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ABSTRACT 

 

PHARMACOLOGICAL CHARACTERIZATION OF NOVEL SEROTONIN 

TRANSPORTER INHIBITORS IDENTIFIED THROUGH COMPUTATIONAL 

STRUCTURE-BASED VIRTUAL SCREENING 

 

 

By 

Michael J. Wasko 

December 2020 

 

Dissertation supervised by Dr. Paula A. Witt-Enderby 

 Depression is a mental health disorder affecting greater than 350 million people worldwide 

with roughly 7% of the United States population diagnosed as of 2017.  The selective serotonin 

reuptake inhibitors (SSRIs) have been the mainstay of pharmacotherapies for depression for the 

last 40 years.  The SSRIs target the serotonin transporter (SERT), a monoamine transporter (MAT) 

responsible for terminating serotonergic neurotransmission.  The SSRIs are not perfect 

therapeutics and suffer from delayed response times, inconsistent efficacy among patients, and 

often produce intolerable side effects.  Therefore, a strong need exists to develop new 

antidepressants that are more efficacious and have fewer adverse effects.  The Surratt and Madura 

laboratories approached this problem through the application of computational chemistry and 

classical pharmacology to rationally identify novel MAT inhibitors and ligands.  The work within 
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this doctoral thesis encompasses a structure-based virtual screen targeting SERT and the 

pharmacological analysis of the compounds identified from the screen. 

 Previous virtual screens utilized SERT homology models based on a bacterial leucine 

transporter as the structural template (Manepalli et al., 2011; Kortagere et al., 2013; Gabrielsen et 

al., 2014; Nolan et al., 2014).  More recently, the human SERT crystal structure was published by 

the Eric Gouaux laboratory (Coleman et al., 2016) and used as the template for the present study.  

The Molecular Operating Environment software was chosen to target the orthosteric binding 

pocket S1 due to performance during benchmarking evaluations of the scoring function 

parameters.  The HitDiscoverer chemical library was screened with the SERT computational 

model, and SERT ligand candidates were evaluated by predicted binding affinity, the Lipinski 

Rule of 5, and chemical uniqueness.  Nine compounds were purchased and subjected to 

pharmacological analysis for binding, inhibition efficacy, and release potential.  One compound 

bound to SERT with reasonable affinity; two compounds inhibited serotonin transport in in vitro 

assays.  None of the compounds promoted the release of internal serotonin (i.e., efflux).  In 

conclusion, computational modeling was successfully used to identify novel inhibitors of the 

human SERT in a time and cost-efficient manner demonstrating the applicability to academic 

research.             
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Chapter 1: Introduction 
Depression 

 Depression is a disorder that affects a person’s mental integrity, resulting in a period of 

prolonged sadness that interrupts normal functioning (Akil et al., 2018).  It is characterized by a 

spectrum of clinical symptoms including anhedonia, depressed mood, sleep imbalances, fatigue, 

suicidal tendencies, deflated self-esteem, and sexual dysfunction (Wong and Licinio, 2001; Nestler 

et al., 2002).  Although depression is widely underdiagnosed, it is estimated that more than 350 

million people are diagnosed worldwide (Smith, 2014).  Additionally, depression has been 

classified as the leading cause of worldwide disability with over 76.4 million work-years lost per 

year (Smith, 2014).  The National Institute of Mental Health (NIMH) reported that 7.1% of adults 

in the United States, roughly 17.3 million people, experienced a depressive episode of at least two 

weeks during 2017 (National Institute of Mental Health).  The American Psychiatric Association 

further classified individuals that display more than five depressive symptoms per day over two 

weeks as having major depressive disorder (MDD) (Hillhouse and Porter, 2015).  MDD is typically 

seen as an adult-onset disease, and women are 2 - 3 times more likely to be diagnosed with MDD 

(Kessler et al., 2012; Hillhouse and Porter, 2015).   

 The currently available antidepressant medications are not without their limitations.  

Alarmingly, a large percentage of MDD patients (34-46%) do not respond to current antidepressant 

treatments, a condition classified as treatment resistance (Fava and Davidson, 1996; Hillhouse and 

Porter, 2015; Akil et al., 2018).  The Sequenced Treatment Alternatives to Relieve Depression 

(STAR*D) clinical trial by the NIMH showed that 28% of patients obtained remission of their 

depression using citalopram after 14 weeks (Insel and Wang, 2009).  Beyond the issue of 

effectiveness, this study also highlighted another issue regarding the slow onset of remission from 

the symptoms of depression.  It is common for antidepressants to have a latency period of weeks 
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to months before remission occurs (Insel and Wang, 2009; Scheuing et al., 2015).   Regardless of 

efficacy, a variety of side effects from the medication can occur including gastrointestinal distress, 

headaches, sexual dysfunction, insomnia, weight gain, dry mouth, anxiety, and fatigue (Santarsieri 

and Schwartz, 2015; Cartwright et al., 2016).  Adherence to prescribed antidepressant treatments 

is another problem with some studies reporting around 50% of patients ending treatments 

prematurely (Sansone and Sansone, 2012).   

Pharmacological Antidepressants Leading to SSRIs: 

Monoamine Oxidase Inhibitors (MAOIs) 

           The identification of modern antidepressants is linked with the development of tuberculosis 

treatments during the late 1940s and early 1950s.  Isoniazid (isonicotinyl hydrazide) was first 

synthesized by Hoffmann - La Roche and proved to be an effective anti-tubercular agent (Figure 

1.1) (Hillhouse and Porter, 2015).  This led to the synthesis of derivative molecules based on 

isoniazid in an attempt to develop active analogs resulting in iproniazid (isopropyl-isonicotinyl 

hydrazide; Figure 1.1) (Hillhouse and Porter, 2015).  Clinical trials in 1952 at the Sea View 

Hospital on Staten Island, NY identified the antidepressant potential of iproniazid and initially 

classified CNS activation as a side effect (López-Muñoz and Alamo, 2009).  Tuberculosis patients 

receiving iproniazid at Sea View were reported to experience strikingly increased energy and 

social behavior.  Iproniazid was shown by the Ernst Albert Zeller lab in 1952 to be an inhibitor of 

the enzyme monoamine oxidase (MAO) that breaks down monoamine neurotransmitters including 

serotonin, dopamine, and norepinephrine (Table 1.1) (Zeller et al., 1952; López-Muñoz and 

Alamo, 2009).       
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 Iproniazid hepatotoxicity led to its withdrawal from the U.S. market, but it was replaced 

by more potent MAO inhibitors (MAOIs) including phenelzine, isocarboxazid, and 

tranylcypromine (Figure 1.1) (Shulman et al., 2013).  MAOIs can be classified by their selectivity 

and binding mode to the MAO enzymes (Shulman et al., 2013).  Two isoforms of MOA – MAOA 

and MAOB – differ based on their substrates; MOAA oxidizes serotonin, while dopamine and 

norepinephrine are broken down by both MAOA and MAOB (Youdim et al., 2006).  Selective 

inhibition of the MAO isoforms can be achieved with low doses of moclobemide (MAOA-

selective), pargyline (MAOB-selective), or selegiline (MAOB-selective) (Figure 1.1) (Shulman et 

al., 2013).  Additionally, nonselective MAO inhibitors exist including phenelzine and high doses 

of selegiline (Figure 1.1) (Shulman et al., 2013). 

 

 

 

 

Table 1.1: Chemical Structure of the Monoamine Neurotransmitters. 
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Biogenic Amines: Serotonin 

 The MAOIs modulate the signaling of the biogenic amines including serotonin, 

dopamine, and norepinephrine (Figure 1.2) by preventing the destruction of the neurotransmitters, 

leading to increased signaling via their respective receptors (Shulman et al., 2013).  With respect 

to current antidepressant therapies, the serotonergic system plays a greater role than the other 

biogenic amines (Yohn et al., 2017).  Serotonin is derived from the essential amino acid 

tryptophan, of which approximately 2% in the body is converted into serotonin and enters the CNS 

through the L-amino acid transport proteins (Best et al., 2010; Chen and Miller, 2013).  L-

tryptophan is converted into serotonin by the sequential actions of the aromatic L-amino acid 

decarboxylase (AADC) enzyme and the tryptophan hydroxylase 2 (TH2) enzyme, the latter being 

the rate limiting step within serotonergic neurons (Lovenberg et al., 1962; Best et al., 2010; Chen 

and Miller, 2013).  Serotonin is collected and recycled into vesicles within the neuron through the 

Table 1.2:  Chemical Structures of the MAOIs. 
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vesicular monoamine transporter 2 (vMAT2) (Kroeze et al., 2012).  Once serotonin is released 

from the neuron, it binds to and activates one of 14 serotonin receptor types consisting of 13 G 

protein-coupled receptors (GPCRs) and one ligand-gated ion channel (Nichols and Nichols, 2008).  

The 14 receptors are grouped into 7 families (5HT1-7) based upon the coupling G protein and 

genetic similarity; the 5HT3 receptor is the ion channel.   

 The 5HT1A, 5HT1B, 5HT4, 5HT6 and 5HT7 receptors have been associated with clinical 

depression (Yohn et al., 2017).  The 5HT1A is both a presynaptic autoreceptor and a postsynaptic 

receptor.  Presynaptic 5HT1A receptors inhibit firing of serotonergic neurons and are thought to 

contribute to the latency period of antidepressant activity, although sustained receptor occupancy 

leads to desensitization (Chilmonczyk et al., 2015).  The postsynaptic 5HT1A found in the dentate 

gyrus has been implicated in adult hippocampal neurogenesis in response to antidepressants 

(Samuels et al., 2015).  Mice specifically lacking the 5HT1A receptor in the dentate gyrus do not 

exhibit neurogenesis from treatment with the antidepressant fluoxetine (Samuels et al., 2015).  The 

5HT1B receptor is a widely-distributed inhibitory GPCR found on presynaptic neurons (Tiger et 

al., 2018).  The 5HT1B shares 43% of the amino acid sequence of the 5HT1A and can function as 

an autoreceptor that inhibits serotonin release (Tiger et al., 2018).  Mice lacking the 5HT1B display 

antidepressant- and antianxiety-like properties in rodent models of depression (Tiger et al., 2018).  

The 5HT4 has been implicated in both anxiety and depression, with activation of the receptor 

producing short-term anxiolytic properties in mice and long-term promotion of adult hippocampal 

neurogenesis (Mendez-David et al., 2014).  The 5HT6 receptor involvement in depression needs 

more study, as both agonists and antagonists of the receptor have been identified to have anxiolytic 

and antidepressant-like effects in rodent models  (Yohn et al., 2017).  The 5HT7 receptors are 

expressed in the limbic and cortical regions of the brain and interact with the hypothalamus-
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pituitary-adrenal axis (Yohn et al., 2017).  Because the SERT-inhibiting antidepressant drugs need 

time to downregulate the 5-HT receptor, a direct antagonist yields a faster antidepressant response 

in rats (Yohn et al., 2017).      

 

Tricyclic Antidepressants (TCAs) 

          As with the MAOIs, the mood-altering properties of the tricyclic antidepressants (TCAs) 

were also discovered through serendipity.  In the 1950s, the phenothiazine compound 

chlorpromazine was established to elicit antipsychotic effects while in clinical trials (Kuhn, 1958; 

López-Muñoz et al., 2004)  This resulted in a flurry of clinical trials to test the potential of prior 

synthesized compounds with similar chemical structures, which led to the identification of the 

TCA imipramine in 1956 (López-Muñoz and Alamo, 2009).  Ironically, initial testing of 

imipramine with schizophrenics showed worsening of symptoms but it was noted that depressed 

schizophrenics appeared to have a positive mood change after a couple weeks of treatment (López-

Muñoz and Alamo, 2009).  Imipramine was the first TCA approved by the FDA to treat depression 

in 1959 (Hillhouse and Porter, 2015). 

 The TCAs currently approved for depression by the FDA include amitriptyline, 

amoxapine, desipramine, doxepin, imipramine, nortriptyline, protriptyline, and trimipramine 

(Figure 1.3) (Food and Drug Administration; Chockalingam et al., 2019).  The TCAs inhibit the 

SERT and the norepinephrine transporter (NET), and to a lesser extent the dopamine transporter 

(DAT) (Tatsumi et al., 1997; Penmatsa et al., 2013; Yohn et al., 2017).  Their antidepressant 

effects are thought to be primarily a result of the SERT and NET blockage, acting similar to later-

identified serotonin-norepinephrine reuptake inhibitor (SNRI) antidepressants (Gillman, 2007).  

The TCA drug class is plagued by safety concerns including potentially fatal cardiovascular effects 
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and CNS toxicity, which are observed at high plasma concentrations due to off-target receptor 

promiscuity. Nortriptyline is thought to be the safest TCA (Gillman, 2007).      

 

 

 

 

Serotonin Selective Reuptake Inhibitors (SSRIs)  

 The MAOIs and the TCAs elevate monoamine levels through inhibition of enzymatic  

degradation (MAOIs) or reuptake into the neuron (TCAs).  Further support of the involvement of 

the monoamines came from reserpine, a VMAT2 inhibitor that depletes monoamine 

neurotransmitter levels, resulting in behavioral effects similar to depression (Pletscher et al., 1955; 

Chessin et al., 1957; López-Muñoz and Alamo, 2009).  It was speculated in the early 1970s that 

selective inhibition of SERT would be an effective antidepressant strategy and led to the discovery 

of the selective serotonin reuptake inhibitor (SSRI) fluoxetine (ProzacTM) by researchers at Eli 

Lilly in 1975 before receiving FDA approval in 1987 (Tatsumi et al., 1997; Wong et al., 2005).  

Table 1.3: Chemical structures of the TCAs.  
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The success of the SSRIs proved that serotonin was the primary monoamine neurotransmitter 

responsible for the alleviation of depression. In addition, the SSRIs were found to have a safer 

pharmacological profile, lacking the norepinephrine-based cardiovascular side effects commonly 

found with the TCAs (Ferguson, 2001). Not surprisingly, SSRIs became the first-line 

pharmacological treatment for depression.  The SSRIs currently approved by the FDA to treat 

depression include citalopram, escitalopram, paroxetine, fluoxetine, fluvoxamine and sertraline 

(Figure 1.4) (Food and Drug Administration).  

 

 

 

Monoamine Transport Proteins: Serotonin Transporter 

 The SSRIs are competitive inhibitors of the SERT protein, one of the monoamine 

transport proteins (MATs) that includes the DAT and NET.  The MATs are plasma membrane-

bound transporters responsible for terminating neuronal signaling of their endogenous substrate 

(Aggarwal and Mortensen, 2017).  The MATs belong to the solute carrier 6 (SLC6) family of 20 

genes. This family encodes secondary active transporters that couple movement of 

Table 1.4: Chemical Structures of the SSRIs.   
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neurotransmitters with Na+ down their concentration gradients (Kristensen et al., 2011).  The 

SLC6A4 gene encodes the 630 amino acid SERT protein expressed in the CNS, peripheral nervous 

system (PNS), placenta, epithelium, and blood platelets (Kristensen et al., 2011; Iurescia et al., 

2017).  The MAT proteins are expressed on the presynaptic terminal of their respective neurons 

(Lin et al., 2011; Aggarwal and Mortensen, 2017).  

 Structurally, the MATs are composed of 12 transmembrane domains (TM) that are 

interconnected by a series of 

extracellular and intracellular loops 

as well as extended intracellular 

amino (N-) and carboxyl (C-) 

terminal tails (Figure 1.1) (Penmatsa 

et al., 2013; Coleman et al., 2016; 

Coleman and Gouaux, 2018).  The 

substrate transport mechanism is 

characterized by alternating access 

of the substrate/ion pore to the 

intracellular and extracellular sides 

of the cell membrane. This is 

achieved with a progression of 

structural conformations that make 

Figure 1.1: Structural Overview of the MATs.  The 12 
transmembrane domains (TMs) that define the MAT structure are 
color coded [TM1 (teal), TM2 (dark green), TM3 (silver), TM4 
(dark orange), TM5 (pink), TM6 (light blue), TM7 (light orange), 
TM8 (magenta), TM9 (yellow), TM10 (light green), TM11 (red), 
TM12 (dark blue)]. Intracellular (bottom) and extracellular (top) 
loops (black) connect the TMs and indicate orientation of the protein 
within the lipid bilayer. Midway through the bilayer is the S1 
binding site occupied by citalopram (yellow oval). The allosteric/S2 
site (blue oval), also occupied by citalopram, is in the vestibule that 
leads into the S1 site.    
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A 

up the transport cycle (Figure 1.2) (Forrest et al., 2008).  Per the alternating access mechanism, 

one of the conformations is an “outward-facing” (OF) structure that is open to the extracellular 

side of the lipid bilayer (Wang et al., 2015).  The substrate enters the OF structure through a 

vestibule (Figure 1.3) that leads into the orthosteric binding pocket (S1 site) located roughly 

midway through the protein (Figure 1.1) (Cheng and Bahar, 2015).  An allosteric binding pocket 

has been proposed to reside within the vestibule that would affect the binding kinetics of the 

molecule within the S1 site (Coleman et al., 2016).  While the MATs display both the S1 and S2 

site, the specific residues that make up the sites differ by each protein and will be further discussed 

in later sections.  Entry of the substrate into the primary binding pocket triggers a conformational 

change of the protein to an occluded structure (closed to both extracellular and intracellular sides) 

Figure 1.2: Alternating Access Mechanism of Monoamine Transport.  The MATs undergo a 
conformational change during substrate transport with initial binding occurring with an outward-
facing conformation open to the extracellular side of the membrane (A; dDAT protein, PDB id. 
4M48).  Substrate and ion cofactor binding trigger a conformational change to an occluded state 
(B; LeuT protein, PDB id. 2A65) before adopting an inward-facing structure (C; LeuT protein, 
PDB id. 3TT3) and release of the substrate into the cell.  The reset transition back to the outward 
facing conformation is the rate-limiting step of transport.  
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before opening to the intracellular side (“inward-facing” structure; IF) and releasing substrate and 

Na+ (Coleman et al., 2019).  A K+ ion is exported potentially through a channel-like mechanism 

during the reset of the SERT protein from the IF to OF conformation, although it is unclear why 

the K+ ion is unnecessary for the DAT and NET proteins (Adams and DeFelice, 2002; Aggarwal 

and Mortensen, 2017).  The SSRIs bind to the orthosteric binding pocket and typically lock the 

transporter in the OF conformation, although some SSRIs including citalopram also occupy the 

allosteric site and prevent the inhibitor in the S1 pocket from dissociating from the protein 

(Coleman et al., 2016).     

 Surface expression of the SERT protein can be downregulated by chronic exposure to 

its substrate serotonin, which could be effected by the activity of protein kinase C (PKC), cGMP-

dependent protein kinase (PKG) or p38 mitogen-activated protein kinase (MAPK) (Jørgensen et 

Figure 1.3:  Vestibule Leading into the S1 Binding Pocket.  A top-down view from the 
extracellular side of the SERT protein (PDB id. 5I73) using a surface map (Panel A).  Outlined 
by a yellow box is the vestibule that leads into the S1 or orthosteric binding pocket.  A close-
up of the vestibule (Panel B) has citalopram (yellow) bound in the S1 pocket.   

A.
  

B.
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al., 2014).  Changes in SERT surface expression due to serotonin exposure were blocked by the 

antagonist citalopram (Jørgensen et al., 2014).  Dimerization of the SERT protein can occur and 

is an important regulator for trafficking the protein into Golgi vesicles for storage (Kilic and 

Rudnick, 2000; Sitte et al., 2004).  Although the SERT exists as dimers and oligomeric complexes 

of up to 8 subunits in the plasma membrane that are stable for up to 10 minutes, its impact is 

currently unknown and the monomeric form of the protein appears to be the functionally active 

one (Anderluh et al., 2014; Coleman et al., 2016; Cheng and Bahar, 2019).  The relative expression 

of the oligomers in the plasma membrane is not affected by the SSRI antidepressants or cocaine 

analogs (Schmid et al., 2001).  The oligomeric complexes do not exchange subunits between 

complexes, which could suggest that they are the result of the initial placement within the 

membrane (Anderluh et al., 2014).   Additionally, the depletion of bilayer cholesterol, a molecule 

necessary for the functional activity of transport, did not alter the distribution of the oligomers in 

the membrane (Anderluh et al., 2014).  SERT molecules in dimers found during crystallization 

were inverted positioning relative to each other, but this is believed to be an artifact of the 

crystallographic conditions (supplementary material of Coleman et al., 2016).  Computational 

modeling of SERT dimers suggests that TM 12 is the likely subunit connection point (Periole et 

al., 2018).             

 The SSRI antidepressants are antagonists of the SERT protein and prolong serotonergic 

signaling within the CNS (Immadisetty et al., 2013).  An early attempt to explain the mechanism 

behind the antidepressant effects of the SSRIs and the TCAs is the monoamine hypothesis of 

depression, which posits that depression is a result of a deficit of the monoamine neurotransmitters 

including serotonin in the brain (Krishnan and Nestler, 2008; Haase and Brown, 2015).  It was 

noted that some violent suicide victims were reported to have low serotonin levels at the time of 
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death (Shaw et al., 1967; Bourne et al., 1968; Immadisetty et al., 2013).  The monoamine 

hypothesis is too simplistic of a model, however, to entirely encompass the mechanism behind the 

antidepressant effects shown by the SSRIs.  One criticism of the hypothesis is the latency period 

of weeks to months of MAT inhibitor antidepressant treatment required before relief from the 

depressive symptoms occurs, even though these drugs cause an immediate increase in synaptic 

serotonin levels (Insel and Wang, 2009).  A rationale offered for this latency period has been that 

the activation of inhibitory serotonergic autoreceptors (5HT1 family) in response to the increased 

serotonin levels depresses serotonergic signaling (Yohn et al., 2017).  Long term SSRI treatment 

causes desensitization of these autoreceptors and changes in receptor expression that would 

eventually promote increased serotonergic signaling.  This explanation ignores the fact that several 

postsynaptic 5-HT receptor types associated with antidepressive effects would still be immediately 

activated by the serotonin surge upon first taking the SSRI and is a desperate attempt to rationalize 

the monoamine hypothesis.  The currently favored mechanism for the antidepressant effects shown 

by the SSRIs is the neurotrophic hypothesis and its role in adult hippocampal neurogenesis (Jacobs, 

2002). Some postmortem studies have reported reductions in the volume of the prefrontal cortex 

and hippocampus of depressed patients (Krishnan and Nestler, 2008).   The SSRIs are thought to 

elicit adult hippocampal neurogenesis through an increase in the expression of brain-derived 

neurotrophic factor (BDNF) in the hippocampus, which is regulated by the transcription factor 

cAMP response element binding protein (CREBP), altering gene transcription (Figure 1.4) (Haase 

and Brown, 2015).  The activation of both the 5HT1A and the 5HT4 receptors has been found to 

increase neurogenesis in the dentate gyrus over weeks, and play a role in the antidepressant 

response found in rodent models (Mendez-David et al., 2014; Samuels et al., 2015).  The recently 

FDA-approved fast acting antidepressant ketamine, a repurposed anesthetic, is thought to increase 
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neurogenesis through similar pathways downstream of the serotonin receptors, although ketamine 

has potential for abuse and can cause cognitive decline (Clarke et al., 2017). 

 

 

  

Premise of this Research 

 The United States Center for Disease Control (CDC) depression data from 2011-2014 

suggests that over 12% of people over the age of 12 have used antidepressants within the last 

month, an increase of 5% since the 1999-2012 survey (Pratt et al., 2017).  Additionally, roughly 

25% of people that used antidepressants have been taking them for more than 10 years (Pratt et 

al., 2017).  The side effects of the first line SSRI antidepressants, including lack of efficacy and 

prolonged latency periods with many adverse effects before therapeutic relief, often make 

medication adherence a problem.  This establishes the necessity for the identification of novel 

Figure 1.4: Neurogenesis Pathway.  The SSRI antidepressants inhibit SERT on the 
presynaptic neuron (1), which leads to an increase in 5HT (2) within the synapse.  Activation 
of postsynaptic 5HT1A and 5HT4 receptors (3) lead to the phosphorylation of CREB (4) within 
the nucleus and promote the synthesis of BDNF (5) ultimately leading to hippocampal 
neurogenesis.       
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inhibitors that offer the possibility of alternative therapeutic profiles compared to the SSRIs.  Some 

design strategies have included the serotonin-norepinephrine reuptake inhibitors, and multimodal 

antidepressants such as vortioxetine and vilazodone, which modulate other serotonergic receptors 

in addition to SERT (Gillman, 2007; Andersen et al., 2015; Wang et al., 2016).  The Surratt and 

Madura laboratories have approached antidepressant drug discovery by combining computational 

chemistry modeling of drug targets in the brain with classical pharmacological methods to identify 

potential inhibitors of the SERT protein (Manepalli et al., 2011; Nolan et al., 2011; Nolan et al., 

2014).   

Computational Drug Discovery 

 The drug discovery process is focused on identifying pharmacologically active compounds 

with novel chemical structures that can be developed into potential candidates for clinical trials.    

The development of drug candidates is exceedingly expensive with an average cost over 2 billion 

dollars as of 2010 (Nicolaou, 2014; Mohs and Greig, 2017).  Successful candidates take roughly 

13.5 years to receive FDA approval, with under 10% of small molecules being approved 

(Nicolaou, 2014; Mohs and Greig, 2017).  Roughly a third of the cost is spent on the preclinical 

development including target identification (initial decision of potential targets), target validation 

(confirmation of the target’s involvement in the disease state), initial molecule discovery, 

structure-activity relationships (SARs), in vitro and in vivo pharmacological testing, toxicity and 

pharmaceutics testing (Nicolaou, 2014; Dahlin et al., 2015).  One established strategy to identify 

potential candidates is high-throughput screening (HTS), which utilizes automation to screen 

chemical libraries, curated collections containing thousands of compounds with diverse structures, 

against a target protein to identify compounds that meet the set criteria of the assay (Saha et al., 

2018).  HTS generally allows for 10,000 to 100,000 compounds to be screened per day due to the 
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miniaturization of assays, allowing more compounds to be screened in parallel through continuing 

advancement of robotics (Inglese et al., 2007).  Processing the data is a common problem 

associated with HTS due to the vast amount of data generated, and common approaches to handle 

this include grouping compounds by chemical diversity and unique biological profiling, which is 

determined by performance in cell-based assays looking at attributes such as gene expression or 

cell morphology (Wawer et al., 2014; Saha et al., 

2018).  In addition, the sheer cost of HTS is 

considered to be well beyond the capabilities of 

typical academic researchers, a compelling reason to 

incorporate computational modeling into the drug 

discovery process (Wasko et al., 2015).          

The major computational approaches to drug 

discovery are ligand-based or structure-based (Figure 

1.5).  The ligand-based method, the only choice when 

the structure of the drug’s target is unknown, employs 

established ligands of the target receptor as templates 

that guide the design and synthesis of a SAR series of 

analogs, and in this way identifies common structural 

elements that are essential to their functional activity 

(Badalà et al., 2008).  Typically, the active 

compounds are superimposed and a pharmacophore is 

created.  A pharmacophore is a model of the chemical 

interactions between ligand  and receptor necessary 

Figure 1.5: Comparison of Ligand-
Based and Structure-Based Drug 
Design.  Ligand-based approaches utilize 
known ligands to build a pharmacophore 
based on key chemical features (A).  The 
created pharmacophore is highlighted by 
spheres indicating aromaticity, hydrogen 
bond donors, and hydrogen bond 
acceptors. Structure-based approaches 
utilize the receptor’s structure (backbone 
displayed in red) to evaluate the 
compound’s interactions within the 
binding pocket (green) (B).  Figure 
adapted from Wasko et al., 2015. 
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for the desired efficacy, which can be computationally modeled by combining common chemical 

attributes such as hydrogen bond donor / acceptor potential and hydrophobicity based on known 

ligands, and can be used to screen for molecules that match the pharmacophore’s criteria (Ferreira 

et al., 2015).  Creating a pharmacophore is useful for both methods, but critical for the ligand-

based search strategy.  The structure-based approach utilizes a computational model of the target, 

usually a protein, to guide drug discovery.       

 

Structural Biology of the MATs    

The three-dimensional structure of a receptor protein can be elucidated using x-ray 

crystallography, nuclear magnetic resonance spectroscopy (NMR), and cryogenic electron 

microscopy (cryo-EM) (Yee et al., 2005; Doerr, 

2017).  Crystal structures solved by x-ray diffraction 

are the most common structure-based ligand 

screening tools, and are curated by the Protein Data 

Bank (Berman et al., 2000).  These structures are 

considered “snapshots” of receptor conformations, 

rigid structures obtained under non-physiological 

conditions.  These proteins often have site-directed 

amino acid sequence mutations introduced to aid 

crystallization with the goal of not appreciably 

affecting ligand binding sites or protein expression (Piscitelli et al., 2015).  This is not always the 

case; one mutation (T439S) located within the S1 binding pocket of SERT (PDB id. 5I6X) altered 

the binding of paroxetine (Coleman and Gouaux, 2018).  An electron density map of the crystalized 

Figure 1.6: Electron Density of the 
DAT (4XP1). The electron density is 
displayed as blue mesh for the DAT 
structure.  The crystallographer fits the 
side chains and ligand dopamine to the 
electron density. Figure adapted from 
Madura, 2016.  
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protein is determined based on the diffraction pattern of the x-ray beam, which is used by the 

crystallographer to position 

the elemental structure of 

the protein based on the 

known amino acid sequence 

(Figure 1.6) (Lang et al., 

2014).  The resolution of the 

model is determined by the 

confidence and probability 

of the structure’s fit to the 

election density map, with 

lower Ångstrom structures 

representing a better fit  (see Table 1.5; (Madura, 2016)) (Piscitelli et al., 2015).  Proteins are 

inherently fluid molecules, and membrane-bound proteins like the MATs are difficult to crystalize 

because of the absence of a lipid bilayer to stabilize the protein’s physiological 3D structure.  The 

recently crystalized Drosophila DAT and the human SERT crystal structures have a resolution 

around 3 Å, which would allow the crystallographer to successfully orient the backbone of the 

protein structure (Wang et al., 2015; Coleman and Gouaux, 2018).  In comparison, many of the 

GPCRs, specifically the adrenergic receptors, have a resolution under 2 Å, in which case the side 

chains within the binding pocket can be accurately positioned. To achieve this resolution, the 

external loops are often truncated (Zhang et al., 2015).  Until the human SERT crystal structures 

were published in 2016, structure-based studies relied on building homology models of the protein, 

using an evolutionarily-related protein as a structural template (Fiser and Šali, 2003).  To build a 

Table 1.5: Guide to protein crystal structure resolution.  
Table is adapted from Madura, 2016.  
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homology model, the amino acid sequences of the target protein and the template structure are 

aligned and compared using sequence identity (percent of amino acids conserved) and sequence 

similarity (percent of amino acids within the same class) (Hillisch et al., 2004; Wasko et al., 2015).  

The higher degree of similarity between the target protein and the template is indicative of a better 

structural template for a homology model.  The first credible crystal structure available as a 

template for the MATs was that of the LeuT bacterial leucine transporter (Yamashita et al., 2005).   

Structural Templates of the MATs                

LeuT 

 Although LeuT only shares 20-25% of its 

amino acid sequence (sequence identity) with MAT 

proteins, the first deposited LeuT structure (2A65) 

within the PDB confirmed the existence of the 12 TM 

domains (Figure 1.7) (Yamashita et al., 2005).  The 

2A65 structure was defined as being in an occluded 

state by the closure of an external gate partially 

comprised of R30 (TM 1) and D404 (TM 10) (Figure 

1.8).  Co-crystallized were the endogenous substrate  

leucine along with the two Na+ ions required for substrate 

transport within the S1 binding pocket, buttressed by 

TMs 1, 3, 6 and 8 and an enclave formed by kinks within 

TM domains 1 and 6, located roughly 6 Å from the 

extracellular border of the lipid bilayer (Figure 1.10) 

(Yamashita et al., 2005).  Unexpectedly, the LeuT 

Figure 1.7: LeuT crystal structure. 
LeuT (red; PDB id. 2A65) is shown 
with the substrate leucine (grey) 
within the S1 binding pocket. 

Figure 1.8: External Gate of LeuT.  
R30 (yellow) and D404 (blue) define 
the external gate above the S1 binding 
site occupied by leucine (gray). 
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structure revealed a tertiary motif known as the “LeuT fold”, which identified that TM 1-5 and 6-

10 form a pseudo repeat that could be superimposed when 

rotated by 176.5o, with the remaining TM domains (11-12) 

not being essential for transport of the substrate (Figure 1.9) 

(Yamashita et al., 2005).  Interest in LeuT substantially 

increased in 2007 with the publication of LeuT structures 

that were co-crystalized with the tricyclic antidepressant 

clomipramine (Singh et al., 2007).  Clomipramine acted 

as a non-competitive allosteric modulator that sat 

approximately 11 Å above the S1 binding pocket and 

altered the kinetic rates of the leucine 

molecule by stabilizing the extracellular gate 

(Singh et al., 2007).  Separately, Shi et al. 

argued for the existence of a secondary 

substrate (S2) site in the same vicinity. Using 

steered molecular dynamics simulations, 

they postulated that substrate occupation of 

the S2 site was necessary to trigger the 

conformational transitions for transport (Shi 

et al., 2008).  This view was contested by 

Gouaux and colleagues, who argued for only 

one high affinity binding pocket on LeuT (Piscitelli et al., 2010).  Using isothermal titration 

calorimetry to measure the thermodynamic response and stoichiometry of L-leucine binding to 

Figure 1.9: LeuT Fold. The LeuT fold 
is comprised of an inverted repeat 
consisting of transmembrane domains 
1-5 (blue) and 6-10 (red).    

Figure 1.10: S1 Binding Pocket TM Domains.  
TM1 (red), TM3 (green), TM6 (blue) and TM8 
(purple) form the S1 binding pocket co-crystalized 
with leucine (grey) within the LeuT crystal structure 
(PDB id. 2A65). 
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LeuT, only a single high affinity site (S1) was detected.  They acknowledged that the allosteric 

site may have lower affinity to lead the leucine substrate into the high affinity site, but stopped 

short of agreeing that a secondary leucine site was needed to trigger release of the substrate 

(Piscitelli et al., 2010).     

 The alternating access transporter mechanism is based on the adoption of at least three 

distinct conformational states of the protein during the substrate translocation cycle (Forrest et al., 

2008).  An outward-facing (OF) transporter structure open to the extracellular side would allow 

the substrate and necessary ions to bind in the S1 pocket, triggering conversion to the S1-occluded 

structure identified in the 2005 LeuT crystal structure (PDB id. 2A65), before shifting again to 

adopt an inward-facing (IF) structure to release the substrate and ion cofactors into the cytoplasm 

(Yamashita et al., 2005; Piscitelli et al., 2010).  In 2012, crystal structures of LeuT in substrate-

free (apo) OF and IF conformations provided more insight into the translocation cycle 

(Krishnamurthy and Gouaux, 2012).  The OF structure (PDB id. 3TT1) appeared to rely on a hinge-

like mechanism pivoting on V23 (TM1), G55 (TM2), and L257 (TM6) to adopt an OF structure 

compared to the occluded structure (Krishnamurthy and 

Gouaux, 2012).               

LeuBAT 

 TCAs, SSRIs, and serotonin-norepinephrine 

reuptake inhibitors (SNRIs) bind non-competitively to the 

extracellular vestibule in the LeuT protein, but this is now 

thought to be artifactual and not reflective of the 

competitive binding of these compounds to the 

human MATs (Rudnick, 2007; Wang et al., 2013).  

Figure 1.11: LeuBAT Crystal Structure 
(PDB id. 4MM5). LeuBAT (dark blue) was 
crystalized with the SSRI sertraline (grey) 
within the S1 binding pocket.  The amino acids 
within the S1 binding pocket were mutated to 
those of SERT, which shifted the 
antidepressant binding site on LeuT from S2 to 
S1. 
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To identify key S1 pocket residues for BAT (biogenic amine transporter; i.e., MAT) ligand 

recognition, MAT residues believed to be important for ligand binding systematically replaced the 

corresponding LeuT residues to form LeuBAT in hopes of simulating the competitive binding of 

known MAT ligands.  The LeuT and hSERT amino acid residues within the S1 binding pocket 

were compared to identify probable residues imparting SERT selectivity.  In total, 20 amino acids 

were mutated to result in 12 LeuBAT crystal structures that bound TCAs, SSRIs, and SNRIs within 

the S1 binding pocket (Figure 1.11) (Wang et al., 2013).  While the LeuBAT structures were an 

improvement over LeuT as templates to study the SERT protein, they were rapidly overshadowed 

by the publication of a fruit fly DAT structure (Penmatsa et al., 2013).           

dDAT 

 The 2013 Drosophila dopamine transporter (dDAT; PDB id. 4M48) was co-crystalized 

with the tricyclic antidepressant nortriptyline 

bound in the S1 binding pocket formed from TMs 

1, 3, 6 and 8 (Figure 1.12) (Penmatsa et al., 2013). 

The dDAT structure shares more than 50% of its 

amino acid sequence with the human MATs and 

was solved at a resolution of 3.0 Å through use of 

five stabilizing mutations (Penmatsa et al., 2013).  

Overall, the structure was locked in an OF 

conformation with the TCA inhibitor blocking 

substrate access to the central binding pocket.  

The crystal structure displayed the LeuT fold 

motif, but notably deviated with a kink at P572 

Figure 1.12: dDAT Crystal Structure 
(PDB id. 4M48).  dDAT co-crystalized with 
the TCA nortriptyline within the S1 binding 
pocket (dark grey).  Differing from the LeuT 
structures is a kink in TM12 highlighted in 
green.  A cholesterol molecule (blue) is 
located near TM 1, 5, and 7. 
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in TM 12 that forced the second half of the TM away from the protein (Penmatsa et al., 2013).  

This kink in TM 12 was later seen in the structures of the human serotonin transporters, which was 

co-crystalized with a cholesterol molecule within the kink of TM12 (Coleman et al., 2016).  A 

cholesterol molecule was identified on dDAT within a pocket comprised of TMs 1, 5, and 7 and 

is speculated to play a role in stabilizing the OF structure. Consistent with this idea, increased 

cholesterol concentrations in lipid membranes stabilize OF structures  (Hong and Amara, 2010; 

Penmatsa et al., 2013).  

 Later efforts in 2015 led to the crystallization of dDAT complexed with substrates, their 

analogs, and inhibitors including dopamine, its analog 3,4-dichloroophenethylamine (DCP), and 

psychostimulants (D-amphetamine, methamphetamine, cocaine, B-CFT, and RTI-55) (Wang et 

al., 2015).  Functional transport of dopamine was regained by reintroducing three of the 

thermostability mutations (V275A, V311A, and G538L) and extracellular loop 2 in the new dDAT 

construct (Wang et al., 2015).  In addition, mutations within the binding pocket at TM 3 (D121G) 

and TM 8 (S425M) were introduced to mimic the human 

DAT structure (hDAT) (Wang et al., 2015).  All of the 

ligands were co-crystalized while within the orthosteric 

binding pocket of the dDAT structures.  The substrate 

dopamine was crystalized in an OF DAT structure with the 

charged amine interacting with the TM 1 D46 (equivalent 

of D79 in hDAT), the catechol group hydrogens bonding 

with A117, and the remainder sitting in a hydrophobic 

pocket consisting of A121, Y124, S422, and F325 (Figure 1.13).  Interestingly, two water 

molecules were observed within the binding pocket with dopamine but were not observed with 

Figure 1.13: DAT Binding Pocket.  
DAT (PDB id. 4XP1) with dopamine 
within the S1 binding site. 
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DCP bound, which formed a partially occluded OF structure with F319 rotating to occlude the 

binding pocket.  The amine group of DCP formed a hydrogen bond with D46 while the 

dichlorophenyl ring interacted with V120 and F325.  Both D-amphetamine and methamphetamine 

stabilized OF conformations from within the S1 binding pocket.  Cocaine was crystalized within 

the S1 binding pocket, forming a salt bridge with D46 and aromatic interactions with F325 (Wang 

et al., 2015).   

hSERT 

 After multiple attempts to crystalize the human SERT (hSERT) protein were unsuccessful,  

two site-directed mutations (I291A and T439S) were added to enhance thermostability (TS2 

construct) and structures were crystalized at a resolution of 4.5 Å (Green et al., 2015; Coleman et 

al., 2016).  A third thermo-stability mutation (T110A) was necessary to enhance the resolution of 

the structures to 3.15 Å (TS3 construct).  Unfortunately, the TS3 construct was locked in the OF 

conformation and was functionally inactive by failing to transport serotonin.  Six hSERT crystal 

structures are deposited within the PDB 

with the reference codes 5I6X, 5I67, 5I73, 

5I74, and 5I75.  The initial crystal 

structures were co-crystalized with 

citalopram and paroxetine within the 

binding pocket.  Additionally, a Br-

citalopram molecule was found within an 

allosteric site directly above the S1 site, 

similar to the LeuT structure with the TCA 

clomipramine (PDB id. 2Q6H) (Singh et al., 2007).  This allosteric site is thought to affect the 

Figure 1.14: SERT S2 Binding Site.  Citalopram 
(grey) is shown within the S2 binding site of SERT 
(PDB id. 5I73).  
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kinetic off-rate (Koff) of the citalopram molecule within the S1 site and extend the time bound to 

SERT (Coleman et al., 2016).  The S2 site sits above two external gates formed by amino acids 

Y176 / F335 and R104/E494 (Coleman et al., 2016).  Citalopram within the S2 site forms an 

aromatic interaction with F335 and an ionic interaction with E494 (Figure 1.14).  Additionally, 

residues R104, D328, A331, and Y556 were 

reported to make up the S2 site (Coleman et al., 

2016).  The TS3 construct contained the T439S 

mutation within the S1 binding pocket altered the 

binding of some antidepressants. Later efforts to 

crystalize SERT with the wild type T439 residue 

resulted in structures cocrystalized with the SSRIs 

paroxetine, fluvoxamine, sertraline, or S-citalopram 

(Coleman and Gouaux, 2018).  Each antagonist 

interacted with Y95, D98, I172, Y176, F335, F341, 

and T439 within the binding pocket (Coleman and Gouaux, 2018).  The S1 site is sometimes 

broken down into three subsites: A (Y95, D98, S336, S438), B (A173, Y176, N177, T439, G442) 

and C (I172, F334, F341, T497, V507) (Zeppelin et al., 2019).   

 Moving beyond SERT crystal structures locked in the OF conformation, cryo-electron 

microscopy was used to study the conformational changes of the protein (Coleman et al., 2019).  

Ibogaine, a purported anti-addiction drug with low affinity to many receptors including SERT, was 

utilized to establish changes from the OF conformation through the occluded structure before 

adopting an IF conformation (Wasko et al., 2018; Coleman et al., 2019).  Ibogaine is a non-

competitive inhibitor of serotonin transport but is a competitive inhibitor against antidepressants 

Figure 1.15: SERT S1 Binding Site. 
Citalopram (grey) is shown within the 
S1 binding site of SERT (PDB id. 
5I73). An Na+ ion is displayed in 
orange. 
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for the primary binding site.  At the functional TS2 SERT construct, ibogaine had a Kd of 400nM, 

while the OF-locked TS2 variant had a reduced Kd of 5-8 µM (Coleman et al., 2019).  This fits 

with the proposed model allowing ibogaine to enter the S1 site through the OF structure before 

adopting the preferred IF conformation.    

The work in this dissertation utilizes the crystal structure of the hSERT protein for virtual 

(in silico) screening for new compounds with affinity for the S1 (orthosteric) binding pocket 

(Coleman et al., 2016).  It was hypothesized that inhibitors with novel chemical scaffolds could 

be identified through the computational modeling.  Chapter 2 details the computational modeling 

used to successfully identify inhibitors of the SERT protein.  The in vitro pharmacological analysis 

of the compounds that were purchased is contained in Chapter 3.   
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Chapter 2: Computational Modeling to Identify Inhibitors of the Human SERT  

 

Computational Virtual Screening 

 Computational drug discovery methods are utilized to identify interesting compounds 

before pharmacological testing is completed (Sliwoski et al., 2014).  With structure-based 

methods, virtual screening (VS) is a widely used technique once a protein target has been 

established and a three-dimensional model created.  VS is analogous to HTS, but uses ligand 

docking, a computational technique that predicts the placement of the compound within the 

binding pocket and estimates affinity to the receptor.  Virtual chemical libraries of a million 

molecules can be quickly screened for high affinity to the binding site of the target protein (Lionta 

et al., 2014; Sliwoski et al., 2014).  The enormous equipment and chemical compound costs with 

HTS are not seen with virtual screening, and the latter provides a significant cost advantage by 

filtering out unlikely compounds before purchase / synthesis.  The predictive accuracy of the 

virtual screen hinges on the docking software.      

Docking software is available as open-source academic programs (Autodock suite), and 

from commercial vendors including Chemical Computing Group (Molecular Operating 

Environment; MOE), Schrödinger (Glide), and BioSolveIT (FlexX) (Pagadala et al., 2017).  

Ligand-protein docking is classified based on the flexibility of both the ligand and protein side 

chains: “rigid-rigid” (both inflexible), “rigid receptor” (ligand flexibility alone), and “flexible 

receptor” (allowing both ligand and protein to be flexible) (Pagadala et al., 2017).  Rigid receptor 

docking is considered a standard approach by many pharmaceutical companies due to the 

additional computational resources necessary for flexible receptor docking (Andrusier et al., 

2008).   
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In order to sample the binding event in a time-effective manner, the docking programs do 

not account for the higher-order physics such as quantum or statistical mechanics, but rather rely 

on using approximations called scoring functions to place and rank the binding of ligands to the 

receptor.  Scoring functions are classified into four categories: force field (physics)-based, 

empirical-based, knowledge-based, and descriptor-based (Liu and Wang, 2015).  Force field-based 

scoring functions attempt to account for the changes in energy due to van der Waals effects (effects 

of non-polar interactions), electrostatics (effects of charged interactions), hydrogen bonding, and 

sometimes solvation (Lionta et al., 2014; Liu and Wang, 2015).  Empirical-based scoring functions 

place weight on positive interactions regarding hydrogen bonding, lipophilicity, and metal ions, 

while placing penalties on steric clashes and the hindrance of rotatable bonds (Lionta et al., 2014; 

Liu and Wang, 2015).  Knowledge-based scoring functions are built using training sets of ligands 

bound to receptors to examine the average contacts between ligands and receptors to identify 

favorable and unfavorable interactions (Huang and Zou, 2008).  The descriptor-based scoring 

functions incorporate machine learning techniques to build models based on certain descriptors 

such as number of hydrogen bonds, or by creating chemical fingerprints of the ligand interactions 

within the binding site (Liu and Wang, 2015).  Currently, scoring functions are often able to 

identify the correct binding pose, but often struggle with accurately ranking predicted binding 

affinity (Lionta et al., 2014).  As a result, it is crucial to thoroughly evaluate the scoring functions 

for the target protein using training sets of both binding and non-binding compounds before 

completing the virtual screen (Lagarde et al., 2015).     

Computational Approach 

 With the stated goal of identifying novel inhibitors of SERT, a computational approach 

was taken to complete a structure-based virtual screen within the S1 binding pocket of the SERT 
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crystal structure.  MOE software was chosen to complete the virtual screen based on initial 

benchmarking with a test set composed of SERT compounds with known affinity.  The scoring 

functions within the docking module of MOE were analyzed to identify the appropriate parameters 

for the screen.  The Maybridge Hit Discoverer, a compound structure collection distributed by 

ThermoFisher, was chosen as the library to be screened due to the affordability (compounds cost 

under $80), commercial availability, and curation date.  The top-ranking compounds were filtered 

utilizing the Lipinski Rule of 5 and estimated binding affinity by the docking protocol.  The top 

44 compounds were assessed for structural uniqueness using the Tanimoto coefficient with the top 

10 compounds purchased for pharmacological testing.   

Methodology 

SERT Computational Model Preparation 

A mutant human SERT crystal structure (Figure 2.1A; PDB id. 5I71, 3.15 Å resolution) was 

downloaded from the Protein Data Bank(Coleman et al., 2016).  Mutated residues within the 

structure were reverted to the wild type amino acid sequence from the UniProt sequence database 

using the Molecular Operating Environment (MOE) software (version 2018.01.01; Chemical 

Computing Group, 2017).  Refinement of the SERT structure (Figure 2.1B) was completed 

through molecular dynamics simulations using the CHARMM36 forcefield with 1-palmitoyl-2-

oleoylphosphatidylcholine (POPC) lipid membrane, solvated with TIP3P water at a 0.15M NaCl 

concentration with a temperature of 310K  (Harvey et al., 2009).  The simulation was completed 

with ACEMD software for 40 ns until the backbone root-mean-square deviation (RMSD) 

converged, and the resulting structure was used as the starting point for the docking simulations 

(Figure 2.1C).  The Structure Preparation module within MOE was utilized with side chains 

protonated using the Protonate 3D setting with the Amber 14:EHT forcefield, and structural issues 
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/ warnings were resolved.  Since sodium atoms are often required for ligand binding, the 2 sodium 

atoms and 1 water molecule found within the crystal structure were reinserted into the binding 

pocket and the system was minimized using MOE (Aggarwal and Mortensen, 2017).  The 

orthosteric binding pocket (S1 site) was identified using the Site Finder module using Alpha 

Spheres, and dummy atoms were placed within the binding pocket (Figure 2.1D).  This site 

corresponded to the second binding pocket predicted by the software. 

Virtual Screening (Docking) Protocol   

The docking simulations were completed using MOE software 2018.01.01 using the Dock module.   

Initial protocol validation was completed using a test set of 24 compounds with experimentally 

determined binding affinity for SERT ranging from high micromolar to low nanomolar, which was 

converted into a free energy value (kcal). (Table 2.1) (Tatsumi et al., 1997).  The Pearson 

correlation coefficient was used to compare the predicted affinity to the experimental affinity using 

JASP software.  The following settings used for the docking simulations included selecting the 

orthosteric binding pocket, use of a wall constraint around the pocket, and use of a structural 

pharmacophore on the oxygen atom of aspartic acid-98 (D98. DON2 with an R of 2).  Ligands 

were selected out of preconstructed MOE database (MDB) files, and docking was carried out using 

the triangle matcher mode with the ASE scoring function retaining 10 poses.  The poses were 

refined using induced fit (flexible side chains) with the London dG scoring function; one pose was 

selected for further work.  The protocol for the VS study was validated using the 24-compound 

test set using the Pearson, Spearman, and Kendall correlation tests with JASP software.              

Chemical Library  

The Maybridge Hit Discoverer compound structure collection corresponding to 51,775 

commercially available compounds was acquired from ThermoFisher.  The collection was rebuilt 
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into 3-dimensional coordinates with the addition of hydrogen atoms and protonated at a pH of 7 

using MOE software.   

Analysis of Virtual Screen 

The resulting output of the virtual screen was filtered by predicted affinity (S score below -17 

(initial filter) and -18(final filter)), chemical properties (Lipinski Rule of 5), and chemical 

uniqueness using chemical fingerprinting (Tanimoto coefficient).  The RDKIT toolkit from the 

MayaChemTools software package was utilized to calculate the chemical fingerprinting and the 

similarity.  
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Results 

 

 

Figure 2.1: Serotonin Transporter Model.  The backbone of the SERT crystal structure (red 
ribbons) co-crystalized with citalopram (PDB id. 5I71) within the S1 binding pocket and a 
cholesterol molecule in the kink of TM 12 (A).  The refined SERT structure used for the virtual 
screen is shown in blue with the binding pocket highlighted with a surface map (B).  An overlay 
of the SERT crystal structure (red) and the refined model (blue) revealed a backbone RMSD of 
3.5 Å (C).  The surface map of the binding pocket is highlighted with the amino acid residues 
shown in ball and stick form (D).      
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Table 2.1: Computational Testset for Docking Benchmarking.  The name, structure, and 
experimental binding affinity of the 24 compound testset that was used to evaluate the 
performance of the docking software for the predictability against SERT. 
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Table 2.2: SERT Correlation Testing without Ions.  The performance of the scoring 
functions within the MOE software ability to predict binding affinity of the testset was 
evaluated using the Pearson correlation coefficient.  Initial benchmarking was completed 
without the Na + ions within the S1 binding pocket.  The scoring function combinations are 
displayed in pairs with the first responsible for the placement and the second responsible for 
rescoring the identified pose.  The correlation function comparing the output of the docking 
simulation to the experimental affinity is displayed as R along with R2.   
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Table 2.3: SERT Correlation Testing with Ions.  The performance of the scoring functions 
within the MOE software ability to predict binding affinity of the testset was evaluated using 
the Pearson correlation coefficient.  Initial benchmarking was completed with the Na + ions 
within the S1 binding pocket.  The scoring function combinations are displayed in pairs with 
the first responsible for the placement and the second responsible for rescoring the identified 
pose.  The correlation function comparing the output of the docking simulation to the 
experimental affinity is displayed as R along with R2.   
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Table 2.4:  Final Validation of the Docking Protocol with the Structural Pharmacophore.  
After the structural pharmacophore was placed on D98, the docking protocol was re-evaluated 
using the 24 compound test set using the Pearson, Spearman, and Kendall correlation tests.  Each 
compound is sorted by its experimental affinity (kcals) and displayed is the predicted affinity of 
the docking simulation.  
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Figure 2.2: Virtual Screening Protocol.  The Maybridge Hit Discoverer chemical library was 
chosen to be virtually screened within the S1 binding pocket of hSERT of which 30,247 
compounds were scored and returned.  In order to analytically choose the candidate compounds, 
a series of filters including predicted affinity, the Lipinski Rule of 5, and structural uniqueness 
were applied and 10 compounds were identified for purchase and pharmacological analysis.      
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Table 2.5: Candidate Compounds Identified for Pharmacological Analysis.  The 
completed virtual screen identified 10 compounds that were selected for pharmacological 
testing.  The structure, catalogue identification number (Maybridge ID #.), and the predicted 
affinity (S score) are displayed within the table.   
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Results 

Docking Software Benchmarking 

 Benchmarking studies were conducted to evaluate the performance of the scoring functions 

in the MOE to differentiate between binders and non-binders.  Initial testing was completed 

without the two Na+ ions within the binding pocket.  The Pearson correlation test was used to 

assess the relationship between the predicted affinity and the experimental affinity.  Each scoring 

function combination for the flexible docking simulation (1st scoring function for placement and 

the 2nd for rescore) was evaluated (Table 2.2).  The Pearson R coefficient values ranged from 0.44 

– 0.67 (R2 = 0.19 – 0.45) with the best correlation occurring with the scoring function combination 

Alpha Hb – London dG.  The scoring function combinations Affinity dG – London dG and 

GBVI/WAS dG – GBVI/WAS dG failed midway through the simulation.  The scoring functions 

were next evaluated with the 2 Na+ ions found in the crystal structure to see if the correlation 

improved (Table 2.3).  The Pearson R coefficient values for the simulations with ions ranged from 

0.30 – 0.73 (R2 = 0.09 – 0.54).  The scoring function combination ASE – London dG achieved the 

best correlation between predicted and experimental affinity.  Further benchmarking was 

completed incorporating the ASE – London dG using a structural pharmacophore interaction with 

D98 (Table 2.4).  Correlation testing was completed with the Pearson (R = 0.737), Spearman (R = 

0.792), and Kendall coefficients (R = 0.581).  In addition, the data were visually inspected, with 

nine of the top 12 compounds scoring under -13.5 and one compound of the bottom 12 ranking 

under -13.5.  Six out of the top nine compounds with experimental affinity were ranked under -14. 
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Virtual Screen 

The Maybride HitDiscoverer compound collection (51,775 compounds) was screened targeting 

the S1 binding pocket of SERT, which resulted in 30,247 compounds being returned and scored 

(Figure 2.2).  A relatively small number (415) of the 30,247 were ranked by the docking software 

to have a predicted affinity S score under -17.  The compounds were further filtered by predicted 

affinity (S score under -18) and the Lipinski Rule of 5, which brought the total to 44.  The 44 

compounds were examined for their chemical uniqueness assessed by the Tanimoto coefficient, 

which determined the chemical similarity between each compound.  It was determined that the 10 

compounds with the unique chemical structures would be purchased for pharmacological testing 

(Table 2.5). 
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Discussion 

 Structure-based virtual screens targeting the human SERT have been successfully 

completed using homology models based on the structural template LeuT (Manepalli et al., 2011; 

Kortagere et al., 2013; Gabrielsen, et al., 2014; Nolan et al., 2014).  The OF conformation of SERT 

has been targeted in every virtual screen completed to date.  The Surratt and Madura laboratories 

have completed two virtual screens that used 2A65 as the template structure and targeting the S2 

(Manepalli et al., 2011) or S1 (Nolan et al., 2014) pocket.  A homology model based on 2QJU 

targeted an allosteric site containing S2 but focused on extracellular loops 1 and 3 (Kortagere et 

al., 2013).  Since the OF structure is open to both the S1 and S2 sites, Grabrielsen et al. defined 

both as the targeted sites during the virtual screen with a homology model based on 3F3A 

(Gabrielsen, Rafal Kurczab, et al., 2014).    

The original intent of this project was to build and refine a SERT model based on the then 

recently published eukaryotic dDAT crystal structure due to its far greater sequence homology 

compared to the bacterial LeuT (Penmatsa et al., 2013; Wasko et al., 2015).  This appeared to be 

the correct approach, as reported technical difficulties made the prospect of crystalizing the human 

SERT appeared unlikely (Green et al., 2015).  Homology models were constructed based on the 

dDAT structure (PDB id. 4M48), co-crystalized with the TCA nortriptyline within the S1 binding 

pocket, using MOE and MODELLER software (Eswar et al., 2007; Chemical Computing Group, 

2017).  Before a virtual screen could be completed, the hSERT crystal structures were published 

and named by the number of thermostability mutations needed to improve stability during 

crystallization (Coleman et al., 2016).  The TS2 constructs were solved at a resolution of ~ 4.5 Å 

while the construct containing the additional mutation (TS3) lowered the resolution to ~ 3 Å, but 

locked the protein into the OF conformation and lacked functional ability to transport [3H]-
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serotonin in cellular models (Coleman et al., 2016).  One mutation within the binding pocket 

(T439S) hindered the binding of the SSRI paroxetine, which subsequent crystal structures restored 

the T439 amino acid (Coleman and Gouaux, 2018).  Since then, one virtual screen has been 

completed using the OF SERT structure (PDB ids. 5I73 and 516X) targeting the S1 and S2 sites, 

but no pharmacological analysis of the results was conducted (Erol et al., 2017).   

The SERT structure co-crystalized with the SSRI citalopram (PDB id. 5I71) was chosen as 

the starting point for this study due to its relatively high resolution (3.15 Å) and the ligand within 

the S1 binding pocket.  Comparison between the human SERT amino acid sequence from the 

UniProt database and the 5I71 structure revealed 14 total mutations, which were corrected to the 

wild-type sequence using MOE software.  Refinement was completed through molecular dynamics 

simulations occurring within a POPC membrane with TIP3P water and 0.15 mM NaCl to relax the 

protein backbone with the CHARMM36 force field.  The simulation was run for 40 ns using 

ACEMD software, which was ended when the backbone RMSD converged at 3.5 Å compared to 

the initial structure and was used as the SERT model for this study.   

 Virtual screens utilize docking calculations to timely differentiate compounds with affinity 

and non-binders at the target protein.  However, these simulations trade accuracy for speed.  

Docking has success with the correct placement of ligands within the binding pocket, but often 

struggles with accurately predicting relative affinity (Lionta et al., 2014).  Proper validation of the 

scoring functions within the docking software is crucial to determine the predictiveness of the 

simulations to identify novel compounds.  At the basic level, a comparison between the crystalized 

ligand and the docked pose was used to evaluate Glide software (Erol et al., 2017).  A more 

thorough approach is to use a “seeded” library that contains compounds with known target affinity 

within a library of non-binding and uncharacterized compounds.  By seeding 10 inhibitors (SSRIs 
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or SNRIs) within 1990 unknown compounds, the MOE docking protocol placed six compounds 

within the top 253 ranked compounds (Nolan et al., 2014).  Ideally, the scoring functions would 

rank the high affinity compounds as the top hits. 

Pharmacophores have been applied to SERT screening, generated from either structural 

elements in the protein’s ligand binding pocket or as a ligand-based filter based on SSRI structure.  

A hSERT 3D pharmacophore for the S2 binding pocket that included an ionic / hydrogen bonding 

feature between R104 (TM1) and E493 (TM10), a hydrogen bonding feature from K490, a 

hydrophobic feature from Y107, and a hydrophobic feature within a subpocket defined by L99, 

W103, and I179, previously termed the halogen binding pocket (Zhou et al., 2009; Manepalli et 

al., 2011)  Similarly, Kortagere used a structural pharmacophore comprised of an hydrophobic 

feature at Y568, and hydrogen bonding features at D328, E494, and R564 (Kortagere et al., 2013).  

Nolan et al. incorporated a minimalist structural pharmacophore with one hydrogen bonding 

feature on D98, while Gabrielsen et al. built a pharmacophore based on desmethyl-(R)-fluoxetine 

containing a positive ionizable feature, a hydrophobic feature, and an aromatic feature that was 

utilized to filter the screening library before the docking calculations were completed (Gabrielsen 

et al., 2014; Nolan et al., 2014).         

An alternative approach is to quantitatively examine the relationship between the predicted 

affinity from the docking evaluation with the known experimental binding data, which is the 

approach taken by this study.  A test set containing 24 compounds with known SERT affinity 

ranging from low nM affinity (< -12 kcal) to mM affinity (-5 kcal), which allowed for correlation 

testing to be completed to evaluate the performance of the software.  MOE software was selected 

to complete the present virtual screen due to its ability to easily add side chain flexibility, the 

shorter computational time needed to complete the simulations, and general performance of the 
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available scoring functions against the human SERT compared to Schrödinger and Autodock 

software during initial benchmarking.  The flexible docking protocol within MOE relies on the 

selection of two scoring functions; the first responsible for the ligand’s initial placement within 

the binding pocket; the second is responsible for rescoring the pose.  Therefore, combinations of 

the scoring functions in MOE (ASE, Affinity dG, Alpha HB, GBVI/WSA dG, and London dG) 

were used to evaluate the test set against the experimental affinity using the Pearson correlation 

test.  The initial question examined if the two Na+ ions within the binding site impacted the scoring 

of the test set.  The Pearson coefficient for the simulations without ions ranged from 0.44 – 0.67 

(R2 = 0.19 – 0.45) (Table 2.3).  Completion of the simulations with the two Na+ ions revealed an 

improvement of the Pearson correlation coefficient with the ASE-London dG combination 

producing an R of 0.73 (R2 =0.54).  The addition of sodium atoms within the binding pocket may 

stabilize the OF conformation of SERT and allows it to accept ligands from the extracellular side 

(Aggarwal and Mortensen, 2017). 

With the desired scoring function combination identified for SERT, the next task was to 

optimize the performance of the simulations before completion of the virtual screen.  The docking 

protocol was modified to include a structural pharmacophore applied to D98 similar to that used 

in the Nolan et al. study, which resulted in Pearson, Spearman, and Kendall correlation coefficients 

of 0.73, 0.79, and 0.58 respectively (Table 2.5).  The Spearman coefficient is an additional 

correlation test that is rank-order in nature, which may pick up relationships missed by the Pearson 

coefficient.  The ASE-London dG combination achieved a Spearman coefficient 0.79 in MOE 

compared to alternative Autodock and Schrödinger Glide software that ranged from 0.61 to 0.69 

in initial benchmarking.  The advantages of MOE software were apparent when allowing for side 

chain flexibility during the docking calculation.  Autodock only allowed limited side chain 
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flexibility that could not encompass the entire S1 binding site, and Glide software required too 

much computational time to reasonably completed a virtual screen.  The virtual screen targeting 

the S1 site by Erol et al. only allowed for flexibility of five amino acids within the pocket (D98, 

I172, Y176, F335, and S438) during the re-evaluation with GOLD docking software (Erol et al., 

2017).  The structural pharmacophore was a filter used to eliminate compounds that lacked the 

crucial D98 interaction necessary for binding of high affinity ligands, which filtered two 

compounds of the test set (tranylcypromine and alprazolam) that display weak SERT binding 

experimentally (Table 2.5).  The resulting predicted affinity (S score) of the test set ranged from -

8.3 to -16.3 (Table 2.5).  The benchmarking screen was completed in with 8 of the 9 top compounds 

scoring below -13.5 and 6 of the top 9 below -14.  This gave assurances about the predictability of 

the software to target SERT, as poorly binding compounds ranked lower, with only one compound 

in the bottom 12 scoring below -13.5.  One notable aspect was that citalopram constantly ranked 

as the top compound with an S score around -16.  This may be due to the fact that the citalopram 

was originally co-crystalized within the binding pocket, although this should not be the case due 

to the refinement with molecular dynamics allowing the apo binding pocket to relax.   

 With the virtual screening protocol validated, focus shifted to its utilization to identify 

potential inhibitors (pharmacologically profiled in Chapter 3).  The Maybridge HitDiscoverer 

chemical library was chosen explicitly due to its recent curation at the time of the screen, the 

commercial availability, and the relatively inexpensive cost.  Commercial availability was a key 

consideration due to the associated cost and time savings compared to traditional synthesis.  The 

Asinex, Chem-Bridge, ChemDiv, Enamine, Life Chemicals, Otavia, and ZINC chemical libraries 

have been previously screened using SERT models (Manepalli et al., 2011; Gabrielsenet al., 2014; 

Nolan et al., 2014; Erol et al., 2017).  The structural coordinates of the HitDiscoverer library were 
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rebuilt in 3-dimensions following the same protocol as the docking test set and contained 51,775 

compounds.  The pharmacophore filtered 7,775 compounds while the remaining 44,000 

compounds were scored and ranked.  The first set of criteria to filter the compounds used the 

Lipinski Rule of 5 - a set of parameters initially utilized by Pfizer to define drug like molecules - 

in combination with predicted affinity (S score < - 17), yielding 415 compounds.  The compounds  

highest-ranked by predicted affinity were next filtered with S score filter to < -18, which retained 

44 compounds.  Rather than pick compounds by visual inspection alone, an analytical route was 

chosen to identify the 10 compounds for purchase.  Initially, compounds were sorted into groups 

by properties such as the number of hydrogen bond donors and acceptors, but the criteria used to 

filter the compounds displayed too much overlap to sufficiently separate the compounds.  The 44 

compounds were chemically fingerprinted using MayaChemTools scripts and ranked for their 

chemical uniqueness using the Tanimoto coefficient.  Each of 44 compounds was structurally 

unique, and the 10 compounds with the lowest coefficient were selected for purchase.  

Unfortunately, Compound 3 was discontinued by the manufacturer after the initial purchase, 

preventing a thorough pharmacological analysis.       
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Chapter 3: Pharmacological Analysis of the Candidate Compounds 

Background  

Approximations within the scoring functions enable the computational software to 

complete virtual screens of large chemical libraries within feasible timeframes; unfortunately, 

these estimates also increase the likelihood of favorably scoring compounds later found to lack 

pharmacological activity (Huang et al., 2010).  Therefore, extensive validation of the 

computational protocol is crucial to provide the best opportunity to identify viable candidate 

compounds and filter out the unlikely ligands (Sliwoski et al., 2014).  Following acquisition of the 

candidate compounds either through synthesis or purchase, it is necessary to confirm the results of 

the screen through pharmacological analysis.  The initial pharmacology of potential SERT ligands 

and inhibitors typically utilizes in vitro assays to determine if the candidate compounds bind to the 

protein, inhibit intracellular transport of serotonin, or promote efflux of stored substrate (Tatsumi 

et al., 1997; Nolan et al., 2014).  Cell lines such as HEK-293 that are transfected to express SERT 

are combined with radiolabeled ligands and inhibitors to probe the pharmacological activity of the 

candidate compounds (Tatsumi et al., 1997; Nolan et al., 2014).    

Determination of the candidate compound’s SERT binding affinity is measured through their 

ability to displace radioligand inhibitors of SSRIs, or cocaine analogs such as RTI-55 that inhibit 

SERT, DAT, and NET (Little et al., 1993; Tatsumi et al., 1997).  An initial total binding assay at 

a single concentration usually around 1-10 µM is typically used to establish candidates for full 

concentration response curves with competitive binding assays.  Inhibitor binding alone does not 

indicate the ability to block transport of the endogenous substrate serotonin.  Therefore, functional 

assays are necessary to determine inhibition potency and efficacy.  Inhibition potential is 

established by preincubating the candidate compound with SERT-bearing cells before addition of 
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radiolabeled substrate, then measuring the ability of the compound to block transport of the 

radioligand into the cell.  Certain compounds such as 3,4-methylenedioxy-N-methylamphetamine 

(MDMA; ecstasy) promote efflux, or reverse transport, of stored intracellular substrate (Sandtner 

et al., 2016).  The efflux assay is similar to the uptake assay except that the cells are preloaded 

with radiolabeled substrate, and the candidate compound’s ability to block cellular release of the 

stored radioligand is measured (Wall et al., 1995).   

SERT Virtual Screens  

Early SERT virtual screens focused on the allosteric binding pocket / S2 site, which was 

thought to be the antidepressant binding site on LeuT 

(Figure 3.1) (Singh et al., 2007; Zhou et al., 2009; 

Grouleff et al., 2016).  The Surratt and Madura 

laboratories were among the first by screening the ZINC 

chemical library through the S2 binding site of a SERT 

model (Manepalli et al., 2011).  The pharmacophore 

criteria returned 4097 compounds before using visual 

inspection and predicted affinity to rank the top 68 

compounds (Manepalli et al., 2011).  Ten of the top 

15 compounds were purchased for pharmacological 

analysis.  Initial binding was assessed at a 10 µM 

concentration for the SERT, DAT, and NET proteins using a total binding assay against [125I]-

RTI-55, with compounds that significantly displace the radioligand further examined using 

competition binding assays (Manepalli et al., 2011).   Compounds SM-10 and SM-11 were 

determined to have micromolar binding affinity with Ki values of 38 and 17 µM (Manepalli et al., 

Figure 3.1: LeuT S1 and S2 Occupied. 
LeuT Crystal structure (teal; PDB id. 
3GWU) with the antidepressant paroxetine 
(yellow) bound within the S2 site above the 
S1 site occupied by leucine (red).  
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2011).  Additionally, none of the compounds inhibited [3H]-5HT uptake at a 10 µM concentration 

(Manepalli et al., 2011).  The Kortagere study also screened the S2 site identifying 10 compounds 

for pharmacological evaluation using [3H]-5HT uptake and [3H]-5HT release assays (Kortagere et 

al., 2013).  One compound (ATM7) was characterized as an allosteric modulator that increased 

5HT uptake and potentiated 5HT efflux by 3,4-methylenedioxy-N-methylamphetamine (MDMA; 

ecstasy) (Kortagere et al., 2013).  ATM7 was hypothesized to work through stabilizing the OF 

conformation of SERT (Kortagere et al., 2013).   

 A fundamental shift in the understanding of binding occurred with the crystallization 

dDAT structures with inhibitors and substrates within 

the S1 or orthosteric binding pocket (Figure 3.2) 

(Penmatsa et al., 2013).  The first screen against the S1 

pocket was completed by Gabrielson et al. using the   

Asinex, ChemBridge, ChemDiv, Enamine, and Life 

Chemical libraries (Gabrielsen et al., 2014).  Filtering 

by the Lipinski Rule of 5, Verber (oral bioavailability), 

basic property (pKa between 3 and 11.5), ADMET 

properties, and a ligand-based pharmacophore 

(positive ionic charge, aromatic feature, and 

hydrophobic portion) left 2293 compounds to be 

flexibly docked using a previously developed 4D 

approach (Gabrielsen et al., 2012; Gabrielsen et al., 2014).  Two-hundred and two compounds  

were purchased for pharmacological analysis at SERT.  A total binding assay against [3H]-

citalopram identified 23 compounds for competition binding curves with an additional 23 

Figure 3.2: dDAT S1 Occupied. dDAT 
Crystal Structure (blue; PDB id. 4M48) 
with the tricyclic antidepressant 
amitriptyline (yellow) bound within the S1 
binding pocket. 
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compound chosen to develop structure activity relationships.  In all, 24 compounds were 

characterized with a Ki below 1000 nM with 13 additional compounds having a Ki between 1000 

nM to 3100 nM (Gabrielsen et al., 2014).  Later screening of analogs identified an additional 22 

compounds with a Ki under 1000 nM (Gabrielsen et al., 2014).   

 The second SERT virtual screen published by the Surrat and Madura laboratories screened 

the PubChem database within the S1 binding pocket of the SERT model (Nolan et al., 2014).  The 

13,378 compounds ranked compounds were visually inspected based on pharmacophore fit (D98), 

chemical complexity, and synthetic viability, which identified 49 compounds of interest  (Nolan 

et al., 2014).  Nineteen compounds were commercially available and pharmacologically evaluated 

to determine binding affinity (Ki) for the MATs (SERT, DAT, and NET) and inhibition efficacy 

(IC50) for SERT (Nolan et al., 2014).  Four compounds (TN-1, TN-5, TN-6, and TN-13) were 

selected for full competition binding curves for SERT with Ki values ranging from 668 to >20,000 

nM and IC50 values ranging from 3845 to  >20,000 nM from the [3H]-5HT uptake inhibition assay 

(Nolan et al., 2014).    

 Following publication of the human SERT crystal structures, only one study virtual screen 

utilized the structures (PDB id. 5I6X and 5I73) and screened the Otava Chemicals Drug Like Green 

chemical library through both the S1 and S2 pockets (Erol et al., 2017).  Glide software was 

initially used and compounds scored within -2 kcal of the top ranked compound were kept leaving 

9163 for the S1 and 999 for S2  (Erol et al., 2017).  Consensus scoring by docking algorithms 

within the Schrödinger software suite identified 3 compounds for S1 (compounds 160234, 159166, 

69419) and 1 compound for S2 (compound 93507) (Erol et al., 2017).  Molecular dynamics 

simulations and free energy calculations using MM/GBSA within Schrödinger software were used 

to computationally validate these compounds as SERT inhibitors (Erol et al., 2017).  Although this 
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is technically the first virtual screen utilizing the human SERT crystal structures, the lack of 

pharmacological validation hinders the final conclusions made by the study.  The prior 4 SERT 

virtual screens pharmacologically profiled 241 compounds with only 44 compounds displaying 

moderate binding affinity or modulated serotonin transport (Manepalli et al., 2011; Kortagere et 

al., 2013; Gabrielsen et al., 2014; Nolan et al., 2014).  This hit rate of 18% highlights the necessity 

of pharmacological evaluation to validate the computational approach. 

Pharmacological Approach 

  Chapter 2 of this thesis detailed the computational approach taken to identify 10 candidate 

compounds for pharmacological profiling.  While all 10 compounds were purchased from Thermo-

Fisher, only 9 were able to be fulfilled by the manufacturer and evaluated.  A HEK-293 cell line 

that stably expressed SERT was acquired to determine binding, inhibition efficacy, and release 

potential of the candidate compounds.  A total binding assay using 10 µM of candidate compound 

against [3H]-citalopram was completed to identify compounds that bound to SERT.  One 

compound displaced the radioligand comparable to the positive control paroxetine and was chosen 

for full concentration response curves.  Additionally, each compound was tested at 10 µM for 

inhibition potential and release potential using [3H]-serotonin.  Two compounds blocked serotonin 

below 50% of vehicle and concentration response curves were completed.  No compound 

promoted the release of stored substrate in the release assays.   
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Methodology  

Candidate Compound Preparation.  The nine candidate compounds identified from the virtual 

screen were purchased from Thermo Fisher as part of the Maybridge chemical collection.  To 

prepare the compounds for pharmacological testing, the 5 mg of candidate compounds were 

suspended in DMSO under sterile conditions to achieve 10 mM concentration stocks. 

 

Cell Culture.  To pharmacologically classify the candidate compounds against SERT using in vitro 

experiments, a Human Embryonic Kidney – 293 (HEK293) stably transfected to express the 

human SERT (HEK293-SERT) was acquired as a generous gift from Dr. Randy D. Blakely 

(Florida Atlantic University, Boca Raton, FL).  The initial culturing of the HEK293-SERT cells 

was completed by thawing the cryovial by hand and resuspending the cells with 10 ml of media in 

a 15 ml tube, which was centrifuged at 10,000 rpm for 10 minutes to separate the freezing media 

(10% DMEM:F-12, 10% DMSO, 80% FBS) from the cells.  Following the aspiration of the liquid 

within the 15 ml tube, the pellet of cells was resuspended with 12 ml of media (DMEM:F-12, 10% 

FBS, 1% Pen/Strep) and cultured in a medium sized flask (T75) at 37o C and 5% CO2. The 

HEK293-hSERT cell line was cultured under the conditions as described (Tatsumi et al., 1997) 

until confluence.  Cells were then scraped into 15 ml screw tubes and lightly pelleted by 

centrifugation (500 rpm) for 10 minutes.  The media was aspirated, and the remaining pellet was 

layered with medium before freezing at -20C.   

 

Total Binding Assay. To assess whether the candidate compounds bound to SERT, radioligand 

binding assays were performed using [3H]-citalopram.  To assess for specific binding, saturating 

(10µM) concentrations of sertraline was added to parallel sets of tubes.  To calculate the total, 
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specific and non-specific binding of the 9 candidate compounds, the positive control (sertraline) 

and the vehicle (DMSO), 4 vials per compound were collected (2 vials for total binding and 2 vials 

for specific) in 24 well racks.  20 µl of buffer (50 mM TRIS) was added to each vial (40 µl for the 

total binding), followed by the addition of 20 µl of the cold compound to achieve a final 

concentration of 10 µM.  20 µl of the hot radioligand [3H]-citalopram (Perkin Elmer, citalopram, 

[N-METHYL-3H], product # NET1039250UC) was added using a 1/42 dilution to achieve a final 

concentration of 16 nM.  Two hundred µl of the membrane preparations were then added to each 

vial, which was calculated to contain 1.6 mg of protein per ml or 320 µg of protein per vial.  Each 

vial was washed three times utilizing a 0.5% PEI soaked filter with a Brandel Harvester.  The filter 

for each sample was collected in a scintillation vial with 5 ml of fluid and counted with a 

scintillation counter.  The total, specific and non-specific binding was then normalized to the 

amount of protein present in the membrane preparation.           

 

Competition Binding Assay.  The candidate compounds determined from the total [3H]-citalopram 

binding assays that demonstrated any specific binding were subjected to further analysis using 

competition binding assays using [3H]-citalopram.  Increasing concentration of the candidate 

compounds were run in the presence of a constant concentration of [3H]-citalopram (16 nM).  This 

was to calculate affinity of the candidate compounds to SERT (Ki).  For each candidate compound 

tested and the positive control (sertraline), a rack consisting of 24 vials was used that contained 6 

vials for total binding and duplicate vials for the drug concentrations ranging from 1 pM to 100 

mM.  Once the rack setup was complete, 20 µl of buffer (50 mM TRIS) was added to each vial 

with 40 µl added to the total binding vials.  This was followed by the addition of the cold drug in 

20 µl amounts to achieve the desired final concentration.  The hot radioligand [3H]-citalopram was 
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added in 20 µl amounts to each vial using a 1/42 dilution to get to a final concentration of 16 nM.  

The cell lysates were next added in 200 µl amounts followed by vertexing and incubated at room 

temperature for 1 hour.  A Brandel harvester with 0.5% PEI soaked filters was used to filter the 24 

vials, which were washed 3 times.  The filter for each sample was then collected within a 

scintillation vial with 5 ml of fluid and counted with a scintillation counter.  Data points were fit 

by non-linear regression analysis and the best fit was determined through least squares fit.   

 

Total [3H]-Serotonin Uptake Inhibition.  To assess whether or not the candidate compounds 

inhibited at all 3H-serotonin uptake, initial screens were performed using 10 µM candidate 

compounds. This was conducted to identify any candidate compounds that demonstrated 50% or 

greater inhibition.  The HEK293-SERT cells were cultured on 24 well plates precoated with poly-

d lysine (PDL) over night at 37o C at 5% CO2.  The media within each well was aspirated with a 

vacuum pump and washed twice with 1 ml of KRH buffer.  KRH buffer (0.5 ml) was added to 

each well followed by the addition of 0.5 µl of the 10 mM candidate compound stock completed 

in duplicate.  The vehicle (DMSO; wells 1 and 2), positive control (citalopram; wells 3 and 4), and 

the basal response (no treatment; wells 23 and 24) were measured in duplicate.  After the addition 

of the candidate compound or control, each well was incubated at room temperature for ten 

minutes.  The [3H]-serotonin stock was prepared by addition of KRH buffer in a 1:1 ration (13 µl 

serotonin to 13 µl KRH buffer).  Following the ten-minute drug incubation, 1 µl of [3H]-serotonin 

mixture was added to each well for 5 minutes before aspiration and subsequently washed twice 

with KRH buffer to end the uptake.  To assess the concentration of the [3H]-serotonin within the 

cells, 1 ml of SDS was added to each well and shaken at room temperature for 1 hour to break 
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open the cells, which were further scraped and transferred to scintillation vials with 5 ml of 

scintillation fluid and counted with scintillation counter. 

 

Concentration Response [3H]-Serotonin Uptake Inhibition.  Candidates that were found to inhibit 

[3H]-5HT uptake by 50% or greater were subjected to further analysis by constructing 

concentration response curves using concentrations of compounds between 100 pM to 1 µM.  This 

was completed to calculate potency and efficacy of compounds which were then compared to the 

vehicle (DMSO) and the positive control Citalopram.  Data points were fit by non-linear regression 

analysis using variable slopes.  Potency, IC50, or efficacy were calculated.   

 

[3H]-Serotonin Release Assay .  To assess if any of the candidate compounds promoted the release 

of [3H]-5HT (Perkin Elmer, 5-hydroxy tryptamine, [3H], product # NET1167250UC) from within 

the cell, a serotonin release assay was completed using [3H]-5HT.  The candidate compounds, 

vehicle (DMSO), positive control (citalopram), and basal response (no treatment) were measured 

in triplicate for this assay.  The HEK293-SERT cells were cultured in PDL coated 24 well plates 

overnight at 37oC with 5% CO2 and 100% humidity, which was aspirated and washed twice with 

KRH buffer.  The [3H]-5HT stock mixture for this experiment was created using a 1:1 ratio of 

radioligand to KRH buffer (15 µl [3H]-5HT with 15 µl KRH buffer).  Each well received 0.5 ml 

of KRH buffer followed by the addition of 1 µl of [3H]-5HT and incubated at room temperature 

for 30 minutes.  Each well was aspirated of its media and washed with 0.5 ml of KRH buffer both 

of which were collected in a scintillation vial (count 1; load).  The plates were reloaded with 0.5 

ml of KRH buffer and 0.5 µl of the 10 mM candidate compound stocks were added to each well 

and incubated at room temperature for 30 minutes.  The media was then aspirated, and each well 
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was washed with 0.5 ml of KRH buffer, which was collected in scintillation vials and counted 

(count 2; release).  To count the contents of the cells, 1 ml of SDS buffer was added to each well 

and the plates were shaken at room temperature for 1 hour.  The cells were scrapped and collected 

in scintillation vials (count 3; load).  The uptake efficiency of the experiment was calculated by 

dividing the total (count 1) by the load (count 3).  To examine the release of [3H]-5HT, the release 

(count 2) normalized by the load (count 3) as release / load.  The released [3H]-5HT was also 

examined with its relationship to the initial amount of [3H]-5HT added by dividing the release 

(count 2) by the total (count 1).          

 

 

GPCR Screen from the PDSP. To determine the potential selectivity of the candidate compounds, 

the Mark Roth lab at the University of North Carolina completed a functional screen against a 

panel of GPCRs containing over 300 receptors including the serotonin, dopamine, and 

norepinephrine receptors (full list of receptors found in Appendix Tables A.2-A.11).  The PDSP 

used a PRESTO-TANGO assay, which is a modified arrestin assay designed to promote 

luminescence upon activation of the GPCR (Kroeze et al., 2015).  The candidate compounds were 

tested at a 3 µM final concentration completed with quadruplicate with the dopamine d2 agonist 

quinpirole at 400 nM concentration serving as the positive control.  The complete results can be 

found in Appendix Tables A.2 – A.11.  
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Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Total Binding Analyses of Candidate Compounds to SERT. Candidate 
compounds (1, 2, 4, 5, 6, 7, 8, 9, 10) were screened for their ability to bind to SERT using 
[3H]-citalopram [16 nM]. Data in (A) depict total, non-specific and specific binding of [3H]-
citalopram to SERT normalized by total protein while those depicted in (B) represent specific 
binding only.  Parallel sets of experiments using the positive SSRI control, sertaline (10 µM) 
and the vehicle, DMSO were run. Each bar graph represents the mean +/- (SD) of preformed 
in duplicate.    
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A. Composite Binding Curve 

 

 

 

 

 

 

 

B. Assay 1      C. Assay 2 

 

 

 

 

 

 

 

Figure 3.4: Competition of Sertraline for [3H]-Citalopram Binding to SERT. The 
affinity of sertraline (1pM-100mM) for SERT was assessed by competition binding using 
the radioligand [3H]-citalopram.  A composite binding curve (A) was constructed from 
individual curves shown in (B) and (C). Individual (B, C) or composite (A) affinity (IC50, 
Ki) values were derived by GraphPad Prism non-linear regression analyses least squares 
fit.  Each data point represents the mean +/- (SD)  of two independent experiments 
performed in duplicate for (A) or one experiment performed in duplicate (B, C).   
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A. Composite      B. Assay 1 

 

 

 

 

 

 

 

C. Assay 2      D. Assay 3 

 

 

 

 

 

 

 

 

 

Figure 3.5: Competition of Compound 4 for [3H]-Citalopram Binding to SERT. The 
affinity of compound 4 (1pM-100mM) for SERT was assessed by competition binding using 
the radioligand [3H]-citalopram.  A composite binding curve (A) was constructed from 
individual curves shown in (B), (C), and (D).  Individual (B, C, D) or composite (A) affinity 
(IC50) values were derived by GraphPad Prism non-linear regression analyses least squares 
fit.  Each data point represents the mean of three independent experiments performed in 
duplicate for (A) or one experiment performed in duplicate (B, C, D).   
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Figure 3.6 Single Point Substrate Uptake Inhibition of Candidate Compounds to SERT. 
Initial screen of hit compounds to inhibit [3H]-serotonin transport with HEK-293 cells stably 
expressing the SERT protein.  The cells were preincubated with 10 µM concentration of each 
compound, citalopram, vehicle (DMSO), and basal.  Data represents the mean +/- (SD)  of 6 
independent assays performed in duplicate.  Active compounds were defined as inhibiting 
greater than 50% uptake of the vehicle.   
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Citalopram (Positive Control) 

 

 

 

 

 

Compound 1 
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Figure 3.7: Concentration Response Substrate Uptake Inhibition with Citalopram, 
Compound 1, and Compound 4 for SERT.  Compounds 1 and 4 were determined to be 
active inhibitors of the SERT protein (Figure 3.6).  Full dose response curves (100 µM to 
1 pM) were completed with compounds 1, 4, and citalopram (positive control).  Data is 
presented as the mean expressed as percent vehicle (DMSO treatment) or percent basal 
(no treatment) +/- (SD) of 3-4 independent assays performed in duplicate.   
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Figure 3.8: Release Assay with the 9 Compounds.  To assess the ability to of the hit 
compounds to export [3H]-serotonin from HEK-293 cells stably expressing the SERT 
protein.  Cells were preloaded with [3H]-serotonin for 30 minutes before incubation with 
hit compounds, citalopram, vehicle (DMSO), and basal response (no treatment).  
Experimental compounds and citalopram were assessed at 10 µM concentration.  Media 
was collected and counted after 30-minute addition of [3H]-serotonin (total), after drug 
treatment (release), and within the cell (load). Assay represents the mean +/- (SD) 
performed in triplicate.    
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Table 3.1 Comparison Between Virtual Screening Analysis and Pharmacology. 
Compounds are sorted by predicted binding affinity to compare the results of the Total Binding 
assay and the [3HT]-5HT uptake assay.  Compounds identified as inhibitors of SERT are 
highlighted in yellow.  The SSRI controls are listed at the bottom for each assay.  
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A.       B.      
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Figure 3.9:  Binding Interactions Between Compound 1 and the S1 Binding 
Pocket of SERT.  Two vantage points of compound 1 in the space filling model is 
shown in panels A and B, which the overall position of the compound within SERT is 
shown in panel C.  To clarify the binding interactions shown in A and B, a 2D 
representation is shown in panel D. 
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A.     B.       

 

 

 

 

 

 

 

 

C.       D.    

   

 

 

 

 

 

 

Figure 3.10:  Binding Interactions Between Compound 4 and the S1 Binding Pocket of 
SERT.  Two vantage points of compound 4 in the space filling model is shown in panels A 
and B, which the overall position of the compound within SERT is shown in panel C.  To 
clarify the binding interactions shown in A and B, a 2D representation is shown in panel D. 
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Results 

Total Binding Assay 

To establish if any of the 9 experimental compounds bound to the SERT protein, a total binding 

assay was completed utilizing [3H]-citalopram.  The total binding (T), non-specific binding (NS) 

and specific binding (S) values for each experimental compound were recorded along with the 

positive control sertraline and the vehicle DMSO, which were normalized to mg of protein used 

in the assay (Figure 3.3A) and plotted with the isolated specific binding (Figure 3.3B).  Compound 

4 (222.8 fmol / mg protein) showed comparable binding to sertraline (179.2 fmol / mg protein).  

Compounds 1 (19.4 fmol / mg protein), 6 (69.5 fmol / mg protein), 8 (46.4 fmol / mg protein), and 

10 (42.1fmol / mg protein) showed limited specific binding while compounds 2, 5, 7, and 9 had 

negligible specific binding.             

Competition Binding Assays 

To further define the binding profile of the experimental compounds that displayed specific 

binding in the total binding assay (Compounds 1, 4, 6, 8, and 10), competitive binding assays were 

completed using concentrations of the candidate compounds ranging from 1 pM to 100 mM against 

16 nM of [3H]-citalopram.  Assays for compounds 1, 6, 8, and 10 were completed but displayed 

no convergence.  IC50 values (high and low) for calculated as a composite graph (IC50 high of 0.9 

nM and an IC50 low of 313 mM) and as calculated from averaged individual experiments for 

compound 4 (0.5 nM (range 250 pm to 1.07 nM) and IC50 low of 0.4 mM (range 90 µM to 2.6 

mM) (Figure 3.5).  The positive control sertraline was reported to have a Ki value of 0.35 nM 

(Figure 3.4).  

 

 



 

   67 

 

Total [3H]-Serotonin Uptake Inhibition    

To determine if the novel compounds are SERT inhibitors, a single concentration (10 µM) of 

compounds 1 through 10 was administered to stably transfected SERT cell line before addition of 

[3H]-5HT to examine if the novel compounds blocked the transport of the serotonin.  Inhibitors 

are defined as compounds blocking at least 50% of [3H]-5HT compared to vehicle.  Citalopram 

was used as a positive control and resulted in 2% of vehicle (98% inhibition of uptake).  

Compounds 1 (33% of vehicle) and compound 4 (19% of vehicle) were classified as inhibitors, 

while compound 5 was a borderline candidate (57% of vehicle) due to the standard error falling 

below the 50% threshold (Figure 3.6). 

Concentration Response [3H]-Serotonin Uptake Inhibition     

To establish the potency of compounds 1 and 4 as inhibitors of SERT, concentration response 

curves were conducted using 1pM to 10 mM concentrations (Figure 3.7).  The positive control 

citalopram was chosen in an IC50 of 1.1 nM compared to vehicle and 0.4 nM compared to basal.  

Compound 1 resulted in an IC50 of 6.6 µM compared to vehicle (8.0 µM compared to basal 

response), while compound 4 had an IC50 of 3.4 µM compared to vehicle (4 µM compared to basal 

response).  

[3H]-Serotonin Release Assay  

To assess the novel compounds ability to release (export) [3H]-5HT from within the HEK-293 

cells, the cells were preloaded with [3H]-5HT for thirty minutes before incubation with compounds 

1 through 10.  The media was collected for counting after the 30-minute addition of [3H]-5HT 

(total), after drug treatment (release), and stored within the cell (load).  To assess the uptake 

efficiency (load (5HT within the cell) divided by total 5HT added), which was under 3% for the 9 
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experimental compounds, positive control (citalopram), basal (no treatment) and vehicle (DMSO) 

groups.  To assess the release of [3H]-5HT, the release measurement was divided by the load and 

showed no statistical difference between the 9 experimental compounds and citalopram compared 

to the vehicle DMSO group.  To assess if the total [3H]-5HT initially added affected the released 

amount, the release measurement was divided by the total measurement.  In all groups, the release 

/ total was under 1.5% with no statistical differences compared to vehicle (Figure 3.8).     
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Discussion 

 The work within this doctoral thesis was completed with the goal of using computational 

modeling to rationally discover novel inhibitors of hSERT.  The computational approach, detailed 

in Chapter 2, targeted the orthosteric binding pocket (S1) of hSERT using MOE software.  The 

virtual screen analytically identified 10 candidate compounds with 9 compounds commercially 

available for purchase from Thermo-Fisher.  The initial pharmacological analysis was completed 

using human embryonic kidney cells – 293 (HEK-293) that stably expressed hSERT, which was 

generously donated by Dr. Randy D. Blakely of the Florida Atlantic University, and examined 

binding, efficacy as inhibitors, and release potential.  In addition, the agonist functional data was 

generously provided by the National Institute of Mental Health’s Psychoactive Drug Screening 

Program, Contract # HHSN-271-2018-00023-C (NIMH PDSP).  The NIMH PDSP is Directed 

by Bryan L. Roth at the University of North Carolina at Chapel Hill and Project Officer Jamie 

Driscoll at NIMH, Bethesda MD, USA.  The PDSP screened 8 of the 9 candidate compounds 

against a wide panel of GPCRs including the serotonin, dopamine and adrenergic receptors (see 

Appendix Tables A2-A11).  

 In order to determine if the candidate compounds bind to hSERT, a total binding assay was 

completed at an initial concentration of 10 µM of compounds 1 through 10 and the positive control 

sertraline against [3H]-citalopram (Figure 3.3).  This assay identified that 5 of the 9 compounds 

had specific binding to hSERT although only compound 4 (222.8 fmol / mg protein) had 

comparable specific binding compared to sertraline (179.2 fmol / mg protein).  Compounds 1 (19.4 

fmol / mg protein), compound 6 (69.5 fmol / mg protein), compound 8 (46.4 fmol / mg protein), 

and 10 (42.1 fmol / mg protein) were chosen for further evaluation with competitive binding assays 

along with compound 4, while compounds 2, 5, 7, and 9 were disregarded due to negligible specific 
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binding.  Competition binding assays were completed using a range of concentrations from 1pM-

100mM with sertraline as the positive control.  The competition for compound 4 was analyzed as 

a composite graph (Figure 3.5A) comprised of three individual experiments (Figure 3.5 B, C, and 

D), and as an averaged value derived from the individual experiments with both situations having 

a 2-site fit.  Data for the composite was recorded as Ki values (1 nM high and 1 µM) and IC50 

values (0.9 nM high and 313 mM low), while IC50 values were reported for the averaged values 

(0.5 nM high and 0.4 mM low).  Compounds 1, 6, 8, and 10 were characterized with competition 

binding assays but the graphs were determined to be non-convergent.  The positive control 

sertraline was also analyzed as a composite graph (Figure 3.4A) with a Ki of 0.35 nM and 

individual graphs (Figure 3.4B and C).  Both the total binding and competitive binding assays were 

hindered by issues with high non-specific binding, which could be due to low receptor expression 

and the potential of the radioligand being “sticky”.  In addition, the competitive binding assays 

were impacted by the concentration of [3H]-citalopram used in the experiments.  A concentration 

of 16 nM was chosen due to being roughly 80% of the BMax value on recommendation by advisors 

but it was much higher concentration than reported in the literature.  Compounds 1, 6, 8, and 10 

were unable to displace the radioligand at that concentration, which combined with the high non-

specific bindings led to no convergence when examining their competition binding curves.    

 The primary goal of this study was to identify inhibitors of hSERT through computational 

modeling.  Therefore, the efficacy the candidate compounds were determined using a substrate 

uptake inhibition assay that measured each compound’s ability to inhibit the transport of [3H]-5HT 

into the cell.  The 9 compounds along with the positive control citalopram were initially tested at 

a 10 µM concentration with inhibition being defined as a greater than 50% reduction of internal 

[3H]-5HT compared to the vehicle DMSO (Figure 3.6).  This criterion established compounds 1 
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(33% of vehicle) and 4 (19% of vehicle) as hSERT inhibitors and candidates for full concentration 

response curves.  The efficacy of the SSRI citalopram was evident with the almost complete 

blockage of [3H]-5HT at 3% of uptake compared to vehicle.  Compound 5 (56% of vehicle) was a 

borderline candidate for further examination due to its proximity to the 50% mark.  When full 

concentration response curves were completed, compound 4 (IC50 = 3.4 µM compared to vehicle) 

was found to be more potent than compound 1 (IC50 = 6.6 µM compared to vehicle) (Figure 3.7) 

matching the results of the single point assay.  The positive control citalopram was found to have 

an IC50 of 1.1 nM compared to vehicle.  A concentration response curve for compound 5 was 

initially examined but quickly abandoned when the 10 µM concentrations were found to above the 

50% of vehicle mark to conserve limited [3H]-5HT supplies.        

 A [3H]-5HT release assay was the last pharmacological assay completed, which was used 

to determine if the candidate compounds act as “releasers” through efflux or reverse transport.  

Examples of releasers at the MATs include the amphetamine family of compounds most notably 

working through DAT.  The [3H]-5HT release assay is essentially the reverse of the [3H]-5HT 

uptake inhibition assay with the radioligand being preloaded into the cells before the addition of 

the candidate compounds.  The inhibitor citalopram was used as a positive control due to the lack 

of a releaser to use with this assay.  To determine if the candidate compounds caused efflux, the 

amount of [3H]-5HT released was normalized to the amount of [3H]-5HT loaded into the cell 

(release / load; Figure 3.8B), which showed no statistical difference between the candidate 

compounds compared to vehicle.  The release / load was comparable to the amount of baseline 

efflux seen in other studies.  To determine if the initial concentration of [3H]-5HT added affected 

release, uptake efficiency (load / total) was assessed at under 3% for all candidate compounds and 

controls with no statistical difference compared to vehicle.  Additionally, the release / total for 
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each compound was at under 1.5% for all compounds with no statistical difference compared to 

vehicle.  Therefore, none of the 9 candidate compounds were determined to be releasers through 

SERT.     

 In total, this study targeted the S1 binding pocket of SERT and identified 10 candidate 

compounds for pharmacological analysis.  Of the 9 compounds acquired, compound 1 and 

compound 4 were characterized as inhibitors of SERT with 6.6 µM and 3.4 µM IC50 values 

determined by the [3H]-5HT uptake inhibition assay (Figure 3.7).  To the authors knowledge, there 

have been 5 virtual screens targeting SERT reported in the literature with 4 studies that utilized 

LeuT based homology models and completed pharmacological analysis of the identified 

compounds.  The lone study that utilized the hSERT crystal structure did not complete any 

pharmacology associated with the study.  The results of the 5 studies along with the data from this 

study is summarized in Table 3.2.  In comparison, the first virtual screen (Manepalli et at., 2011) 

targeted the S2 site and identified two SERT ligands with 17 µM (compound SM-11)  and 38 µM 

(compound SM-10) Ki values but were unable to block [3H]-serotonin transport in uptake 

inhibition assay at 10 µM concentration (Manepalli et al., 2011).  A sister study from the same lab 

screening the DAT S2 binding pocket identified one compound (MI-17) that was selective towards 

SERT with a 284 nM Ki value over DAT and NET (Nolan et al., 2011).  MI-17 was developed 

into DJLDU-3-79 through molecular hybridization improving its binding affinity (Ki value) to 37 

nM and its [3H]-5HT uptake inhibition potency to 441 nM from 1167 nM (MI-17) (Nolan et al., 

2011).  One compound (ATM7) from the Kortagere et. al. was established as an allosteric 

modulator of SERT that increased [3H]-5HT uptake and potentiated [3H]-5HT efflux elicited by 

3,4-methylenedioxy-N-methylamphetamine (MDMA; ecstasy) through stabilizing an OF 

conformation of SERT (Kortagere et al., 2013).   
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The publication of the LeuBAT and dDAT structures altered the focus of antidepressant 

binding from S2 to S1 (Gabrielsen et al., 2014; Nolan et al., 2014).  Gabrielson et al. examined 

202 identified compounds for SERT binding and characterized 37 compounds with having a Ki < 

3100 nM (Gabrielsen et al., 2014).  The second S1 screen focused on 19 compounds for 

pharmacological analysis, which characterized 4 compounds with Ki values ranging 668 to 

>20,000 nM and IC50 values ranging from 3845 to >20,000 nM (Nolan et al., 2014).  This is 

comparable to the 2 compounds identified within this virtual screen that have IC50 values of 3400 

nM (compound 4) and 6600 nM (compound 1) (Figure 3.7).       

 After the internal pharmacological analysis was completed, the 9 candidate compounds 

were evaluated using the NIMH’s PDSP service through the Bryon Roth lab at the University of 

North Carolina.  A functional screen was chosen against a wide panel of over 300 GPCRs including 

the serotonin, dopamine, norepinephrine, adrenergic, and opiate receptors (see Appendix Table A3 

for a complete list of screened receptors).  This was completed using a parallel receptor-ome 

expression and screening via transcriptional output – transcriptional activation following arrestin 

Table 3.2: Comparison of Pharmacology from SERT Virtual Screens.  Each study is 
summarized by model used, site targeted, number of compounds tested, pharmacological assays 
used, and by major findings. 
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translocation (PRESTO-TANGO) assay, which is a modified β-arrestin recruitment assay that 

links receptor activation to the promotion of a transcription factor for luminescence (Kroeze et al., 

2015).  The PDSP examined 8 of the 9 submitted compounds at a concentration of 3 µM (Appendix 

Tables A3-11) while the dopamine d2 receptor agonist quinpirole (400 nM concentration) served 

as the positive control.  Compound 8 was displayed 47% activation of the atypical chemokine 

receptor 3 (CXCR7), which is structurally similar to the chemokine receptors but lack G-protein 

recruitment upon activation (Ulvmar et al., 2011).  Originally an orphan receptor, CXCL11 and 

CXCL12 were identified as ligands with the receptor proposed to promote their sequestration 

(Ulvmar et al., 2011).  Recent studies have suggested that the atypical chemokine receptor 3 is an 

atypical opiate receptor that binds many of the endogenous opiate peptides and prevents their 

activation of the classical opiate receptors (Meyrath et al., 2020).  No other receptor within in 

panel displayed greater than 7% activation with any of the 8 experimental compounds screened by 

the PDSP although this does not preclude any of the compounds from acting in an antagonistic 

function.  The PDSP Ki database, which catalogs the results of binding experiments, determined 

that the SSRIs bind to other receptors than the MATs.  Receptors with a Ki < 5 µM include the 

5HT2A (fluoxetine, sertraline), the 5HT2B (fluoxetine), 5HT2C (citalopram, fluoxetine, sertraline), 

alpha1 adrenergic (citalopram, fluoxetine, paroxetine, sertraline), alpha2 adrenergic (paroxetine, 

sertraline), muscarinic acetylcholine M1 (citalopram, fluoxetine, paroxetine, sertraline), M2 

(fluoxetine), M3 (fluoxetine), M4 (fluoxetine), M5(citalopram), histamine H1 (citalopram, 

fluoxetine), and sigma 1 receptors (sertraline) (Ki Database; (Roth et al., 2000)).  Activation of 

5HT2 receptors within the brain are thought to contribute to many of the adverse effects of the 

SSRIs including anxiety, insomnia, irritability, while receptors within the spinal cord contribute to 

sexual dysfunction (Clayton et al., 2014).  Gastro intestinal issues are thought to be due to 
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activation of 5HT3 receptors (Browning, 2015).  The SSRI fluoxetine is a 5HT2C antagonist (Ni 

and Miledi, 1997).  The results of the PDSP screen suggest that the two identified SERT inhibitors 

(compound 1 and 4) may display an alternative side effect profile due to their lack of activation of 

any GPCR within the panel.  Although the serotonin receptors could still be activated by the 

inhibition of SERT by these compounds. The results of the 9 candidate compounds against the 

DAT and NET proteins are still awaiting analysis from the PDSP.   

 With the initial pharmacology completed, comparisons between the molecular modeling 

completed in chapter 2 can begin to be compared to the total binding assay and the substrate uptake 

inhibition assay that tested each of the candidate compounds at 10 µM concentration (Table 3.1).  

Each candidate compound was sorted by the predicted affinity (S score), which ranked 1 

compound scored in the -20s, 5 compounds in the -19s, and 4 compounds in the -18s.  The first 

interesting observation is that compound 4 was ranked the highest in predicted affinity (S score = 

-20.2), total binding assay (specific binding = 222.8 fmol / mg protein), and [3H]-5HT uptake 

inhibition (19.2 % of vehicle).  The second highest ranked compound by the modeling is compound 

3, which was discontinued by Thermo-Fisher after the purchasing for this study was completed.  

Compound 1 was the third highest ranked compound by modeling (S score = -19.5) and was ranked 

second in the [3H]-5HT uptake inhibition (33.8 % of vehicle).  While the results of compound 1 

and 4 were favorably ranked in comparison, it should be reminded that each of the ten compounds 

were chosen in part due to their high predicted affinity ranking while weak binders in the 

benchmarking study were ranked with an S score under -13.  Nonetheless, the data demonstrates 

that the virtual screen successfully identified 2 inhibitors of SERT in an analytically driven 

process. 
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 Computational modeling can be used to provide insight into the differences between 

compound 1 and 4.  Examination of the molecular interactions of compound 1 revealed that the 

chlorobenzene sits near the opening of the binding pocket forming an aromatic / hydrophobic 

interaction with F335, which is considered one of the external gating residues for SERT, with the 

chlorine atom exposed to the vestibule (Figure 3.9).  Compound 1 forms hydrogen bonds with 

D98, N101, and T497.  The second chlorobenzene group sits within a hydrophobic pocket near 

Y95, Y176, F341, G498, and V501.  Compound 4 adopts a strikingly similar pose within the 

binding site compared to compound 1 (Figure 3.10).  The benzene ring is partly exposed to the 

vestibule and forms a non-polar interaction with R104 (Figure 3.10).  An important difference 

between the compounds is that compound 4 contains a protonated amine that forms an ionic 

interaction with D98.  This can be more clearly seen in the distance between D98 with compound 

1 (3.81 Å; Figure 3.11B) and compound 4 (2.53 Å; Figure 3.11C).  This is most likely why 

compound 4 is a more potent inhibitor of SERT over compound 1.  In comparison, the amine 

groups on the SSRIs citalopram and paroxetine are 4.1 Å and 3.1 Å away from D98 respectively, 

which was suggested as the reason why paroxetine has greater binding affinity over citalopram 

Figure 3.11: Overlay of Compound 1 and Compound 4 within the S1 Binding Pocket. 
(Panel A).  The sulfur atom on compound 1 (magenta) forms a hydrogen bond with D98 
separated by 3.81Å (Panel B).  In comparison, the amine group on compound 4 (teal) forms 
an ionic interaction between D98 at 2.53Å (Panel C), which is most likely responsible for 
compound 4’s greater potency. 



 

   77 

(Coleman et al., 2016).  The benzodioxol group sits 

within a hydrophobic pocket surrounded by Y95, 

I172, F341, V343, and V501 similarly to the 

chlorobenzene group seen in compound 1 (Figure 

3.10).  It should be noted that both compound 1 and 

4 sit higher up within the binding pocket compared to 

the crystalized SSRIs.  Figure 3.12 shows and overlap 

of compound 4 (teal) with citalopram (yellow) from 

the PDB id. 5I73.  The fluorophenol group on 

citalopram sits deeper within the S1 binding pocket 

surrounded by A169, I172, A173, Y175, and L443.  The 

computational modeling provides some insight into the two inhibitors identified by the virtual 

screen.   

 

 

 

 

 

 

 

 

 

 

Figure 3.12: Comparison Between 
Compound 4 with Citalopram. 
Compound 4 (teal) sits higher within 
the binding pocket compared to 
citalopram (yellow).     



 

   78 

Chapter 4: Strengths and Limitations 

Strengths 

The computational approach utilized for this study thoroughly examined the performance of the 

docking software against SERT with benchmarking using a test set of known ligands.  This 

provided the best opportunity to identify potential inhibitors and establish confidence that the 

software would filter / rank unfavorably unlikely compounds.  Additionally, this study utilized the 

the S1 binding pocket of the hSERT crystal structure rather than a LeuT based model, which was   

utilized in the four virtual screens that were validated with pharmacological analysis.  Nine 

compounds were purchased and evaluated for binding, inhibition, and release potential with 2 

compounds (compounds 1 and 4) established as SERT inhibitors with low µM IC50 values while 

the PDSP results concluded that the compounds displayed selectivity by not activating any of the 

serotonin, dopamine or norepinephrine receptors during their GPCR functional screen.  In total, 

this study had a 22% hit rate (2 / 9) compared to the accumulated 18% (44 / 251) of the prior 4 

virtual screens.  The last consideration is the cost benefit of the study with the overall cost of each 

compound purchased averaging $80, which made the entire study a reasonable endeavor for an 

academic research lab. 

Weaknesses  

Many of the limitations of the study involve technical limitations of the pharmacological assays.  

The first being a high incidence of non-specific binding within the total binding and competition 

binding assays against [3H]-citalopram.  This could be due to a variety of factors including low 

transporter expression within the cell line and the radioligand being “sticky” through binding to 

the membrane preps rather than the transporter.  In addition, the concentration of the radioligand 

used within the binding assays was chosen based on the recommendation of near the Kd value, 
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which was a concentration higher than reported in the literature and potentially led to the issues 

with the binding assays due to the candidate compounds not able to displace the radioligand.  In 

addition, the limited supply of the radioligands ([3H]-serotonin and [3H]-citalopram) led to 

compromises in number of assays that could be with the focus taken on the substrate inhibition 

assays and the competition binding assays rather than the total binding and release assay.  In 

addition, the positive control, the SSRI sertraline, used with the binding assays was old stock found 

within the laboratory, which the age of the compound may have contributed to some of the erratic 

results of the compound.  Also, the release assay was completed using the inhibitor citalopram as 

a control due to the lack of a releaser such as amphetamine.   
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Chapter 5: Conclusions 
 
This doctoral thesis is the accumulation of many years of work between the Surratt and Madura 

laboratories, which were among the first groups merging computational chemistry with classical 

pharmacology to target the MATs.  One of the primary goals was to showcase how an academic 

research environment can be used to efficiently identify candidate compounds through 

computational methods, which is traditionally a costly endeavor of preclinical development.  The 

publication of the LeuBAT and dDAT crystal structures in 2013 provided structural templates 

more closely aligned to the human SERT than the LeuT based SERT model used in the prior two 

virtual screens by the laboratories.  Thus, construction of SERT homology models based on these 

templates began before shifting focus when the SERT crystal structures were eventually published 

by the Gouaux lab in 2016.  The virtual screen completed within this study targeted the S1 binding 

site, which is now firmly believed to be the antidepressant binding site rather than the S2 site on 

the LeuT proteins.  The computational approach utilized the MOE software and set out to 

thoroughly examine the scoring functions using a test set of known binders to identify the 

parameters that will provide the best opportunity to identify novel inhibitors within a reasonable 

amount of computational time to screen chemical libraries.  The Maybridge chemical library as 

part of ThermoFisher was a logical library to screen due to its recent curation of the HitDiscoverer 

collection and the affordability of the compounds itself at under $100 per compound.  An analytical 

route was chosen to rank and filter the results of the virtual screen leading to a focus on the 10 

compounds purchased from ThermoFisher.  In all, only 9 compounds were able to be fulfilled for 

this study.  With a HEK-293 cell line stably expressing SERT that was generously donated by Dr. 

Randy Blakely, assays were completed to assess binding, inhibition, and release potential of the 

candidate compounds to SERT.  While only compound 4 had comparable specific binding 
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compared to the positive control sertraline in the total binding assay, compounds 1 and 4 were 

determined to inhibit SERT with IC50s in the single µM range.  None of the compounds were 

shown to cause the release of serotonin.  Computational modeling of compounds 1 and 4 revealed 

that both adopted similar orientations within the S1 site, but also revealed that compound 4 forming 

an ionic interaction with Asp98, which might be responsible for the increased potency.   This study 

successfully demonstrated that the computational approach is a valid direction to identify 

inhibitors in a cost-effective manner and suitable for academic research laboratories. 
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Appendix 
 
 
 
 
 
 

 
 
 
Table A1. Second Validation of the Docking Protocol with the Structural Pharmacophore.  After 
the structural pharmacophore was placed on D98, the docking protocol was re-evaluated using the 
24 compound test set using the Pearson, Spearman, and Kendall correlation tests.  Each compound 
is sorted by its experimental affinity (kcals) and displayed is the predicted affinity of the docking 
simulation.  
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Table A.2:  Table of the DNA genes and the decoded proteins utilized by the PDSP during the 

GPCR screen. 
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PDSP GPCR Results for Compound 1 

 
 
Table A.3: Results of the PDSP GPCR functional screen for candidate compound 1.  Each              

receptor listed while the average percent of activation is list. 
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PDSP GPCR Results for Compound 2 

 
 

Table A.4: Results of the PDSP GPCR functional screen for candidate compound 2.  Each              
receptor listed while the average percent of activation is list. 

 
 



 

   93 

PDSP GPCR Results for Compound 4 

 
 
Table A.5: Results of the PDSP GPCR functional screen for candidate compound 4.  Each              

receptor listed while the average percent of activation is list. 
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PDSP GPCR Results for Compound 5 

 
 
Table A.6: Results of the PDSP GPCR functional screen for candidate compound 5.  Each              

receptor listed while the average percent of activation is list. 
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PDSP GPCR Results for Compound 6 

 
 
Table A.7: Results of the PDSP GPCR functional screen for candidate compound 5.  Each              

receptor listed while the average percent of activation is list. 
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PDSP GPCR Results for Candidate 6 

 
 
Table A.8: Results of the PDSP GPCR functional screen for candidate compound 6.  Each              

receptor listed while the average percent of activation is list. 
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PDSP GPCR Results for Compound 7 

 
 
Table A.9: Results of the PDSP GPCR functional screen for candidate compound 7.  Each              

receptor listed while the average percent of activation is list. 
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PDSP GPCR Results for Compound 8 

 
 
Table A.10: Results of the PDSP GPCR functional screen for candidate compound 8.  Each              

receptor listed while the average percent of activation is list. 
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PDSP GPCR Results for Compound 9 

 
 
Table A.11: Results of the PDSP GPCR functional screen for candidate compound 9.  Each              

receptor listed while the average percent of activation is list. 
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Figure A.1: Competition of Sertraline for [3H]-Citalopram Binding to SERT. The affinity of 
sertraline, compound 1, compound 4, compound 6, compound 8, and compound 10 (1pM-100mM) 
for SERT was assessed by competition binding using the radioligand [3H]-citalopram.  A 
composite binding curve was constructed from individual curves. Composite affinity (IC50, Ki) 
values were derived by GraphPad Prism non-linear regression analyses least squares fit.  Each data 
point represents the mean +/- (SD) of two to four independent experiments performed in duplicate.  
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