic disturbances, such as diabetes, [225-227] and many studies suggest that Cr\textsuperscript{III} is essential for lipid and carbohydrate metabolism. However, unlike other essential transition metals (i.e., Co, Cu, Fe, Mo, Mn, W, or V), no Cr-containing biomolecule has been identified in any organism, [228-230] if such a molecule does exist, the explicit function and mode of action is not known. Conversely, elevated levels of Cr\textsuperscript{III} also cause adverse health effects, [225, 231, 232] as Cr\textsuperscript{III} can damage DNA. Regardless, chromium has the demonstrated ability to be hazardous to human health, and the toxicity of chromium depends on the oxidation state, Cr\textsuperscript{VI} is the most toxic.

Chromium is found extensively in the earth’s crust; Cr\textsuperscript{III}, the most common oxidation state, is naturally found in rocks, plants, soil, and animals. [233] Cr\textsuperscript{VI}, which is more water-soluble, is also prevalent in the environment, primarily as a result of human activities. [233] Chromium has many industrial uses, such as metallurgy, paint, dye and pigments, tanning, refractory materials, and chemical manufacturing. Chromium contamination has become more prevalent in the past 30 years as a result of improper
disposable practices and leaching; as a result, both Cr\textsuperscript{III} and Cr\textsuperscript{VI} have become more prevalent in the environment. In 1980, the comprehensive environmental response, compensation and liability Act, known as “Superfund”, was enacted to identify and clean-up hazardous waste sites throughout the United States. Currently, over 200 chromium containing superfund sites are active.[234] Unfortunately, removing the Cr\textsuperscript{VI} contamination is not straightforward, as the chemical can leach deep into groundwater and subsurface sediment.

Ideally, bioremediation of chromium contaminated sediment would utilize naturally occurring soil organisms to transform Cr\textsuperscript{VI}, which is more mobile in the environment and more toxic, into Cr\textsuperscript{III}, the less mobile and the more inert chromium species. A similar strategy is employed for selenate contamination. Bioreactors, which were lined with immobilized \textit{S. barnesii} cells, utilize the organism selenate reductase activity to transform selenate contaminate waste water into elemental selenium, which was essentially insoluble and less toxic.[163] Nitrate was also present in the waste water, \textit{S. barnesii} was able to remove excess nitrate concurrently.[163] The success of this project pivoted on the fact that the enzymatic reduction of selenate and nitrate did not affect each other, as transformation selenate and nitrate utilize different enzymes, selenate reductase and nitrate reductase respectively. The direct application of this approach to chromate and nitrate reduction is hindered by one obstacle; elevated concentrations of chromate can completely inhibit nitrate reduction.[235, 236] The mechanism for this inhibition is not known; however, studying the enzyme activity may elucidate the molecular basis for the inhibitory effect of chromate on nitrate reduction.
Several “chromate reductase” enzymes have been investigated. While chromate reduction was once believed to be a secondary activity,[237] many NADH or NADPH dependent enzymes display a tight binding affinity for chromate. [238-244] In fact, the elected chromate reductases (ChrR) are flavin dependent. Nitroreductases,[245] c-type cytochromes[246] and hydrogenases [247] can also reduce chromate. The somewhat unspecific nature of chromate reduction by oxidoreductases enzymes[239] may be an indication that chromate can oxidize the enzymes responsible for nitrate reduction.

Therefore, in an effort to understand the mechanism of chromium reduction by *Sulfurospirillum barnesii*, we chose to examine the effect of CrVI reduction on nitrate reduction. In *S. barnesii*, nitrate is enzymatically reduced to ammonia, via nitrite, using two enzymes, the periplasmic nitrate reductase (Nap) and the membrane bound formate-linked nitrite reductase (Nrf). The catalytic subunit, NrfA is a cytochrome c containing enzyme, chromate may interact with NrfA similar to the *Desulfovibrio vulgaris* cytochrome c.[246] For comparison, *Geobacter metallireducens* and *Desulfovibrio desulfuricans* were investigated, as the closely related *Geobacter* and *Desulfovibrio* species can reduce CrVI. [246, 248, 249] The goal of this study was to: 1) establish the assay conditions for monitoring the enzymatic reduction of nitrate, nitrite, and chromium; and 2) study the effect of chromate (CrVI) on the enzymatic reduction of nitrate and nitrite.
6.2. Experimental

6.2.1. Cultivation of bacteria

*G. metallireducens* was grown on freshwater acetate medium with nitrate as previously described.[248] *S. barnesii* and *D. desulfuricans* were grown on freshwater medium with lactate and nitrate as previously described[169]. Chromate was filter sterilized and amended after autoclaving.

6.2.2. Crude fractionation of bacteria cells

The cell paste was suspended in an anoxic buffer (SES-3 lysis buffer, Appendix V) using a dounce (Knotes). The homogenized cell slurry was passed through a French pressure cell press (Thermo Scientific) two times at ~14,000 psi (900 mPa gauge pressure) before a protease inhibitor cocktail (Sigma- Aldrich) and Deoxyribonuclease I (Sigma- Aldrich) were added. The lysate was then centrifuged at 8000 rpm for 10 minutes to remove unbroken cells and debris. The clarified lysate was centrifuged at 300000 \(g\) (Beckman Coulter Ultracentrifuge, 50.2Ti rotor) for 1.5 hours to separate soluble (periplasm and cytoplasm) and insoluble particles (membrane and ribosomes).

6.2.3. Detergent solublization of membrane proteins

The insoluble pellet was homogenized with 50 mM Tris HCl (pH7.6), and then the insoluble proteins were suspended by adding detergent and stirring overnight at 4°C. Finally, the insoluble fraction was removed by centrifuging the sample at 245000 \(g\) for 1 hour, and then suspended in 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate (CHAPS). *S. barnesii* was incubated with 1% (w/v) CHAPS, *D. desulfuricans* and *G. metallireducens* were incubated 5% (w/v) of CHAPS.
**6.2.4. Preparative CHAPS native- polyacrylamide gel electrophoresis**

Preparative CHAPS native- polyacrylamide gel electrophoresis (CN-PAGE) was used to separate proteins in the CHAPS soluble fraction. A solid cylindrical (tube) gel, 2.5 inch diameter, was created by casting the CN-PAGE inside a modified Model 491 PrepCell (BioRad). The protocol for the CN-PAGE buffers is in Appendix V. Briefly, the resolving and stacking gels contained 0.5% of CHAPS, the sample buffer contained 0.7% CHAPS and the anode buffer 0.1% CHAPS. Electrophoresis was performed using cold buffer and separation was performed using 100 V for at least 3 hours. The entire tube gel was removed, washed with water, and then separated into small disk shaped sections, which were diced prior to electroelution. Electroelution was conducted using the Elutrap™ System (Whatman) according to the manufacturer’s guidelines. The diced gel samples were immersed in the CHAPS anode buffer. Electrophoresis was conducted at 100 V for 1 hour. Each fraction was collected, and stored at -20 °C.

**6.2.5. In-gel activity assays and native polyacrylamide gel electrophoresis**

Detergent soluble proteins were separated by electrophoresis under non-denaturing conditions. Both the resolving and stacking gels contained 0.5% of detergent (CHAPS or OBGP), sample buffer contained 0.7% detergent and anode buffer 0.1% detergent (Appendix V). Electrophoresis was performed at 40 V.

The in-gel assay was performed in 50 mM Tris-Cl (pH 7.9) with 10 mM methyl viologen or benzyl viologen as the electron donor and potassium nitrate [0.1M], potassium nitrite [10 mM], or potassium chromate [0.7 mM] as the electron acceptors in presence of sodium dithionite. Images of the activity gels were collected with the Bio-
Rad densitometer GS-800. After the activity assay was finished gels were washed in deionized water, and then incubated for 15 minutes in 12.5 % (w/v) trichloroacetic acid solution prior to staining with colloidal coomassie stain (Appendix V). Proteins were stained with a colloidal coomassie blue G-250 solution (Appendix V) overnight, washed with methanol (25%) and scanned using a calibrated imaging densitometer (GS-800, BioRad). The relative density and molecular weight of the separated proteins were calculated with Quantity One software (BioRad).

**6.2.6. Sodium dodecyl sulfate polyacrylamide gel electrophoresis**

Discontinuous SDS/PAGE was used to analyze fractions for purity, using standard protocol[176] (Appendix V). A 12 % acrylamide resolving gel and a 5% stacker were used. After separation the gel was incubated in 12% trichloroacetic acid for 30 minutes to precipitate proteins followed by a 10 minute wash in water. The recipes can be found in (Appendix V). Electrophoresis was conducted using a constant voltage (60 V) for 2 hours and then at 120 V for 1 hour.

Unless noted otherwise, proteins were stained with a colloidal coomassie blue G-250 solution (Appendix V) overnight and washed with methanol (25%). Alternatively, the presence of covalently bound heme was determined as previously described.[251] Gels were scanned using a calibrated imaging densitometer (GS-800, BioRad). The relative density and molecular weight of the separated proteins were calculated with Quantity One software (BioRad). Molecular weight standards (Fermentas) were used to estimate the size of unknown proteins.
After SDS-PAGE, proteins were excised from the gel, digested with trypsin and analyzed with MALDI-TOF (trypsin digestion and MALDI-TOF were performed by a fellow lab member, a brief description of techniques used is located in Appendix V.

6.2.7. Assays

Protein concentration was measured using the DC protein assay kit (Bio-Rad). Bovine serum albumin (Pierce) was used as a standard.

Protein fractions were routinely screened for nitrate, nitrite, and chromate reductase activity via the reduced methyl viologen linked nitrate reductase assay.[171, 172] Microscale assays were performed inside an inert atmosphere glove box (Vacuum Atmospheres) at 22 °C using the ELx808 absorbance microplate reader (BioTek). The oxidation of methylviologen was monitored at 630 nm using Gen5 Data Analysis Software (BioTek).

The reaction buffer contained TrisHCl [100 mM] (pH 7.6). All stock solutions were prepared in the reaction buffer. The final concentrations of reactants were 3 mM methyl viologen or benzyl viologen. The substrate concentration is provided in the figure legends. All assay solutions were purged with nitrogen or argon gas for 20 minutes, and then sealed before transfer into the anaerobic chamber. Methylviologen was partially reduced by titrating with a sodium dithionite stock [60 mM] solution to yield a final absorbance of 1.2–1.6 at 630 nm. The enzyme was incubated with the reduced methyl viologen for 10 minutes and the absorbance was monitored to ensure the rate of oxidation was insignificant, prior to addition of nitrate. The reaction was initiated by the addition of potassium nitrate and the absorbance was monitored until the reaction stopped (i.e. Abs
=0). Under the given conditions, the rate of reduced methylviologen oxidation by the protein sample alone (i.e., no substrate) was found to be negligible.

The absorbance of electromagnetic radiation (630 nm) by reduced methyl viologen (MV$_r$) was converted to a unit of concentration using the Beer-Lambert law ($A = \varepsilon b c$), given the reported extinction coefficient of MV$_r$ ($\varepsilon = 13700 \text{ M}^{-1} \cdot \text{cm}^{-1}$) [173] or BV$_r$ ($\varepsilon = 7400 \text{ M}^{-1} \cdot \text{cm}^{-1}$)[252] and the calculated path length ($b = 0.667 \text{ cm}^{-1}$). The rate of methyl viologen oxidation (i.e. decrease in [MV$_r$]) was determined by plotting the concentration of MV$_r$ over time (seconds). Linear regression (GraphPad Prism)[174] of the initial data points (first 90 seconds after adding nitrate) was used to calculate the rate of methyl viologen oxidation.

In addition to the methyl viologen assay, the concentration of nitrite produced was measured using the diazo coupling technique (Griess assay, Appendix V).[175] Potassium nitrite (Fluka) was used as a standard for nitrite estimation, within the range of 1.6 $\mu$M-100 $\mu$M.

**6.2.8. Spectroscopy and redox cycling of cytochromes**

A Carry-500 spectrophotometer was used to collect the electronic spectra of protein samples. The cytochrome protein (400 $\mu$L) was reduced after the addition of 60 $\mu$L sodium dithionite [0.1 M], and then re-oxidized by adding 20 $\mu$L potassium chromate [0.1M].
6.3. Results and Discussion

6.3.1. The effect of chromate on Sulfurospirillum barnesii strain SES-3 nitrate and nitrite reductase activity.

While the main object of this study was to determine the effect of chromate on nitrite reductase, the technical aspects of simultaneously assaying chromate, nitrate and nitrite activity will be briefly discussed. In this study, the enzymatic reduction of chromate, nitrate, and nitrite (Equations 1-3) was monitored using multiple colorimetric assays. Methyl or benzyl viologen, are routinely used to estimate nitrate and nitrite reduction,[253-256] especially during protein purification. Reduced viologen is a deep purple to blue color, while the oxidized viologen is colorless;[252] therefore, the rate of viologen reduction can be easily monitored spectrophotometrically. However the reduced viologen assay has a more practical purpose, providing electrons to the enzyme during catalysis. The viologen, which is in the oxidized state, is typically reduced with a sodium dithionite solution (see Table 6.2 for redox potentials), after the oxygen levels were minimized. Because this assay is using powerful reductants; the abiotic chromate reductase activity was carefully monitored using multiple control experiments. Figure 6.7 illustrates that the blank, dithionite reduced benzyl viologen is not oxidized, at any detectable rate, by chromate. Only the sample which contains enzyme and chromate can oxidize reduced benzyl viologen.

Equation 1: \[ \text{NO}_3^- + 2e^- + 2H^+ \rightarrow \text{NO}_2 + H_2O \quad (E^o = 0.42 \text{ V}) \]

Equation 2: \[ \text{NO}_2^- + 6e^- + 8H^+ \rightarrow \text{NH}_4^+ + 2H_2O \quad (E^o = 0.34 \text{ V}) \]

Equation 3: \[ \text{Cr}_2\text{O}_7^{2-} + 6e^- + 14H^+ \rightarrow 2\text{Cr}^{3+} + 7H_2O \quad (E^o = 1.33 \text{ V}) \]
Table 6.1: Redox potentials of compounds used in this study

<table>
<thead>
<tr>
<th>Compound</th>
<th># e⁻</th>
<th>Redox potential, E₀ (V)</th>
<th>reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dithionite</td>
<td>1</td>
<td>-0.660</td>
<td>[180]</td>
</tr>
<tr>
<td>Methyl Viologen</td>
<td>1</td>
<td>-0.440</td>
<td>[257]</td>
</tr>
<tr>
<td>Benzyl Viologen</td>
<td>1</td>
<td>-0.360</td>
<td>[257]</td>
</tr>
<tr>
<td>NAD⁺/NADH</td>
<td>2</td>
<td>-0.320</td>
<td>[257]</td>
</tr>
<tr>
<td>NO₂⁻/NH₄⁺</td>
<td>6</td>
<td>+0.340</td>
<td>[257]</td>
</tr>
<tr>
<td>NO₃⁻/NO₂⁻</td>
<td>2</td>
<td>+0.421</td>
<td>[257]</td>
</tr>
<tr>
<td>½ O₂/H₂O</td>
<td>2</td>
<td>+0.816</td>
<td>[257]</td>
</tr>
<tr>
<td>Cr⁶⁺/Cr³⁺</td>
<td>6</td>
<td>+1.33</td>
<td>[258]</td>
</tr>
</tbody>
</table>

For a more direct approach, nitrite was quantified after the nitrate and nitrite reductase assays completed. The diazo coupling technique,[259] referred to as the Griess assay, was used to measure nitrite concentration. Briefly, nitrite reacts with sulfanilamide creating a diazonium complex, and then naphthylethylene-diamine dihydrochloride (NEDD) creates a red “azo dye”. Unfortunately, the Griess assay denatures the enzyme, due to the acidic reagents. Thus only quantification of the quenched reaction is possible. The diphenylcarbohydrazide (DPC) assay, which can quantify the hexavalent chromium concentrations, was investigated. However the presence of dithionite inhibited the assay, as indicated by the false negative measurements potassium chromate standards (data not shown). Therefore, the DPC assay was not used to monitor chromate reduction, First, the effect of chromate on the Griess assay was investigated. We have established that using the reduced methyl viologen assay under the specified conditions: 1) mixing chromate and nitrate does not affect the Griess assay (Figure 6.1), as the estimated nitrite concentration is comparable in both nitrate and nitrate mixed with chromate controls (i.e., without protein); 2) chromate does not affect the Griess assay by providing false
positives or negatives (Figure 6.2); 3) chromate may affect nitrite concentration (Figure 6.2), approximately 8% less nitrite was measured in the nitrite plus chromate stock compared to the nitrite stock. This indicates that chromate may reduce nitrite or inhibit the formation of the azo dye in the Griess assay. All reagents were prepared using the same nitrate or nitrite stock solution, chromate was amended where indicated; solutions were prepared using analytical glassware.

Figure 6.1: The effect of chromate on nitrate reductase activity in the S. barnesii lysate. Two protein samples were assayed, the lysate prepared from S. barnesii cells grown on nitrate media supplemented with 1 mM chromate (grey bars) or un-amended nitrate media (black bars). The blank, no protein, samples (white bars) indicated the initial concentration of nitrite in each. Cr = 0.7 mM potassium chromate.

Nitrate reductase activity appears to increase in the presence of chromate (Figure 6.1). However the data must be interpreted with care, as nitrite can be converted to ammonia via nitrite reductases. In other words nitrite concentrations may be higher when chromate is introduced because nitrite reductases are inhibited. The nitrite reductase activity assay confirms this concept (Figure 6.2). Nitrite reduction is inhibited by the
presence of chromate in *S. barnesii*. Assays conducted with nitrite and chromate decreased the conversion of nitrite from 65% to 45% in cell lysate of cultures grown on nitrate media and decreases from 91% to 44% in cell lysate of cultures grown on nitrate and chromate (Table 6.2). Surprisingly, *S. barnesii* cells exposed to chromate during growth reduced the most nitrite, 91% of the initial nitrite was reduced. The lysate extracted from *S. barnesii* cell which were not exposed to chromate reduced 65% of the initial nitrite. However, the *S. barnesii* growth conditions had no effect on nitrite conversion when chromate was present in the assay compared to the nitrite only assay, 44% and 45% conversion.

![Figure 6.2: The effect of chromate on the nitrite reductase activity of *S. barnesii* lysate. Two protein samples were assayed, the lysate prepared from *S. barnesii* cells grown on nitrate media supplemented with 1 mM chromate (grey bars) or un-amended nitrate media (black bars). The blank, no protein, samples (white bars) indicated the initial concentration of nitrite in each. The final concentration of substrates was the same in each assay, potassium chromate [0.7 mM] and potassium nitrite [1.0 mM].](image-url)
Table 6.2: The effect of chromate on the nitrite reductase activity of *S. barnesii* lysate. Cells were grown on nitrate enriched media in the presence or absence of 1 mM chromate. To assay nitrite reductase activity, the methylviologen assay was used to nitrite reductase activity was calculated by he values presented are percent difference.

<table>
<thead>
<tr>
<th>Substrate</th>
<th>NO₂</th>
<th>NO₂ + Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cells grown on nitrate</td>
<td>65%</td>
<td>45%</td>
</tr>
<tr>
<td>Cells grown on nitrate + chromate</td>
<td>91%</td>
<td>44%</td>
</tr>
</tbody>
</table>

*S. barnesii* lysate, obtained from cells grown under nitrate respiratory conditions, can reduce Cr⁶⁺ ([Figure 6.3](#)). When the protein sample was incubated with chromate, benzylviologen is quickly oxidized; the solution was completely oxidized in under 200 seconds (i.e., Abs = 0). The data suggests that chromate can be enzymatically reduced by *S. barnesii*. Methyl viologen was not used as an electron donor because the background rate of oxidation in the presence of chromate was larger, possible due to the different redox potentials of methyl and benzyl viologen, - 0.47 V and − 0.35 V respectively ([Table 6.1](#)).[252]
**Figure 6.3:** The oxidation of reduced benzyl viologen by *S. barnesii* lysate in the presence of chromate. The concentration of benzyl viologen was estimated by monitoring the assay solution spectrophotometrically. The BioTek ELx808 multichannel plate reader was used to measure the absorbance at 630 nm inside an inert atmosphere glove box. In the presence of 100 μM potassium chromate, the dithionite reduced benzyl viologen (−) had an absorbance of ~1.3 at 630 nm, which was stable in the anaerobic atmosphere. *S. barnesii* lysate (200 μg of protein) quickly oxidizes benzylviologen in the presence of chromate (−). Analyses were performed using Prism (GraphPad). The rate of benzyl viologen oxidation was determined to be 2.148 μM per second ($R^2=0.92$). Three replicates were used, N=3. The rate of benzyl viologen oxidation by the enzyme was determined to insignificant.

To confirm if the viologen-coupled reduction of chromate is performed by a protein, native gel electrophoresis and in-gel activity assays were conducted. The CHAPS soluble fraction was chosen to remove interference from small redox active proteins in the whole cell lysate. The in-gel chromate reductase assay suggests that a *S. barnesii* protein is reducing chromate (**Figure 6.4**). A chromate reductase active band was observed in the in-gel assay preformed with cells exposed to chromate during growth but not in the un exposed cells (grown only on nitrate media). The chromate reductase band appears to be the same band as the nitrite reductase active band (**Figure 6.4**). The nitrite
reductase active band was present in fractions isolated from cells grown in the presence and absence of chromate. The fraction which was not able to oxidize benzyl viologen in the presence of chromate was isolated from cells which were not exposed to chromate during growth. This indicates that the *S. barnesii* protein expression may have changed by the presence of chromate. In any case the presence of a chromate reducing protein was established therefore, the focus of the future experiments moved to isolate the chromate reducing protein using preparative native gel electrophoresis. Because, the same protein complex exhibited chromate and nitrite reductases activity, both activities were monitored during purification.
**Figure 6.4:** *S. barnesii* native gel electrophoresis and in-gel nitrate and chromate activity assay. The membrane proteins, collected in the insoluble fraction, were solubilized with 1% CHAPS, then separated via CN-PAGE. The gel was stained with a reduced methyl viologen solution, and then incubated for ~ one minute with substrate, either 0.1 mM potassium nitrite (KNO₂) or 0.1 mM potassium chromate (K₂CrO₄), before transferring to the densitometer to capture this image. The local oxidation of methylviologen is indicative of “active” protein bands; the oxidation of reduced methylviologen in this assay appears as bleaching (white bands). Oxidation occurred in less than 10 minutes, in the case of chromate, and within 5 minutes with nitrate. The plus sign (+) indicates the bacteria were grown in the presence of 100 μM potassium chromate, (-) indicates the bacteria were not grown in the presence of chromate. For reference, the coomassie stained gel is provided.

The large scale purification of the nitrite-chromate reductase was conducted by simply scaling up the reagents used in the mini-scale CN-PAGE. Instead of casting a flat gel, a tube gel was utilized. Also, bromophenel blue was omitted from the loading buffer so that the cytochromes could be visualized easily. A photograph of the tube gel after electrophoretic separation is provided to illustrate the presence of colored protein bands (Figure 6.5). After the proteins were electroeluted, the electronic absorption spectrum was collected for each sample. Because nitrite reductase (Nrf) contains four c-type cytochromes [151, 260] the presence of cytochromes was monitored spectrophotometrically. The ratio of A₂₈₀/ A₄₀₀ provides an indication of the iron sulfur

204
content, relative to protein concentration, in each fraction (Table 6.3), as iron-sulfur containing proteins characteristically exhibit an absorbance at 400 nm. Fractions four and five, which were yellow (Figure 6.5), have the highest iron-sulfur content. The fraction, which displays nitrate, nitrite and chromate reduction using the in-gel assays (fraction 1) contained low iron sulfur content. The SDS-PAGE gel of select fractions is in Figure 6.6.

Table 6.3: The electronic absorption data of S. barnesii fractions isolated with preparative CN-PAGE. The ratio of $A_{280}/A_{408}$ provides an indication of the iron sulfur content in each fraction; as $A_{408}$ is indicative of iron-sulfur proteins. Fractions four and five, the yellow samples (see Figure 6.5), have the highest iron sulfur content.

<table>
<thead>
<tr>
<th>S. barnesii Fraction #</th>
<th>$A_{280}/A_{408}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.06</td>
</tr>
<tr>
<td>2</td>
<td>0.11</td>
</tr>
<tr>
<td>3</td>
<td>0.17</td>
</tr>
<tr>
<td>4</td>
<td>0.44</td>
</tr>
<tr>
<td>5</td>
<td>0.60</td>
</tr>
<tr>
<td>6</td>
<td>0.39</td>
</tr>
<tr>
<td>7</td>
<td>0.12</td>
</tr>
<tr>
<td>8</td>
<td>0.01</td>
</tr>
</tbody>
</table>
Figure 6.5: The preparative fractionation of the *S. barnesii* CHAPS soluble fraction using electrophoresis. The 1% CHAPS soluble fraction was separated using preparative CN-PAGE using a modified Model 491 Prep Cell (BioRad). A) A photograph of the resulting gel, B) the in-gel nitrite reductase activity assay preformed on a horizontal slice from the tube gel C) a diagram of the tube gel sectioning. The eight segments were isolated from the acrylamide gel matrix by electroelution.

To further probe for the presence of c-type cytochromes, the electronic absorption spectra were collected for the as-isolated protein sample and the reduced protein, in the presence of dithionite. The sorre band shift from 408 to 420 nm is indicative of cytochromes, and the appearance of α and β bands (520 & 550 nm), c- type cytochromes. Fractions four and five, the yellow protein, had the highest protein and iron sulfur content. The electronic spectrum indicates that this protein does not include a c-type cytochrome (Figure 6.7).
**Figure 6.6:** SDS-PAGE of *S. barnesii* protein fractions isolated with preparative CN-PAGE. A 12% acrylamide gel was used. After colloidal coomassie blue staining, the gel was scanned with a densitometer (Bio-Rad, GS 800) and the molecular weights calculated (Quantity One, Bio-Rad). S2, fraction 2; S4, fraction 4; and S7, fraction 7.

**Figure 6.7:** The electronic absorption spectra of the yellow protein fraction isolated from *S. barnesii*. The as- isolated protein (black line), and the dithionite reduced (red line).

### 6.3.2. The effect of chromate on *D. desulfuricans* nitrate and nitrite reductase activity.

The preparative CHAPS native polyacrylamide gel electrophoresis (CN-PAGE) procedure used to in the purification of *S. barnesii* proteins was repeated for *D.*
desulfituricans. Like S. barnesii, the in-gel nitrite and chromate reductase activity was present in cells exposed to chromate, and cells not exposed to chromate during growth do not have chromate reductase activity (Figure 6.8). An indication of chromate induced expression of chromate reductases.

![Image](image_url)

**Figure 6.8:** D. desulfituricans native gel electrophoresis and in-gel nitrate and chromate activity assay. The membrane proteins, collected in the insoluble fraction, were solubilized with 5% CHAPS, then separated via CN-PAGE. The gel was stained with a reduced methyl viologen solution, and then incubated for ~ one minute with substrate, either 0.1 mM potassium nitrite (KNO₂) or 0.1 mM potassium chromate (K₂CrO₄) before transferring to the densitometer to capture this image. The local oxidation of methylviologen is indicative of “active” protein bands; the oxidation of reduced methylviologen in this assay appears as bleaching (white bands). Oxidation occurred in less than 10 minutes, in the case of chromate, and with-in 5 minutes with nitrate. The plus sign (+) indicates the bacteria were grown in the presence of 100 μM potassium chromate, (-) indicates the bacteria were not grown in the presence of chromate. For reference, the coomassie stained gel is provided.

The preparative CN-PAGE separation of D. desulfituricans CHAPS soluble fraction revealed the presence of multiple chromophores (Figure 6.9). All fractions contain iron sulfur proteins (Table 6.4). Fractions four and five contained a high amount of iron sulfur protein content, and are deep green in color and heme stain positive (Figure 6.9). Fraction 7 had nitrite reductase activity in the preparative scale in-gel assay (Figure 6.9). Fractions one and two were pink, these are the fractions which exhibited nitrite and
chromate reductase activity (Figure 6.8 and Figure 6.9). Fraction ten was yellow, this protein was lost during electroelution as the small size of the protein permitted it to travel through the membranes. The SDS-PAGE gel of the fractions purified is in Figure 6.10.

Table 6.4: The electronic absorption data of *D. desulfuricans* fractions isolated with preparative CN-PAGE. The ratio of $A_{280}/A_{408}$ provides an indication of the iron sulfur content in each fraction; as $A_{408}$ is indicative of iron-sulfur proteins.

<table>
<thead>
<tr>
<th><em>D. desulfuricans</em> Fraction #</th>
<th>$A_{280}/A_{408}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.32</td>
</tr>
<tr>
<td>2</td>
<td>0.48</td>
</tr>
<tr>
<td>3</td>
<td>0.42</td>
</tr>
<tr>
<td>4</td>
<td><strong>0.64</strong></td>
</tr>
<tr>
<td>5</td>
<td><strong>0.64</strong></td>
</tr>
<tr>
<td>6</td>
<td>0.21</td>
</tr>
<tr>
<td>7</td>
<td>0.63</td>
</tr>
</tbody>
</table>
Figure 6.9: The preparative fractionation of the *D. desulfuricans* CHAPS soluble fraction using electrophoresis. The 5% CHAPS soluble fraction was separated using preparative CN-PAGE using a modified Model 491 Prep Cell (BioRad). (a) A photograph of the resulting gel, (b) the in-gel nitrite reductase activity assay performed on a horizontal slice from the tube gel (c) a diagram of the tube gel sectioning. The eight segments were isolated from the acrylamide gel matrix by electroelution.
**Figure 6.10:** SDS-PAGE of *D. desulfuricans* protein fractions isolated with preparative CN-PAGE. A 12% acrylamide gel was used. After colloidal coomassie blue staining, the gel was scanned with a densitometer (Bio-Rad, GS 800) and the molecular weights calculated (Quantity One, Bio-Rad). D1, fraction 1; D3, fraction 3; D4, fraction 4; D5, fraction 5; D6, fraction 6; D7, fraction 7.

The 62 kDa band from fraction five (**Figure 6.10**) was identified by MALDI-TOF MS as the alpha subunit of dissimilatory sulfite reductase (dSiR). The 51 and 35 kDa bands correspond in size to the beta and gamma subunits of dSiR. *Desulfovibrio* dSiR, also called desulfoviridin, is reported to catalyze the six electron reduction of sulfite. The *Desulfovibrio vulgaris* dSiR[261] protein has been studied for a number of years and has been reported to reduce nitrite and hydroxylamine. The electronic absorption spectra of the fraction five, the *D. desulfuricans* dSiR enriched fraction (**Figure 6.11**), confirms the presence of the siroheam protein. The 630 nm band is indicative of sirohemes, like desulfoviridin. **Figure 6.9** shows the characteristic green color of desulfoviridin in the tube gel (post separation). Fraction five had nitrite reductase activity, and chromate inhibited the transformation of nitrite (data not included).
Figure 6.11 The electronic absorption spectra of the desulfoviridin enriched fraction from *D. desulfuricans*. 
The electronic absorption spectra collect from the as-isolated and dithionite reduced *D. desulfuricans* fraction # 1 reveals the presence of a c-type cytochrome (Figure 6.12). Fraction one displays the most in-gel nitrite and chromate reductase activity.

**Figure 6.12:** The electronic absorption spectra of nitrite reductase activity fraction from *D. desulfuricans*. The as- isolated protein (black line), dithionite reduced (red line), and chromate oxidized (grey dashed line). The cytochrome protein (400 uL) was reduced after the addition of 60 uL of 0.1 M sodium dithionite, then re-oxidized by adding 20 uL 0.1M potassium chromate.
6.3.3. The isolation of a multiheme protein from *G. metallireducens* nitrate and nitrite reductase activity.

The preparative CHAPS native polyacrylamide gel electrophoresis (CN-PAGE) procedure used to in the purification of *S. barnesii* proteins (Section 6.3.1) was repeated for *G. metallireducens*. Unlike *D. desulfuricans* and *S. barnesii*, the CHAPS soluble fraction from *G. metallireducens* did not display any in-gel chromate reductase activity (data not included). Two fractions, fractions three and four had elevated levels of iron sulfur content (Table 6.5), these samples were a vivid pink color (Figure 6.13). After SDS-PAGE separation (Figure 6.14), the 34 kDa band was identified as a hypothetical *G. metallireducens* protein (accession number 78222133). The sequence of the hypothetical *G. metallireducens* protein indicated that is contains nine heme binding motifs. The electronic spectrum also indicates the presence of c-type cytochromes (Figure 6.15).

Table 6.5: The electronic absorption data of *G. metallireducens* fractions isolated with preparative CN-PAGE. The ratio of $A_{280}/A_{408}$ provides an indication of the iron sulfur content in each fraction; as $A_{408}$ is indicative of iron-sulfur proteins.

<table>
<thead>
<tr>
<th><em>G. metallireducens</em> Fraction #</th>
<th>$A_{280}/A_{408}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.95</td>
</tr>
<tr>
<td>4</td>
<td>1.16</td>
</tr>
</tbody>
</table>
Figure 6.13: The preparative fractionation of the *G. metallireducens* CHAPS soluble fraction using electrophoresis. 1% CHAPS soluble fraction was separated using preparative CN-PAGE using a modified Model 491 Prep Cell (BioRad). A diagram of the tube gel sectioning is provided in the left panel. A) a photograph of the resulting gel, B) the heme stained tube gel C) the in-gel nitrite reductase activity assay preformed on a horizontal slice from the tube gel. The eight segments were isolated from the acrylamide gel matrix by electroelution.
Figure 6.14: SDS-PAGE of *G. metallireducens* protein fractions isolated with preparative CN-PAGE. A 12 % acrylamide gel was used. After colloidal coomassie blue staining, the gel was scanned with a densitometer (Bio-Rad, GS 800) and the molecular weights calculated (Quanity One, Bio-Rad). G3, fraction 3; D4, fraction 4; D7, fraction 7; D8, fraction 8.
Figure 6.15: The electronic absorption spectra of the *G. metallireducens* pink heme enriched fraction. The as- isolated protein (black line), dithionite reduced (red line), and chromate oxidized (grey dashed line). The cytochrome protein (400 uL) was reduced after the addition of 60 uL of 0.1 M sodium dithionite, then re-oxidized by adding 20 uL 0.1M potassium chromate.
6.4. Conclusions

Nitrite reduction by the \textit{S. barnesii} cell lysate was inhibited by chromate, but nitrate reduction was not inhibited, indicating that NrfA may be oxidized by chromate. \textit{S. barnesii} is capable of reducing chromate. The in-gel chromate reductase assay indicates that a protein reduces chromate. The chromate reducing protein complex can also reduce nitrite. The protein complex was isolated using preparative CN-PAGE, and multiple proteins are present. The complex is more abundant in cells exposed to chromate during growth.

Several nitrite reducing proteins were separated from the CHAPS solubilized \textit{D. desulfuricans} fraction. The major nitrite reductase was a c-type cytochrome, which can be monitored with in-gel activity assays. Similar to the \textit{S. barnesii} nitrite reductase protein complex, the \textit{D. desulfuricans} protein complex reduced nitrite and chromate, and is overexpressed in cells exposed to chromate during growth.

A siroheam containing, green protein was isolated from \textit{D. desulfuricans}; the protein was identified as \textit{Desulfovibrio vulgaris} dSiR, known as desulfoviridin. As reported in \textit{D. vulgaris}, \textit{D. desulfuricans} dSiR can reduce nitrite, and nitrite reduction is inhibited by chromate.

A “hypothetical” multi-heme cytochrome protein was isolated from \textit{G. metallireducens}; the protein also can reduce nitrite.
Appendix V: Reagents and Protocols

Media

SES-3 nitrate medium (1 L):
- 980 ml distilled water (dH\textsubscript{2}O)
- 0.23 g K\textsubscript{2}HPO\textsubscript{4} (dibasic)
- 0.23 g KH\textsubscript{2}PO\textsubscript{4} (monobasic)
- 0.46 g NaCl
- 0.23 g (NH\textsubscript{4})\textsubscript{2}SO\textsubscript{4}
- 0.12 g MgSO\textsubscript{4} \& 7H\textsubscript{2}O
- 10 g yeast extract
- 2.8 ml sodium lactate (60 % Solution)
- 4.2 g NaHCO\textsubscript{3}
- 0.5 g cysteine
- 2 ml 500x trace elements (recipe below)
- 2 ml 500x vitamin mix (recipe below)
- 1.7 g Na NO\textsubscript{3}

Vitamin Mix (500x)
- 980 mL of dH2O
- 0.01 g biotin
- 0.01 g folic acid
- 0.05 g pyridoxine hydrochloride
- 0.025 g riboflavin
- 0.025 g thiamine
- 0.025 g nicotinic acid
- 0.025 g pantothenic acid
- 0.025 g p-aminobenzoic acid
- 0.025 g thioctoc acid
- 0.0005 g vitamin B-12
Trace Elements (500x)
- 980 mL of d.H2O
- 7.55 g nitrilotriacetic acid (NTA)
- 15.0 g magnesium sulfate (MgSO4)
- 2.55 g manganese chloride (MnSO4)
- 5.0 g sodium chloride (NaCl)
- 0.5 g ferric sulfate (FeSO4)
- 0.5 g calcium chloride (CaCl2)
- 0.5 g cobalt chloride (CoCl2)
- 0.5 g zinc sulfate (ZnSO4)
- 0.05 g cupric sulfate (CuSO4)
- 0.05 g aluminum potassium sulfate (Al K SO4)
- 0.05 g boric acid (H3BO3)
- 0.25 g sodium molybdate (Na2MoO4)
- 0.12 g nickel chloride (NiCl2)

LB media (1L)
- 10 g trypton
- 5 g yeast extract
- 5 g sodium chloride

LB Expression media (1L)
- LB media
- 1mM sodium molybdate (Na2MoO4)
- 25 μg/mL Kanamycin
- 100 μg/mL Ampicillin
Buffers

SES-3 lysis buffer
- 100 mM Tris-HCl pH 7.6
- 300 mM NaCl

Buffer A
- 10 mM Tris HCl
- 0.1% CHAPS
- Adjust to pH 7.5 with HCl

Buffer B
- 250 mM Tris HCl
- 0.1% CHAPS
- 300 mM NaCl
- Adjust to pH 7.5 with HCl

Ni-lysis buffer
- 50 mM KPO₄
- 300 mM NaCl
- 10 mM Imidazole
- pH 8.0

Ni-wash buffer
- 50 mM KPO₄
- 300 mM NaCl
- 30 mM Imidazole
- pH 7.0

Ni-elution buffer
- 50 mM KPO₄
- 300 mM NaCl
- 400 mM Imidazole
- pH 7.5
Electrophoresis

Protein electrophoresis

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS/PAGE)

Resolving gel (10\% acrylamide)
- 3.3 mL 30 \% acrylamide (Bio Rad)
- 4.2 mL dH\textsubscript{2}O
- 2.5 mL gel buffer (1.5 M Tris-\text{HCl} + 0.4\% SDS pH 8.8)
- 10 \text{uL} Tetramethylethylenediamine (TEMED)
- 60 \text{uL} 10\% Ammonium persulfate (AP)

Stacker gel (4\% acrylamide)
- 670 \text{uL} 30\% acrylamide (Bio Rad)
- 3.09 mL dH\textsubscript{2}O
- 1.25 mL gel buffer (1.5 M Tris-\text{HCl} + 0.4\% SDS pH 6.8)
- Add 5 \text{uL} TEMED
- 50 \text{uL} AP

Colloidal coomassie blue G-250 stain
- 0.1\% coomassie G-250
- 2\% H\textsubscript{3}PO\textsubscript{4}
- 5\% methanol
- 10\% (NH\textsubscript{4})\textsubscript{2}(SO\textsubscript{4})

* Tris- glycine running buffer and Laemmli sample buffer were purchased from Bio-Rad laboratories.
**CHAPS native-polyacrylamide gel electrophoresis (CN-PAGE)**

**Resolving gel (10% acrylamide)**
- 3.3 mL 30 % acrylamide (Bio Rad)
- 4.2 mL dH2O
- 2.5 mL gel buffer (1.5 M Tris-HCl pH 8.8 + 0.5% CHAPS)
- 10 uL Tetramethylethylenediamine (TEMED)
- 60 uL 10% Ammonium persulfate (AP)

**Stacker gel (4% acrylamide)**
- 670 uL 30% acrylamide (Bio Rad)
- 3.09 mL dH2O
- 1.25 mL gel buffer (1.5 M Tris-HCl pH 6.8 + 0.5% CHAPS)
- Add 5 uL TEMED
- 50 uL AP

**Cathode buffer (1L)**
- 3 g Tris base
- 14.4 g glycine

**Anode buffer**
- 250 mL cathode buffer
- 0.25 g CHAPS

**Preparative CN-PAGE sample buffer**
- Dilute protein sample to 5.0 mL final volume with Tris-HCL (pH6.8)
- 3 mL glycerol
- 0.12 g CHAPS
- 1.0 mL dH2O
DNA agarose gel electrophoresis

50x TAE DNA electrophoresis buffer (1L)
- 242 g Tris base
- 57.1 mL acetic acid
- 100 mL 0.5 M EDTA
- pH 8

1x TAE DNA electrophoresis gel
- 1% agarose
- 1x TAE buffer
- Ethidium bromide
Polymerase chain reaction (PCR)

Preparative PCR reaction mixture:
• 25 µL 2 x Ready mix (Sigma 098K6076: Tag poly, NT & buffer)
• 2.5 µL of forward primer stock [20 µM] (1 µM in final reaction)
• 2.5 µL of reverse primer stock [20 µM] (1 µM in final reaction)
• 0.5 µL PWO DNA polymerase 1 unit/ µL
• 10-50 ng DNA
• Dilute to 50 µL with PCR grade sterile water

PCR thermo cycling parameters:
Elongation time = $X_t$
Annealing Temp = $X_T$
1. Heated lid 110°C
2. 94 °C 4 min
3. 94 °C 45 sec
4. $X_t$ °C 45 sec
5. 72 °C $X_T$ sec
6. 25 cycles of steps 3-5
7. 72 °C 41 sec
8. 4 °C final/ hold
Cloning protocols

Ligation reaction
• 10x T4 ligase buffer with 10 mM ATP (BioLabs, #B0202S)
• T4 DNA ligase (BioLabs, #M0202L)
• 1:4 ratio of vector to insert in 8 uL total
• 0.5 μL of 20 mM ATP

Colony PCR
• 10 µL 2 x Ready mix (Sigma 098K6076: Tag poly, NT & buffer)
• µL PCR grade sterile water
• 1 µL of forward primer stock [20 µM]
• 1 µL of reverse primer stock [20 µM]

Preparative restriction assay
• 48 µL DNA
• 14 µL Tango buffer
• 0.25 - 0.5 µL* RE Enzyme 1
• 0.25 - 0.5 µL* RE Enzyme 2
• Fill to 65 µL final volume with sterile water
* 0.25 µL XhoI, NcoI, EcoRI and BglII
*0.5 µL NdeI

Test restriction assay
• 1 µL buffer
• 2 µL plasmid
• 0.2 – 0.5 µL RE Enzyme
• Fill to 10 µL final volume with sterile water
Protein assays

Griess assay
• 100 µL sample
• 100 µL 1% sulfanilamide in 3N HCl
• 100 µL 0.02% N-(1-naphthyl) ethylenediamine hydrochloride (NED) in H2O

Methyl viologen coupled nitrate reductase assay
• 80-100 µg of protein
• 0.8 µM methylviologen
• 10 µM KNO3−

Assay buffer
• 100 mM TrisHCl adjusted to pH 8 with HCl
• 0.1mM CHAPS
• 1mM Na2MoO4
• Purged with N2 gas

Sodium dithionite stock
• 60 mM sodium dithionite
• 100 mM Tris-HCl (pH 8), purged with N2 gas

Methyl viologen stock
• 50 mL assay buffer, purged with N2 gas
• 0.1 g methyl viologen (Sigma- Aldrich)
• Titrate with sodium dithionite stock solution to yield a final absorbance of 1.2– 1.6 at 630 nm
**Mass spectroscopy techniques**

**Moco oxidation**

*Oxidation to Form A*
- Dilute protein sample to a final volume of 140 µl with 100 mM Tris HCl (pH 7.2)
- add 17.5 µl of the following reagent: 1.5 % I₂, 2.0% KI-solution + 0.1 % HCl
- Incubate in the dark overnight at room temperature
- Centrifuge at 15000 rpm for 5 min at room temperature
- Remove the supernatant

**Dephosphorylation**
- add the supernatant to 20 µl freshly prepared 1% ascorbic acid
- add 70 µl of un-buffered Tris [1 M]
- add 5 µl 1 M MgCl₂
- add 5 µl alkaline phosphatase (1 to 10 dilution in 20 mM Tris pH 8.3)
- incubate in the dark for 30 min at room temperature
- Centrifuge at 15000 rpm for 5 min at room temperature
- Dilute 1 to 10 in fresh filtered water

**Moco content determination:**

To quantify molybdenum cofactor (Moco) content in the NapA protein, the molybdopterin molecule was converted to an oxidized form, dephospho-Form A, which can be detected by it characteristic emission spectra, as originally described by Johnson et al. [262]. (see oxidation protocol) The oxidized Form A was immediately separated via HPLC (Agilent 1200 rapid Resolution) at room temperature and detected fluorimetrically. The sample separation was performed on C4 reverse-phase column (4.6-mm inner diameter by 12.5 cm; 5-um particle size). The samples were eluted after applying a methanol gradient from 10 to 23 % at 2 ml min⁻¹ in 10 mM Phosphate buffer. The dephospho-Form A was detected fluorimetrically (excitation, 370 nm; emission, 450 nm). The amount of Form A was quantified by integration of the fluorescent peak and compared with the integrated intensity of a standard compound. The standard Moco solution was purified with the same method from *chlamydomonas rheinharditii.*
Mass spectroscopy details (provided by Peter Chovanec)

Extracted peptides were desalted and concentrated with a ZipTip (Millipore Corporation) and eluted with a 1% formic acid and 50% methanol solution prior to mass spectrometry (MS) analysis. The MS analysis was performed using a quadrupole-time-of-flight (Q-TOF) LC/MS system (Agilent Technologies) equipped with a 1200 Series liquid chromatography, a chipcube MS interface, and a 6530 Q-TOF mass spectrometer. The instrument was operated under the Mass Hunter Data Acquisitions software (version B.02.01, Agilent Technologies). Peptides were separated on a 43 mm C18 chip with a 40 nL trap column (Protein ID chip #; G4240-62005; Agilent Technologies), and gradient elution was performed from 3% acetonitrile to 97% acetonitrile in 0.1% formic acid using a flow rate of 600 nL/min. Fragmentor voltage, skimmer voltage and OCT RF Vpp were set to 175 V, 65 V and 750 V, respectively. The following MS settings used were the: precursor ion selection, medium (4 m/z); mass range, 400–1500 m/z; acquisition rate MS, 3 scans/sec; acquisition rate MS/MS, 3 scans/s (m/z 50-3200); collision energy, 3 V/100 Da; offset, 2 V. Reference mass correction was activated using reference mass of 922.0098. All MS/MS raw spectra were processed by Qualitative analyses software version B.03.01 (Agilent Technologies) to generate peak lists (.mgf) and exported files were analyzed against the bacterial subset in the NCBI database using the Mascot program v2.3 (www.matrixscience.com). The MASCOT parameters were: enzyme: trypsin, fixed modification: carbamidomethyl (C), variable modification: oxidation (M), mass tolerance for the peptides was set to ±1 Da and ± 0.5 Da for MS/MS, 'max missed cleavages' set to 1 and peptide charge set at ‘2+ and 3+.’ Only proteins with 2 and more peptides with a P < 0.05 in search algorithm were reported.
Works cited


24. Boyington JC, Gladyshev VN, Khangulov SV, Stadtman TC, Sun PD: **Crystal Structure of Formate Dehydrogenase H: Catalysis Involving Mo,


35. Ellis PJ, Conrads T, Hille R, Kuhn P: Crystal Structure of the 100 kDa Arsenite Oxidase from Alcaligenes faecalis in Two Crystal Forms at 1.64 Å and 2.03 Å. *Structure* 2001, 9(2):125-132.


65. Rowland RHaIR: **Metabolic activities of the gut microflora in relation to cancer.** Microbial Ecology in Health and Disease 2000, **Suppl 2:**179-185.


155. Oremland RS, Blum JS, Culbertson CW, Visscher PT, Miller LG, Dowdle P, Strohmaier FE: Isolation, growth, and metabolism of an obligately anaerobic,


188. Stolz JF, Ellis DJ, Blum JS, Ahmann D, Lovley DR, Oremland RS: *Sulfurospirillum barnessii* sp. nov. and *Sulfurospirillum arsenophilum* sp. nov., new members of the *Sulfurospirillum* clade of the epsilon Proteobacteria. *International Journal of Systematic Bacteriology* 1999, 49:1177-1180.


251. Martínez Murillo F, Gugliuzza T, Senko J, Basu P, Stolz JF: A heme-C-containing enzyme complex that exhibits nitrate and nitrite reductase


