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ABSTRACT 

 

MACHINE LEARNING APPLIED TO COLLOIDAL PEROPERTIES OF 

PERFLUROCARBON NANOEMULSIONS FOR IMAGING IN ARDS/ALI 

 

 

 

By 

Marco Hosfeld 

May 2021 

 

Dissertation supervised by Dr. Jelena Janjic 

  Acute Respiratory distress Syndrome (ARDS) and Acute Lung Injury 

(ALI) are inflammatory lung pathologies consisting of non-hydrostatic pulmonary edema 

leading to hypoxia and impaired gas exchange in the lungs. ARDS/ALI is both difficult 

to study and treat as it is not in itself a specific pathology but rather a syndrome 

consisting of many pathologies that vary case by case. It is, however, consistently 

characterized by an explosive acute inflammatory response in the lung parenchyma 

leading to the ultimate hypoxia and impaired gas exchange that characterizes ARDS/ALI. 

Although time has seen to an increase in the understanding of ARDS/ALI, the mortality 

rate remains in the range of 30-50%. For these reasons, nanomedicine may offer solutions 

to the diagnosis and treatment of ARDS/ALI. Nanomedicine, by definition, utilizes 

nanoscale materials to address various disease states in the hopes of being more effective 
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than traditional medicine. Especially in cases of imaging, nanomedicine seeks to redress 

some of the issues seen in traditional imaging such as with more targeted delivery 

platform. In ARDS imaging, such as CT and MRI, has been used to confirm the condition 

through pulmonary opacification, however, specific tracking of macrophages using MRI 

has only been tentatively explored. This can be achieved through macrophage targeted 

nanomedicine platforms, therefore focus of this paper will be on macrophage targeted 

perfluorocarbon(PFC) nanoemulsions. We believe that nanoemulsions aimed for 

macrophage imaging in severely ill patients require the highest quality possible. We will 

understand the current state of the art through machine learning to determine what 

manufacturing parameters impact the performance of perfluorinated Nanoemulsions. 

Machine learning will be used to analyze what parameters of production are critical to the 

various colloidal attributes (size, zeta potential, and PDI) to the performance of emulsion-

based drug delivery platforms.  
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ARDS/ALI, Inflammation, and Immune Cell Tracking 

Acute Respiratory Distress Syndrome (ARDS) and Acute Lung Injury (ALI), of which 

ARDS is an extreme form, are life threatening disease states often present in critically ill 

patients.1 It is a common cause of respiratory failure in critically ill patients and is defined by 

acute onset of noncardiogenic pulmonary edema, hypoxemia, and, as is often the case, the need 

for mechanical ventilation.2 ARDS occurs in instances of severe systemic inflammation and 

pulmonary trauma/inflammation and presents itself in ~10% of all patients in ICUs worldwide. 

Despite improvements to the treatment of the condition, morality remains high at 30-40% in 

most studies. Mechanical ventilation is critical in the clinical setting to treat ARDS, however, if 

performed improperly can result in further damage to the lungs thereby leading to a form of 

ARDS/ALI known as ventilatory associated lung injury (VALI).1  

ARDS was initially defined in 1967 with a case-based report that described the clinical 

presentation in critically ill adults and children of acute hypoxemia, noncardiogenic pulmonary 

edema, reduced lung compliance, increased work of breathing, and the need for positive pressure 

ventilation in association with several clinical disorder defined by trauma and inflammation in 

the patient.2 A criteria was set for defining the syndrome known as the Berlin definition.3 

Depending on the level of blood oxygenation, ARDS can be categorized as ‘mild’, ‘moderate’, 

and ‘severe’. The diagnosis of ARDS depends on clinical criteria alone as it is not practical to 

obtain pathological samples of lung tissue in most patients.  

The 2012 berlin definition3 of ARDS consists of four primary criteria: timing, origin, 

imaging, and oxygenation. With regard to timing, respiratory failure must occur within one week 

of the known insult or new/worsening respiratory conditions. The origin must not be fully 

explained by cardiac function or volume overload. Imaging must indicate bilateral opacities on 
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chest radiograph or CT that is not fully explained by effusion, collapse, or nodules. Finally, it is 

graded by oxygenation as being mild to severe depending on PaO2/FiO2 level (201–300 mmHg, 

101-200 mmHg, and ≤100 mmHg for each case respectively).  

Epidemiology and Risk Factors 

It is estimated there is an annual incidence of 190,000 cases of ARDS in the United States 

with a hospital morality of 38.5%.4 In another study the prevalence of ARDS in  ICUs worldwide 

was found to be 10% and ARDS was identified in 23% of all ventilated patients.5 the same study 

reported that hospital morality rate was 34.9% for patients with mild ARDS, 40% for moderate 

ARDS, and 46.1% for patients with severe ARDs. The actual rate, however, remains unclear 

regarding how much of the reported mortality can be attributed to ARDS alone or the underlying 

conditions associated with ARDS. For example, a follow up analysis of the same study found 

that immunocompromised patients experienced a mortality rate of 52% as compared to non-

immunocompromised patients who experienced a mortality rate of 36%.6 

Several comorbidities and exposures have been associated with increase susceptibility to 

ARDS, including alcohol abuse, smoking, air pollution, and low blood albumin levels.2 Diabetes 

on the other hand has been associated with a lower risk of ARDS development for reasons that 

remain unclear. Furthermore, transfusion related acute lung injury (TRALI) can also lead to 

ARDS. Major risk factors for developing this condition include recent liver surgery, chronic 

alcohol abuse, current smoking, higher peak airway pressure (highest airway pressure while 

being ventilated) and positive fluid balance.7 In addition, ARDS has been reported to have a 

higher mortality among black and Hispanic patients than white patients. There are even 

differences among men and women, wherein, men have, on average, higher mortality rates than 

women.2 
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Pathophysiology 

A normal lung is structured to facilitate carbon dioxide-oxygen gas exchange across each 

alveolar capillary unit. The selective barrier to fluid and solutes in the lung is established by a 

single layer of endothelial cells. The surface of this alveolar epithelium is lined by alveolar type I 

and type II cell, thereby forming a tight barrier that allows for primarily the diffusion of oxygen 

and carbon dioxide to take place. The alveolar type II cells secrete surfactant, while both alveolar 

type I and II cells have the capacity to absorb excess fluid from the airspace. Once edematous 

fluid is absorbed into the lung interstitium the fluid can be removed by the lymphatic system and 

lung microcirculation. The cellular makeup of a normal alveolus also includes alveolar 

macrophages but not neutrophils. Alveolar macrophages, neutrophils, and other immune cells 

however, are critical in the defense of a normal lung and are key in ARDS/ALI. 

In ARDS, there is increased permeability to liquid and protein across the lung endothelium, 

which then leads to edema of the lung interstitium. Next the edematous fluid is transported to the 

alveoli via injury to the normally tight barrier properties of the alveolar epithelium. The 

increased alveolar-capillary permeability results in the accumulation of fluid in the alveolar 

space. This leads to impaired gas exchange. 

Interstitial and alveolar edema are key features of diffuse alveolar damage (DAD) in the 

acute exudative phase of ARDS. Eosinophilic depositions termed hyaline membranes are also a 

defining features of DAD and a histopathological hallmark of ARDS.2 Other findings include 

alveolar hemorrhage, the accumulation of neutrophils, fibrin deposition, and alveolar collapse. 

After the exudative phase of the syndrome. After the exudative phase, alveolar type II cell 

hyperplasia occurs in the proliferative phase. Interstitial fibrosis can occur in this phase. In what 
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is known as the fibrotic phase. However, DAD is only present within a subset of ARDS patients 

with pathological heterogeneity evident. 

Fundamentally, ARDS is characterized by injury the alveolar capillary unit consisting of 

three overlapping phases: the exudative, proliferative, and the fibrotic phases.8 the exudative 

phase starts within 48 hours and lasts for about a week. Pathological features of this stage 

include capillary congestion, fibrin rich microthrombus formation, interstitial and alveolar 

edema, intra-alveolar hemorrhage, and hyaline membranes (made of plasma proteins and cellular 

debris) lining the alveoli and alveolar ducts. There is extensive necrotic death of alveolar type I 

cells and irregular endothelial changes. Increasing numbers of neutrophils are found in 

capillaries and interstitial tissues, and within airspaces. The proliferative phase starts roughly at 

the end of the first week. It is characterized the by organization of exudates and by fibrosis. 

There is proliferation of alveolar type II cells into alveolar type I cells and fibroblasts. 

Destruction of the pulmonary capillary bed may lead to pulmonary hypertension and eventually 

to right ventricular failure. Persistent hypoxemia, increased alveolar dead space, and an 

additional decrease in lung compliance are clinically evident. The final, fibrotic phase is 

characterized by increased collagen deposition and increased fibrosis of the lungs.  

The actual mechanisms of lung injury are the responsibility of the explosive acute 

inflammatory response in the lung parenchyma. The inflammatory response involves the 

recruitment of blood leukocytes and the activation of tissue macrophages along with the 

production of various mediators. The consequences of which are endothelial disruption with 

increased alveolar capillary permeability along with the host of other conditions mentioned prior. 

Neutrophils predominate histological specimens and are present in the edemal fluid of the lungs 

in ARDS. These cells release toxic bioactive mediators damaging the endothelial cells with 
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increased vascular permeability leading to hemorrhage and parenchymal injury. While 

neutrophils may play a central role in lung injury macrophages too have been shown to release 

proinflammatory cytokines. They may also be important mediators not only in initiating the 

inflammatory response, but also in regulation of fibroblast function in later stages of ARDS.8 

Treatment of ARDS/ALI 

Treatment of ARDS is generally supportive in nature with an emphasis on treating the 

underlying cause of the disease such as mechanical ventilation9 and corticosteroid 

administration10. As a result, the primary focus of this section will be on the delivery of 

corticosteroids and other anti-inflammatory agents. There are of course some exceptions, such as 

dimethyl silicone11, but the majority of agents that can be optimized for nanomedicine use in 

ARDS/ALI will consist of anti-inflammatory agents.  

Inflammation is a critical factor in the pathophysiology of ARDS irrespective of the root 

cause of the condition. Additionally, in the inflammatory cascade insufficient glucocorticoid 

receptor-mediated inhibition of NF-kB is thought to be central to ARDS pathogenesis.12 While 

some patients experience rapid resolution of the disorder, persistent ARDS is characterized by 

ongoing inflammation.13,14  

Currently there are no pharmacological protocols effective in treatment of the condition15. 

However, there have been multiple agents considered for modifying the progression of ARDS 

such as surfactants,16 inhaled nitric oxide,17 antifungal drugs, 18and N-acetyl cysteine.19 

Corticosteroids have also been found to show favorable results in some studies and no benefits in 

others. These therapeutic agents, however, have several adverse effects.20  

Another class of drugs that may be useful in the pharmacological treatment of ARDS is 

antioxidants. Reactive oxygen species have been implicated in the pathophysiology of ARDS; 
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specifically the increased pulmonary-capillary pemeability.21–24 Furthermore, antioxidants have 

been used in previous studies of ARDS.25 while the effects of such treatment are up for debate, 

antioxidants have been heavily explored with regards to their potential therapeutic use in ARDS. 

Nanomedicine is useful in both these medications and others, especially in the treatment of 

ARDS. The purpose of nanomedicine is to enhance drug efficacy while reducing off target 

effects. This is critical in ARDS/ALI, where the pharmacological treatments have questionable 

efficacy. Maximizing potential therapeutic effects while minimizing off target effects will be key 

to developing a potent and effective pharmaceutically based therapy for ARDS/ALI. 

Immune Cell Tracking and Inflammation in ARDS/ALI 

Inflammation is an integral part of ARDS/ALI. The syndrome is characterized by an 

explosive acute inflammatory response in the lunge parenchyma.8 This ultimately leads to 

alveolar oedema, decreased lung compliance, and inevitably hypoxemia.2 This integral 

relationship between inflammation and ARDS/ALI can be seen in the relationship between 

secondary insults and their ability to cause ARDS. Generally speaking, these insults can be 

broken down as primary and secondary. Primary insults are characterized by the direct injury of 

the lungs. Secondary insults on the other hand are characterized by widespread systemic 

inflammation such as sepsis. Sepsis is the most common risk factor in ARDS.8 In fact the 

presence of Interleukin 8 (IL-8) in the bronchoalveolar lavage is used to predict the development 

of ARDS in trauma patients.26 As IL-8 is also known as neutrophil chemotactic factor, it is 

readily apparent that it plays a role in mediating inflammatory effects of the immune system. As 

ARDS is a highly inflammatory syndrome it is critical to understand inflammatory progression 

prior to and in patients at high risk for condition. As such imaging techniques that provide non-

invasive, early, and specific diagnostic information is desirable and helpful in such patients. 
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In order to track immune cells within patients, in real time, a method by which modern 

imaging techniques can be applied is highly desirable. In this case tracer agents such as 19F 

Fluorine MRI. The signal used for MRI can be derived directly from fluorinated molecules such 

as 19F.27–30 When the subject is placed in a magnetic field there is a magnetic moment associated 

with 19F that tends to align along the direction of the magnetic field. The 19F nuclei can be 

perturbed from this equilibrium by pulsating radio frequency radiation. Following the removal of 

the radio frequency signal the nuclei recover to equilibrium thereby inducing a transient voltage 

on a receiving antenna. This voltage constitutes a nuclear magnetic resonance (NMR) signal.27  

The physical principles behind both 1H (traditional) MRI and 19F MRI are the same, 

however, as opposed to metal ion based contrast agents the 19F agent acts more like a probe 

wherein they can be directly detected and measured via Fluorine MRI. It does not require any 

background signal. The 19F signal is directly proportional to the number of fluorine atoms and 

the number of labeled cells present. This implies it is actually possible to quantify the degree of 

signal and thereby quantify the degree of inflammation in the case of labeled immune cells. 

It is possible to label cells for Fluorine MRI detection via the use of perfluorocarbon (PFC) 

nanoemulsions. While this section will focus on this topic as well, there will be a following 

section to deal more specifically with PFC nanoemulsions. PFC based cell tracking allows for a 

high degree of specificity in cell detection and the quantification of cells. As previously 

discussed, this is related to the Fluorine MRI detecting the 19F atomic nuclei directly and its 

function as a tracer agent as opposed to a contrast agent. Furthermore, because of the low 

concentrations of naturally occurring 19F in the body, there is negligible background signal from 

host tissues. However, pure PFC cannot be taken up by cells. PFC must be formulated as an nano 

or microemulsion for it to be taken up by cells.31 This can either be done in vivo or ex vivo. 
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 As a result of all the factors discussed previously, PFC nanoemulsion are therefore a 

good method to track cells non-invasively. As emulsified PFCs are preferentially phagocytized 

by monocytes/macrophages,28 these cells are easily imaged and thereby inflammation can be 

easily imaged. In particular the inflammation of the lungs has been imaged before using 

emulsified PFC formulations.28 In this particular study inflammation was induced in mice via 

intratracheal instillation of LPS followed by intravenous injection of PFCs. While there was no 

evidence of lung injury using traditional MRI, concurrent 19F images clearly show PFC 

accumulation in both pulmonary lobes. It was only after 48 hours pos LPS instillation that 

traditional MRI signal revealed damage.28 Additional experiments with varying doses of LPS 

indicated that 19F signal intensity correlates strongly to the amount of LPS used in instillation 

and therefore the severity of pulmonary trauma.  

Nanomedicine Systems 

Nanomedicine is defined as the application of nanobiotechnology to medicine.32 

Nanomedicine and drug delivery nanosystems specifically, are highly promising vehicles for 

both highly efficient and highly targeted delivery of therapeutic agents.33 For instances, a single 

dose of nanoemulsion carrying celecoxib can reduce total body burden of drug by over 2000 fold 

as compared to oral delivery.34 In this section, we will cover a variety of these nanomedicine 

systems with a specific focus on aspects of drug loading and functionalization methods. 

Furthermore, we will cover specific examples of nanomedicine systems with respect to 

ARDS/ALI. 
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Nanomedicine Systems in General 

Fullerenes 

Fullerenes are molecules composed entirely of carbon in the form of a hollow sphere, 

ellipsoid, or tube.35 More broadly one can view this as a molecule consisting entirely of carbon in 

the form of a closed or partially closed mesh. Fullerenes show wide availability due to their 

small size and ability to be functionalized. While not themselves used in pulmonary medicine, 

other carbon based nanoparticles have been used in other applications. There are some toxicity 

concerns in pulmonary applications, however, those will be discussed in a later section. Their 

inclusion here is a result of their spheroid shape and similarity to other carbon based NPs.  Drug 

loading of fullerenes is dependent on its structural features. Drugs are often conjugated to the 

fullerene molecule. In this fashion, the functionalization of Fullerenes can be used to load drugs. 

The relatively high number of double bonds allow for a high degree of functionalization through 

conjugation of various molecules.36  Functionalization is necessary before fullerenes can be used 

for drug delivery. The extreme hydrophobic character of the molecules contributes to this, and 

the addition of hydrophilic moieties are necessary to overcome this.35 Their ability to form a 

variety of derivative molecules through conjugation is core to their ability to deliver various 

payloads. As long as a molecule can be conjugated to a fullerene it is possible to use them 

modify the molecules characteristics as a whole. This gives a high degree of flexibility to 

fullerenes as delivery vehicles. It should be noted that this is a chemical modification to the 

molecule and, given the number of carbon-carbon double bonds, may be difficult to control with 

precision. 
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Lipid Based NPs 

Solid Lipid NPs (SLNs) are colloidal based drug delivery system composed of lipids that 

remain solid at both room and body temperature. Solid lipid forms a matrix material for drug 

encapsulation while it is stabilized by surfactant/polymers.37 SLNs have significant advantages in 

long term physical stability, controlled release of both hydrophilic and lipophilic drug, low 

toxicity, low cost, and site specific targeting.38With regard to drug delivery, there are three 

primary drug incorporation models useful in drug loading of SLNs: homogenous matrix, drug 

enriched shell, and drug enriched core models. In the homogenous matrix model, drug is 

dispersed in the lipid core and are usually highly lipophilic. The other models (core and shell) are 

driven by precipitation and phase separation, respectively. The drug is concentrated in the core 

and shell respectively.39 There are also other methods to manufacture SLNs that allow for 

incorporation of hydrophilic drugs by taking advantage of phase separation.40 With regards to 

functionalization, As SLNs are an emulsion based nanomedicine system it is possible to 

functionalize them through modification of the surfactant molecules that make up the 

nanoparticle. It is possible to functionalize SLNs with a variety molecules. SLNs have been 

chemically functionalized using mannose has been used to target alveolar macrophages.41 

Nanostructured Lipid Carriers (NLCs) are the second generation of lipid based nanocarrier. They 

were developed to overcome some of the limitations associated with NLPs. As such, NLCs have 

higher drug loading capacity and avoid drug expulsion as a result of lipid crystallization. NLCs 

are composed of a mix of solid and liquid lipids.37,38,42 With regards to drug loading, NLCs were 

designed to overcome loading issues associated with SLNs. By utilizing a combination of liquid 

and solid lipid, NLCs avoid drug expulsion by crystallization through the creation of liquid 

imperfections in the matrix.37 This is done through the creation of three types of NLCs: 
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Imperfect, structureless, and mixed type. 37,42 Each of these varieties increase loading capacity 

though the introduction of features in the solid lipid matrix that allow for drug to be loaded more 

efficiently than in SLNs. With regards to functionalization, NLCs have been subject to various 

modifications to enhance their drug delivering properties. For instance, cysteine has been bound 

to the polymer surfactant in an NLC blend to facilitate intestinal transport of docetaxel.43 In 

another instance, NLCs underwent surface modification for the inclusion of a glycol chitosan for 

brain delivery.44 

Micelles 

Micelles are a colloid formed by a surfactant in equilibrium with the molecules that 

contribute at micelle formation.45 By the definition, while similar to emulsions, micelles are not 

emulsions and should be treated as such. Furthermore, this section will deal primarily with 

polymeric Micelles in order to highlight some of differences between them and emulsions. 

Polymeric micelles are nanoscopic core-shell structures formed by amphiphilic polymers.46 

Based on the forces of assembly, these micelles can be divided into several categories: 

Hydrophobically assembled, polyion-complex micelles, and micelles stemming from metal 

complexation.47 With regards to drug loading of polymeric micelles typically drug loading 

occurs via entrapment in the micelle. 32  these drugs are contained within the micellar core and 

protected by the polymers.46 With regards to functionalization, functional groups displayed on 

the surface of the micelle are incorporated within the polymer chains themselves.48 Properties 

can also be altered with the shape of the micelle. Wormlike micellar structures have been shown 

to have a circulation time ten times longer than their spherical counterparts.49 These modes of 

functionalization can create pH responsive micelles32 and targeted micelles.47 
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Quantum Dots 

Quantum dots are nanoscale semiconductor structures with very unusual properties.50 

Quantum Dot nanomedicine systems for drug delivery have the possibility of improving drug 

stability, circulation time, targeting ,and distribution.51 this can be considered a result of three 

properties of Quantum Dots: size dependent optical and electronic properties, water solubility, 

and ability to be conjugated with biological molecules.52 The most distinctive property of 

Quantum Dots is their size dependent fluorescent emissions ranging from Near UV to Near IR. 

These optical properties make them ideal candidates a luminescent nano-probes.51 As Quantum 

Dots are solid particle structures, the only way to ensure drug delivery and functionalization is 

through surface modification. 

Polymeric NPs 

Polymeric NPs have numerous advantages over other varieties of NPs including: modified 

surface properties, high encapsulation efficiency, prolonged drug delivery, and a long shelf life.53 

The surface and chemical properties of the NPs are modified to make them biodegradable.54,55 

These properties of polymeric nanoparticles ensure that they can effectively deliver drug, have a 

high degree of biocompatibility, and have limited toxicity. Synthetic Polymer NPs  include NPs 

of PLA, PLGA, and PCL. PLA and PLGA were developed for use in surgical implants and tissue 

repair and have been widely used for various biomedical applications including drug delivery.56 

furthermore, PLA and PLGA have been used extensively in drug delivery due to their highly 

tunable biodegradability and mechanical properties.57,58 Additionally, PCL beads have been used 

for the controlled release and targeted drug delivery.59 With regards to drug loading, There are a 

variety of loading methods to incorporate drug into synthetic polymeric NPs and these can vary 

heavily by type of polymer. Here we will focus on PLA NPs and methods broadly applicable to 
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other polymers. Broadly speaking, there are four methods to PLA NP production: emulsion 

methods, precipitation methods, direct composition, and cutting-edge methods.56 These methods 

can be applied to all varieties of synthetic polymers and through these methods drug can either 

be encapsulated by NP or incorporated in its matrix. With regards to functionalization, polymeric 

nanoparticles easily undergo surface modification.60 Furthermore, both bulk and surface 

properties can undergo modification relatively simply through: blending of different polymers, 

coating, copolymerization, cross linking, entrapment, etc.56 There is a huge diversity of methods 

to functionalize polymeric NPs and these modifications dramatically alter behavior and 

favorably enhance therapeutic efficacy.61 In addition to synthetic polymers there are natural 

polymer NPs (Alginate, Chitosan, Gelatin). Natural polymers such as gelatin, for instance, are 

biodegradable, biocompatible, and covalently bind active compounds.62 Chitosan is a 

mucoadhesive and permeation enhancer; helping facilitate retention in the lungs following 

administration.63 Alginate is another polymer with high biocompatibility and a hydrophilic 

matrix for efficient drug loading.64 Natural polymers have their own unique advantages that can 

make them an attractive alternative to synthetic polymeric NPs. With regards to, it should be 

noted that generally speaking natural polymers are hydrophilic while synthetic polymers are 

hydrophobic.65 Furthermore, natural polymers tend to display fast and uncontrolled release 

profiles.66 With regards to functionalization, Natural polymers can be subjected to similar 

chemical treatments as synthetic polymers. Given some of the unique properties of natural 

polymers, however, not all surface modification treatments used with synthetic polymers are 

useful or necessary. 
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Dendrimers 

Dendrimers are repetitively branched molecules defined by a central core, and interior 

branching structure, and an exterior with functional surface groups.67 they have shown their 

potential abilities to entrap or conjugating useful molecules and drugs for functionalization and 

drug delivery respectively.68 furthermore, the high water solubility, biocompatibility, and precise 

molecular weight of dendrimers (as compared to traditional polymers) make them ideal for drug 

delivery.69–71 While highly interesting, they are somewhat impractical as an effective scale up 

process has yet to be discovered.72 With regards to drug loading, two primary strategies are used 

to load drugs into dendrimers: “complexation” by encapsulation/electrostatic binding by ionic 

groups at the dendrimer periphery and “conjugation” by covalent bonding to dendrimer.73 

Optimizing size and surface properties can optimize dendritic delivery platforms for different 

modes of delivery.68 With regards to functionalization, the actual structure of dendrimers lend 

themselves rather easily to functionalization. The precise control over each step of 

polymerization in dendrimers leads to an unprecedented degree of control. Functionalization 

comes easily by modification of the terminal end groups. For instance, amine terminated 

PAMAM dendrimers cross biological membranes via paracellular and endocytotic pathways.74 

Other modifications lead to different results. 

Composite Nanostructures 

Nano and Microemulsions 

Emulsions are colloidal dispersions in which the dispersed phase and the medium are 

both liquid. In essence, they consist of liquid droplets suspended in a liquid medium. Within the 

field of emulsions, we must distinguish between nano and microemulsions. Microemulsions are 

clear, thermodynamically stable dispersions stabilized by an interfacial surfactant layer.75 
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Nanoemulsions, on the other hand, are kinetically stable76 and are therefore less stable than 

microemulsions. With regards to drug loading of emulsions, drug loading is heavily dependent 

on the dispersed phase(s) contained within the nano/microemulsion droplets. Oils phases which 

have high drug loading capabilities are generally used in their development. 77 Furthermore, 

other dispersed phases can be used. Perfluorocarbons, for instance, have been used in oxygen 

delivery.78 In fact a combination of dispersed phases can be used to generate a multiphasic 

emulsion, such as a triphasic emulsion.79 Of course, even the dispersed phase can also be used as 

a drug. With regards to functionalization, as emulsions are surfactant stabilized systems it is 

possible to modify the surfactant used to functionalize the nano/microemulsion droplets. 

Liposomes 

Liposomes are nanosized vesicular structures consisting f an aqueous core surrounded by 

phospholipid layers.80 They are the first nanosystem for drug delivery that has bee successfully 

translated into real-time clinical applications with a well established ability to deliver a variety of 

payloads.81 They can be broadly broken down into unilamellar and multilamellar liposomes.82 

Liposomes are highly useful in that they can both be functionalized in a variety of ways and the 

payload is contained in a controlled environment.83 Principally, there exist unilamellar liposomes 

are liposomes consisting of a single phospholipid bilayer. With regards to drug loading, 

generally speaking the creation of liposomes involves four primary steps: drying lipid from 

organic solvent, dispersion in an aqueous phase, purification, and analysis.82 Generally speaking 

it is the aqueous phase that typically holds the drug, however, lipophilic drugs can be 

incorporated into the phospholipid layers of the lipsome. With regards to functionalization one of 

the most common methods of functionalizing liposomes the creation of stealth liposomes. By 

coating liposomes in PEG to reduce percentage of uptake by macrophages they can evade the 



16 
 

immune system longer for prolonged circulation.81,82 different methods of functionalization can 

impart enhanced stability, drug targeting, and other physical/chemical characteristics.84 

Furthermore, there exist multilamellar structures have an onion like architecture in which 

phospholipid bilayers are nested within one another. Each layer is separated by layers of aqueous 

phase. 

Nanomedicine Systems for Treatment of ARDS/ALI 

ARDS is a form of hypoxemic respiratory failure characterized by severe impairment in gas 

exchange and lung mechanics. ALI is term used in animal models categorized as a milder form 

of the human ARDS.85 Current treatment measures aim to modulate inflammation or its 

consequences in ARDS patients and current therapies include: corticosteroids,86 neutrophil 

elastase inhibitors,87 granulocyte-macrophage colony stimulating factor,88 statins,89 omega-3 

fatty acids,90 surfactant,16 inhaled β agonists,91 nitric oxide therapies,92 and neuromuscular 

blockers.93 It is along these lines that nanomedicine works. It enhances the efficiency of drug 

targeting and drug delivery. In ARDS/ALI, this means that therapeutic agents are delivered more 

efficiently and effectively to their targets 

Example Nanomedicine Systems 

Fullerenes 

While the primary object of focus will be fullerenes, the discussion will be centered on 

carbon-based NPs as a whole as a result of their highly inclusive geometry. Fullerenes are taken 

as representative of carbon-based NPs. It must be understood that carbon based NPs have high 

pulmonary toxicity.94,95 This, however, should not preclude the possibility of their use in the 

future. The degree of toxicity is highly variable depending on the form of the carbon NP.96,97 

Furthermore, the geometry itself is not necessarily toxic.98 Distinct Structural properties of 
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carbon NPs such as propensity for functional modification and potential biocompatibility99 mean 

that they cannot be ignored as potential nanomedicine system for ARDS/ALI.   

Carbon NP toxicity induces a host of pathological responses, chief of which are 

inflammatory responses and fibrogenic responses.94,100 In order to overcome this, a study created 

biologically inspired rosette nanotubes. While this study did not look at carbon nanotubes they 

did look at nanotubes in general. This work suggests that nanostructures with a biological design 

may mitigate pulmonary toxicity concerns for carbon nanotubes.98 this is not the only study that 

highlights the structurally dependent toxicity of NPs. Another study found that minor alterations 

to fullerene structures change lethal dose by over seven orders of magnitude. 96 Furthermore, in 

carbon nanotubes, it was found that as degree of functionalization increases degree of 

cytotoxicity decreases.97 Additionally much work is being done regarding how to functionalize 

carbon NPs to reduce pulmonary injury (specific functionalization and biomimetic architecture 

for instance).94All this suggests the possibility that fullerenes and other carbon NPs, while 

currently facing toxicological issues, may not face such problems in their use in the future.  

Liposomes 

Liposomes are the first nanomedicine system that has been successfully translated to 

clinical applications.81 As such liposomal drug formulations are rather common among 

nanomedicine systems among which there are liposomal systems for targeting ARDS/ALI. 

Included in these are formulations which modulate reactive oxygen species within the vascular 

epithelium.102,103 This targets a common pathogenic pathway for many dangerous pulmonary 

conditions. Liposomes have been engineered in the past to target this pathway through the 

delivery of superoxide dismutase (an antioxidant) in functionalized liposomes. 103 Antibody 

coated PEG liposomes loaded with EUK-134 were specifically used to target PECAM-1 in the 
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lungs delivered from the bloodstream. These liposomes inhibited cytokine induced inflammation 

in-vitro and accumulated in the lungs. Other liposomal formulations containing antioxidant 

enzymes have been used to mitigate the harmful effects of extracellular reactive oxygen species 

as well.104–106 Overall, liposomes are a highly effective nanomedicine system with a proven track 

record. It is a highly conventional system for the delivery of various payloads and can be easily 

functionalized.   

Nano and Microemulsions 

Emulsions of various types are a highly attractive drug delivery system. As with other 

nanomedicine systems, they enhance therapeutic efficacy of drugs and minimize adverse/toxic 

reactions.107 Furthermore, they improve drug bioavailability108,109 among a host of other 

improvements as compared to the naked drug and are even easier to produce as compared to 

other Nanomedicine system. Furthermore, these structures can contain different and multiple 

phases within thereby solubilizing different substances including different gases. To tackle 

ARDS/ALI, this characteristic gives more options. Not only can antioxidants be delivered to deal 

with reactive oxygen species but also delivery of physiologically important gases.110 There are 

many methods by which emulsions can target ARDS/ALI and the following examples will cover 

that. 

Among potential approaches to tackling ARDS/ALI, is emergency treatment to alleviate 

symptoms. Using dimethyl silicone is one such intervention and has been used in the treatment 

of early pulmonary edema associated with ALI.11 Dimethyl silicone aerosols, however, utilize 

dichlorodifluoromethane as a major component. This compound is considered ecologically 

unsafe.11,111 Avoiding the issue of dichlorodifluoromethane, a novel class of emulsions has been 

used. Dry emulsions are lipid based powder formulations form which an o/w 
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nano/microemulsion can be reconstituted in-vitro or in-vivo.112 Dry nano/microemulsions loaded 

with dimethyl silicone oil have been studied as an alternative.11 The dry nano/microemulsion 

used as an inhalation can directly deliver dimethyl silicone to the lungs to exert its properties as a 

defoamer and alleviate symptoms of ARDS/ALI. Dry nano/microemulsions are a unique class of 

nano/microemulsions in that they can create a nano/microemulsion formulation that need not be 

aerosolized for delivery. This has unique advantages such as the removal of propellant from a 

typical direct to lung delivery mechanism as is the case with an inhaler.  

More conventional classes of nano/microemulsion have been used in ARDS/ALI as in the 

cases where antioxidants or vital gases are delivered to the lungs. These modes of delivery are 

typically conducted intravenously. Perfluorocarbons (PFCs) do not interact and are separated 

from the carbohydrate reactions of biological chemistry. Furthermore, they can dissolve gases 

and do not themselves interact with the body.113 This makes PFC nanoemulsions extremely 

useful as gas carriers within the body. PFC nanoemulsions administered intravenously were 

shown to significantly alleviate ALI induced by LPS.110 PFC infusion was demonstrated to 

reduce neutrophil infiltration into lung tissue: a core pathogenesis of ALI/ARDS. PFC 

nanoemulsions can be made readily and PFC in of itself does not interact with the body. This 

makes them ideal candidates for the delivery of gases. Furthermore, they can be made into 

triphasic hydrocarbon oil-PFC nanoemulsions that can simultaneously deliver drugs as well.79  

PFC Nanoemulsions for Immune Cell Imaging 

The key to using PFCs for in vivo imaging rest in the technology for fluorine NMR and 

by extension its use as a tracer agent in Fluorine MRI. This has all been mentioned in a prior 

section regarding the use of PFCs as an imaging agent. This section will primarily deal with PFC 

nanoemulsions as a formulation; how these formulations work, the rationale of their design, and 
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examples of PFC nanoemulsions in use. PFCs do not mix with cell membranes, in fact they are 

neither lipid nor water soluble.30 In principle, they must be formulated into nanoemulsions, for 

which the ideal size of such a colloidal formulation is such that the droplet size is less than 200 

nm.30 A significant body of work exists for PFC nanoemulsions in the context of vascular 

imaging agents and as blood substitutes.114–116 In these applications nanoemulsions must be 

stable in vascular circulation for many hours. The surfactants used in these types of formulations 

should also provide passive or active targeting to macrophages.  

With regards to how they behave, PFC nanoemulsions for imaging must meet similar 

criteria as nanosystems for drug delivery. There are certain criteria they must meet in order to 

target the intended cells.117 PFC nanoemulsion for imaging therefore must meet the criteria of 

targeting the cells relevant in inflammation while also delivering their payload. In this case the 

payload is PFC for imaging. Furthermore, the mode of delivery also plays a critical role in the 

design of the nanoemulsion. For ex vivo cellular delivery, PFC nanoemulsions should ideally 

follow these design criteria: droplet size less than 200 nm, low polydispersity index of less than 

0.2, maximum fluorine to surfactant ratio in order to minimize the amount of MRI inactive 

material delivered to the cell, a surface that promotes cell membrane interaction, long term 

intracellular retention, a long shelf life, low toxicity, does not modify cell phenotype, and able to 

label a wide range of cells.30 Large nanoemulsion droplets, for instance can affect cell activation 

phenotype after labelling.31 tight droplet size, indicated by the low PDI, helps ensure uniform 

labeling within the cell population.31  

In addition to PFC structure, the choice of emulsifier is critical to the nanoemulsions 

ability to perform as an in vivo immune cell imaging agent. Stable emulsifiers for such an 

application must be non-toxic, chemically stable, help reduce the large interfacial tension of 
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PFCs in the aqueous phase,30 and allow for cellular uptake by macrophages. Among all the 

possible emulsifiers phospholipids and Pluronics® are the most common.114 PFC nanoemulsions 

have been prepared using safflower oil and lecithin to stabilize PFOB base nanoemulsion.118 Th 

resulting nanoemulsions had a droplet size of 224 nm with a PDI of 0.35. This PDI indicate a 

heterogeneous spread with regard to droplet size. In addition to traditional lipid based 

surfactants, there are Pluronics®. One of the earliest reported nanoemulsions. in fact, utilized 

Pluronic® F68 to generate a highly stable nanoemulsion.119 F68 stabilizes PFC oil droplets in 

aqueous phase mostly by steric effects.120 Previous structural studies have shown that the block 

copolymer (F68) adsorb onto the interface between colloid PFC and the aqueous phase and that 

this adsorption is dependent on the electrolyte concentration in solution.121–123 This is too say that 

the stability of Pluronic® F68 based nanoemulsions can be tuned with the additional dimension 

of electrolytes in solution. It should be noted that Pluronic® is the trade name of triblock 

copolymer known as poloxamer. It is characterized by groups of PPO sandwiched between PEO. 

Overall, the construction of a PFC nanoemulsion for imaging of immune cells during 

inflammation does not differ, fundamentally, from the construction of other nanomedicine 

systems for the treatment of ARDS. This is because they do the same thing at a fundamental 

level. They must identify and target specific cells while delivering their payload. In this case that 

payload is PFCs and the target is immune cells. Size and surface properties play a critical role in 

the development of these capabilities. These can be determined by the surfactant used in the 

construction of the nanoemulsions. We will go further into detail regarding the utility of size and 

surface properties in later sections specifically detailing how they are used.  
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Micelles 

Micelles are nanosized colloidal dispersion prepared from amphiphilic molecules. This 

forms a hydrophobic core that acts as a reservoir for hydrophobic drugs while a hydrophilic shell 

stabilizes the core.124 This class of nanomedicine system has been used previously in addressing 

the need for an ARDS/ALI treatment.  On such approach utilized GLP-1 self-associated with 

PEGylated phospholipid micelles125, while another utilized a multitargeted approach wherein 

phospholipid micelles inhibited TREM1, reactive oxygen species, and HSP90.126 GLP-1 is an 

amphipathic hormone shown to hold promising immunomodulatory, anti-inflammatory, and anti-

apoptotic effects. This particular drug formulation was administered via subcutaneous injection. 

It was found to suppress lung inflammation in LPS induced ALI in mice. This formulation is a 

successful example of the use of anti-inflammatory/antioxidant agents in nano systems targeted 

towards ARDS/ALI. An even more effective approach is to target multiple elements of 

ARDS/ALI pathogenesis such as in the second mentioned formulation. This formulation takes a 

combination of 3 drugs that inhibit three distinct intracellular pro-inflammatory signaling 

cascades activated in ALI in order to down regulate NF-κB, a proinflammatory transduction 

factor in the lung. In order to do this micelles were constructed of 

distearoylphosphatidylethanolamine covalently bonded to PEG2000, GLP-1, and TREM-1 to 

form sterically stabilized micelles of 15 nm. In the hydrophobic core drug such 17-AAG was 

included.126 This particular example shows a startling degree of complexity from micelles as a 

nanomedicine system. Composed of a hydrophobic core and amphiphiles. Each component of 

the micelle, from the core to the shell and it’s payload is used as part of a three pronged approach 

to engage an anti-inflammatory response in the lungs. 
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Polymeric Nanoparticles 

Polymeric NPs are nanoparticle structures that are composed of polymer such as PLA or 

PLGA. They can either incorporate drug throughout their matrix or encapsulate the drug.  The 

advantage in using polymeric NPs is low toxicity, high biocompatibility, and biodegradability.127 

This makes them ideal for tackling a wide variety of disease states, including ARDS/ALI. It has 

been found that therapeutic delivery methods that target the lungs are far more effective than 

non-targeted approaches.128 Polymeric NPs have been studied for alleviating ARDS associated 

with the application of bleomycin.129,130 Bleomycin has been found to upregulate EphA2131 

leading to increased vascular permeability and inflammation.130 In order to combat this side 

effect of bleomycin, a polymeric NP functionalized to downregulate EphA2 activation were 

developed. These NPs were functionalized with YSA peptide in order to downregulate EphA2 

activation. This NP was delivered via tail vein injection.  

Lipid Based Nanoparticles 

The focus of this section will be on NLCs as opposed to SLNs. NLCs are considered an 

advanced and improved form of SLNs and examples of NLC should roughly apply to SLNs. An 

example wherein NLCs have been used to target ARDS/ALI is through the development of 

dexamethasone loaded NLCs.132 These NLCs utilize ICAM-1 antibodies conjugated to 

dexamethasone loaded NLCs to induce an anti-inflammatory response. Dexamethasone has 

previously been used to treat ALI patients and great interest remains in its use for it’s anti-

inflammatory and anti-fibrotic characteristics. 133 This particular NLC was administered via tail 

vein injection. This NLC demonstrated enhanced lung targeting and superior reduction of 

inflammation.132 
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Quantum Dots 

Quantum dots are of particular interest for their optical and electrical properties. These 

properties make them ideal in imaging applications, however, they can also be utilized in drug 

delivery.134 Actual application of quantum dots to pulmonary drug delivery in the lungs is of 

great interest to researchers for their diagnostic capacity in drug delivery.134 There are some road 

blocks to large scale clinical applications, however. The vast majority of quantum dots, for 

instance are believed to induce cytotoxicity to some degree. This cytotoxicity, to a great extent 

depends on different factors that can be tuned based on the quantum dot.135 In fact, there are new 

varieties of quantum dots designed to mitigate toxicity concerns such as carbon quantum dots 

and biomolecule derived quantum dots.136 These biomolecule dots in particular have an inherent 

biocompatibility and a high degree of cellular uptake. While conventional, cadmium based, 

quantum dots may not find a high degree of applicability in ARDS/ALI, biomolecule derived 

“biodots” do. DNA under high pressure and temperature, condense to form these luminescent 

biodots.137 Quantum dots conjugated with tumor specific ligands or antibodies or peptide were 

observed to be efficient for the detection and imaging of human tumor cells.134 This bodes well 

for the principle of quantum dot drug delivery mechanisms as drugs have also been conjugated 

with quantum dots and are able to accurately target cancer cells.138 while much work in quantum 

dots is focused on cancer research, there have been forays into targeting inflammation. 

Specifically, there has been work done to target chemotherapeutic agents to alveolar 

macrophages and inflammation.139 This particular study found Qauntum Dot conjugated 

doxorubicin enhances intracellular uptake as compared to free drug. Furthermore, uptake by 
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alveolar macrophages do not elicit a significant pro-inflammatory cytokine response. In-vivo this 

translated to uptake by alveolar macrophages without any evidence of ALI. Should this drug 

delivery system be translated to ARDS/ALI it could prove to be highly effective. Not only does 

it directly target inflammation, but the necessary drugs may be conjugated to the Quantum dot as 

necessary. This particular formulation was administered via inhalation.  

Tuning of Nanomedicine for Pulmonary Applications 

Nanomedicine Size 

Particle size and size distribution is one of the most important characteristics of 

nanoparticles. Optimal size of NPs depend on the specific location and type of targeted 

tissues.140These factors determine in-vivo distribution, biological fate, toxicity, drug loading, 

drug release, stability and targeting ability of the system.141 Their small size, as compared to 

microparticles, such as higher intracellular uptake with nanoparticles 100 nm in size having 15-

250 fold the uptake of microparticles. In fact, it has been found that nanoparticles are taken up by 

the majority of cell types while larger particles are not.142 It seems that particle distribution, can , 

in part, be tuned by controlling particle size.141 In systemic inflammation for instance, 

nanoparticle distribution is affected in a size dependent manner.143 In particular, nanoparticles 

tend to aggregate within the lungs, liver and spleen regardless of size. This means that 

nanomedicine systems passively target the organ system of interest in cases of ARDS/ALI. 

Lungs specifically show, plentiful nanoparticle uptake, mainly outside of blood vessels.143 This 

makes nanomedicine treatments all the more effective in ARDS/ALI. NPs within the nanometer 

size range are ideal for pulmonary targeting via intravenous delivery. Furthermore, there are 

many obstacles towards NP targeting of the lungs. Rapid bloodstream clearance by mononuclear 

phagocytes is one of the major obstacles.144–146 Modulation of pharmacokinetics of NPs to 
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prevent rapid clearance can be achieved by altering NP size. 146,147 It must be noted that direct to 

lung delivery via inhalation is subject to different constraints than intravenous delivery. Particles 

of various size deposit in different regions of the lungs depending on particle size. It was found 

that 1-3 mm particle deposit optimally within the alveolar region.63  

Cellular uptake in particular can be affected by variations in particle size. Various studies 

have tested particle size with different tissue types and found optimal NP sizes for those 

particular tissue types.140 These studies show a clear trend in size dependent behavior on cellular 

uptake. There are distinct mechanisms influenced by the size that govern NP and cellular 

receptor adhesion.148 An optimum NP size arises as a result of these mechanisms. As such, even 

though the lungs are already a prime target of submicron sized NPs, it is crucial to recognize 

which cells are being targeted in ARDS and tailor NP size to that cell/tissue type. For instance, 

the exudative phase of ARDS results in injury to both the capillary endothelium and the alveolar 

epithelium, with type I alveolar epithelial cells particularly susceptible to injury.149 This makes 

the alveolar epithelium a target of particular interest for nanomedicine systems in ARDS/ALI. 

Previous in vitro and in vivo studies suggest that inhaled nanomaterials can penetrate epithelial 

cells for drug delivery.150 In another study it was found that unmodified polystyrene NPs of size 

50 nm were taken up by type I alveolar epithelial cells more effectively than similar particles of 

100 nm in size.151 while this study does not find a particular optimum size it does demonstrate 

that the principle of size based targeting does hold for the alveolar epithelium and that smaller 

particles are better for targeting of the epithelium. When designing a nanomedicine system for 

ARDS/ALI size is a critical factor to account for. As for what particle size is best, it should be 

noted that most in-vitro studies show a maximum cellular uptake between 10 and 60 nm, 

regardless of core composition or surface charge.140 below 6 nm in diameter NPs are quickly 
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secreted by the body.145 On the other hand, NPs larger than 200 nm aggregate in the spleen and 

liver, where they are processed by MPS cells.144 Ideally this means that lung targeted NPs should 

range in size from 10 to 50 nm. In such fashion, there is the highest degree of uptake by cells and 

longer circulation times. Size selection is critical to the development of a drug delivery vehicle. 

While this section discusses size as it pertains to NPs, this does not preclude the data from being 

applicable to a variety of drug delivery vehicles and systems. Prudence must be taken in the 

selection of size and there is a large body of work to draw upon to inform the ideal size of the 

system. 

Nanomedicine Shape 

Shape is a critical property to the performance of NPs and a key part of NP design is 

determining the effects of variations in size, surface chemistry, and shape. NP shape is a critical 

factor to the performance of NPs. For instance, shape directly influences cellular uptake. Shapes 

showing the highest degree of uptake are rods followed, in order, by spheres, cylinders, and 

cubes.152 One will also have to consider the different potential orientations of the NPs and how 

they present themselves to cell surface receptors. it should be noted that while size and shape are 

different factors affecting NP behavior they also effect one another. For instance 50 nm is an 

ideal size for maximized cellular uptake by gold NPs, silica NPs, and single walled carbon 

nanotubes.107 153–155 The shape of NPs will also effect circulation time in the body, with rod 

shaped micelles having a circulation time ten times longer than their spherical counterparts. As a 

result of all these factors, shape selection is critical to the development of an effective 

ARDS/ALI lung targeted nanomedicine system. Sometimes there are no options when selecting 

the shape of the and by default the shape of the drug delivery vehicle. Some nanosystems by 

default create drug vehicles that are spheroid in nature, however, where there is choice the most 
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optimum choice must be made. Rods may be an ideal shape for some applications but perhaps 

increased cellular uptake and longer circulation times are not ideal. It is possible to tune these 

properties of a rod shaped nano-object by changing the long to short axis ratios. This will tune 

the properties that can be modified through a change of shape.  

Surface Properties 

The surface chemistry of the vehicle for targeted drug delivery is one of the most diverse and 

highly tunable aspects of a nanosystem for drug delivery. NP surface chemistry seems to 

determine the type of proteins adsorbed onto the surface and strength of that interaction.156 As a 

result of the different proteins adsorbed onto the NP surface, the NP can take on a variety of 

different properties. Not the least of which, is the targeting that nanomedicine systems are 

designed for. In previous examples discussed, a variety of methods to functionalize NPs and drug 

delivery systems were presented. Among these systems, PEGylation, for instance, is a classic 

method to enhance circulation time of liposomes. This creates “stealth liposome” systems82 in 

which liposomes evade immune detection and are not consumed thereby circulating in the body 

for longer periods of time than conventional liposomes.157 Surface charge must also be 

considered when designing a drug delivery system. Positively charged NPs are taken up at a 

much faster rate as compared to those with neutral or negative charges.144 This is perhaps driven 

by electrostatic interactions between the NP and the cell membrane (negatively charged). This 

must, however, be balanced with the fact that positively charged NPs are also cleared most 

quickly from the blood and can cause certain complications.158 There are many ways to modify 

the surface properties of nanomedicine systems aside from PEGylation and surface charge. For 

instance, drug can be bound to the surface of NPs to allow for rapid release of drug upon 

intake.159 Sufficed to say, there are numerous methods to modify the characteristics of the 
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surface of nanosystems for drug delivery. Far too many methods exist, with new methods being 

generated every day. Fundamentally, surface property modification revolves around the addition 

of useful elements, be it charge, polymer chains, ligands, antibodies, etc., to modify a key 

parameter of the system. This is where the greatest degree of innovation and creativity can be 

exerted to optimize a nanosystem for pulmonary drug delivery for ARDS/ALI.   

 

Metanalysis of Reported Nanoemulsions using Machine Learning. 

The basis for this work rests on prior work by the Janjic lab in the realm of multiple linear 

regression (MLR) for predicting droplet size of complex PFC nanoemulsions.160 In this prior 

work, MLR is presented as a novel methodological advancement for the development and 

optimization of perfluorocarbon nanoemulsions. It differs greatly from the work introduced here 

in that not only does it use a different method, but that it also uses an entirely different kind of 

data set. The data set used was derived from a series of formulations that make use of D-optimal 

mixture design to generate a curated collection of nanoemulsion formulations. These 

formulations isolated mixture variables and allowed for their study utilizing MLR. The data set 

generated for this application is therefore a highly homogeneous data set with similar 

nanoemulsions that differ only by variation of certain factors. The data set utilized in this 

machine learning application, on the other hand, is highly heterogenous with nanoemulsion data 

gathered from a variety of differing sources. This is where the difference between the current 

work and the prior work comes into play. Machine learning is a process by which machine 

learning algorithms are applied to large amounts of data and patterns extracted from that data. 

MLR similarly has the capacity to extract patterns from the data to create a statistical model of 

the data. However, these two means of learning differ. MLR is a form of multivariate statistical 
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analysis, these methods underpin much of the framework of machine learning. In a sense, this is 

to say that MLR is a single method whereas machine learning is a collection of methods. 

Machine learning is more nuanced application of statistical methods such that the model may 

“learn” the effective solution for the set of data being worked with. MLR on the other hand is a 

statistical method generates a model that allows for the understanding of the relationship among 

the data collected. In short machine learning is a high level technique that employs multiple 

statistical methods to make sense of data whereas MLR is a single statistical method.  

Introduction to Machine Learning 

The digitization of industrial processes has generated a great deal of data regarding these 

processes and the products of those processes. In order to optimizes such processes to save time, 

resources, and avoid general waste, machine learning and artificial intelligence has been applied 

to them.161 As with any manufacturing process, this can be applied to the manufacture of 

perfluorinated nanoemulsions. Machine learning has not in the past been applied to the 

manufacturing process of perfluorinated nanoemulsions. Machine learning is useful in cases such 

as where traditional optimization methods have reached their limits.162 In situations wherein the 

relevant data is not reported holistically, this is especially critical.  

At the heart of this research is the use of bootstrap aggregation (bagging). Bagging includes 

the creation of multiple copies of the original training data and using the bootstrap, fitting a 

separate decision tree to each copy, and then combining all the trees. Bagging aims to create a 

single predictive model from these independently formed decision trees in order to reduce the 

problem of overfitting.163 We use bagging to analyze the data set of processing and material 

parameters generated from the information found in the literature.79,164–189  
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Bagging has never been used to analyze the manufacturing process of perfluorinated 

nanoemulsions prior to this, however, it has found use in analyzing a variety of other 

manufacturing procedures.190–192In the domain of heavy process manufacturing, for instance, 

there is a wealth of historical data that can be analyzed and has been analyzed using bagging.190 

The ensemble nature of bagging as a model makes it impossible to understand the precise 

relationship between input and output variables, however, it is possible to quantify impact of 

predictors in the ensemble.193 It possible to understand the extent to which certain inputs affect 

the outputs.191 All this being said, machine learning and bagging in particular is an excellent 

method with which to analyze data for any manufacturing process this includes the manufacture 

of perfluorocarbon nanoemulsions.  

Colloidal Properties of Nanoemulsions and Machine Learning 

Before understanding the application of machine learning to colloidal properties of 

nanoemulsions, colloidal properties must first be contextualized. Size refers to the diameter of 

nanoemulsions droplets. Zeta potential refers to the electrical potential of the plane of the 

interface which separates the mobile fluid phase from the fluid phase that remains attached to the 

surface of the nanoemulsion droplet. Zeta potential therefore can be considered a type of surface 

potential. PDI on the other hand refers to poly dispersity index and indicates the heterogeneity of 

the sizes of a colloidal sample. 

Zeta potential is a measure of surface potential of colloidal particles when placed in liquid. 

Zeta potential is used for predicting dispersion stability and its value depends on physiochemical 

properties of drug, vehicle, presence of electrolytes, and their adsoption.194 however, not only is 

zeta potential important for the stability of nanoemulsions but they are also important for 

targeted delivery and cellular uptake.195 With regard to targeted delivery, this comes as no 
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surprise as it was previously indicated that surface properties are critical to targeted drug 

delivery. In order to measure zeta potential, an electric field must be applied across the 

dispersion. Particles move towards the electrode of opposite charge with a speed proportional to 

the magnitude of the zeta potential.195  

Size is another important nanoemulsion colloidal property. As discussed in a previous 

section, the passive targeting of nanomedicine systems depends greatly on the size of the 

nanomedicine system. For nanoemulsions, however, size is intimately elated to PDI. Size is 

measured using dynamic light scattering (DLS). This is a technique wherein light scattered is 

used to detect the Brownian motion of particles and this is correlated to size and size distribution 

of said particles.194 Finding size distribution allows one to find PDI as well. PDI may take on any 

value between zero and one where a PDI of zero indicates a monodisperse system and a PDI of 

one is a polydisperse system.196 

 

Figure 1. Representative examples for size and zeta potential distributions for 

small(nanoemulsions A and B), medium (C and D), and large (E and F) scale nanoemulsions. 

Definitive size and zeta potential measurements are actually averages of those distributions. 

Figure reproduced from Ref.166  
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Figure 2. Schematc representation of structural differences between traditional biphasic (left) 

nanoemulsions and triphasic (right) nanoemulsions. Both these nanoemulsion types are included 

in the machine learning analysis. Image reproduced from Ref.78  

 

 Moreover, there must be a discussion regarding the types of nanoemulsions being 

analyzed during the machine learning analysis portion of this paper. Both biphasic and complex 

nanoemulsion formulations are fed to the machine learning algorithm. These nanoemulsions 

have a significant degree of difference from one another. Complex nanoemulsions have two 

layers and utilize hydrocarbon oils in addition to PFC oils. This makes them much more complex 

and modeling them alongside biphasic nanoemulsions is an additional challenge to the model. 

They should be modeled, however, as multiple phase nanoemulsions have broader utility as 

compared to simple biphasic nanoemulsions.197 One should refer to figure 2 to distinguish 

between these complex and biphasic nanoemulsions. Biphasic nanoemulsions are characterized 
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by a single phase within the nanoemulsion whereas the complex nanoemulsion is characterized 

by multiple phases. 

Methods 

The methods discussed in the following section will cover the following: how and what data 

was gathered and why, how this data was prepared for machine learning analysis, the machine 

learning analysis itself, analysis of the generated data, and predictions utilizing the model. These 

five steps cover the, essentially, what was done in the course of the machine learning analysis of 

the data. We will cover topics such the algorithm used in the machine learning analysis, how the 

data was analyze using MATLAB, and the results of the various analysis. 

Data Collection Process 

The data collection process focused on obtaining complete formulation data from a 

variety of peer reviewed journals and patents. As this data is intended for a machine learning 

analysis, dependent and independent variables must be identified and parsed. With regard to 

dependent variables, it was proposed that a thorough understanding of composition and process 

parameters are necessary for quality microemulsion development.198 While not nanoemulsions, 

microemulsions are a closely related nanomedicine system. Therefore, we viewed these 

compositional and processing parameters with critical importance as independent variables. 

These parameters included PFC concentration, PFC type, solvent type, solvent concentration, 

exposure to microfluidization, degree of said exposure, and many other variables pertaining to 

the composition and the forces to which the nanoemulsion formulation was exposed to.  

With regard to dependent variables, we considered these to be critical quality attributes 

(CQAs) identified by the Janjic lab in previous works.198 These CQAs included size and PDI. In 

addition to size and PDI, we included surface zeta potential as parti of the dependent variables as 
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well. Dependent variables are what we will be looking towards to judge the efficacy of the 

generated model. Through the ability of the model to predict these dependent variables we will 

judge the effectiveness of the method employed. As such these dependent variables are critical to 

model development. 

Data Preparation Process 

Raw unprocessed data, such as nanoemulsion formulations and processing, are not 

amenable to machine learning analysis inherently. It must first be broken down into a list of 

static features that can be automatically processed by the algorithms. In order to do this material 

lists were broken down into their broader components and the processing lists broken down into 

their specific characteristics. 

Blends of PFCs, surfactants, excipients, active drugs, and buffers were broken down into 

their components and listed separately. As concentrations can be reported in three different ways 

(w/w%, v/v%, and w/v%) these categories were reported as well. This was done for ease of data 

processing as well as giving the model exposure to more data. Processes, such as 

microfluidization, was broken down into component information such as microfluidization PSI 

and number of passes. This resulted in features that could roughly be broken down into 

approximately 28 broad categories encompassing 57 different features (dependent and 

independent variables). While this may seem like a lot of features, especially for the given 

amount of information, many of these features were highly related to one another. As a result of 

this there were some features for some nanoemulsion formulations that could not be filled out as 

it simply did not exist. Data that did not exist or was uncertain were treated similarly and 

indicated in the data prepared for the model. This is not to say the missing or uncertain data was 
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ignored. Rather this data was indicated as uncertain using the “NaN” variable in MATLAB®. 

This implies that the value is unknown. 

Machine Learning Analysis 

In order to analyze the data through machine learning algorithms, MATLAB was 

employed. More specifically, the regression learner applet was used to apply bootstrap 

aggregation to the data to generate a model of the data. Bootstrap aggregation, also known as 

bagging, is a process by which data is separated into various partitions with replacement and 

individual decision tree models fitted to each bootstrap. These decision tree models are then 

aggregated into a single model. This makes for a more robust model that avoids the problem of 

overfitting the data.  

 

Figure 3. Internal image of the setting up of the regression learner applet. Here size is the 

designated dependent variable of the machine learning algorithm. 
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 In setting up the model, it should be noted that the data is internally validated utilizing a 

cross-validation method. In this method, the data is partitioned into a number of folds (or 

divisions). For each fold, a model is trained using out of fold observations and then model 

performance is assessed using in fold data. The averages are calculated across all folds to give 

the average error. This means of internal validation was automatically used to ensure that 

overfitting did not take place. In figure 3, this is indicated on the sliding bar in the upper right 

corner. The data set used is partitioned into five folds in this case and trained in such a manner. 

Overfitting is a problem wherein the model generated by the algorithm is too specific to the 

training data set and cannot be effectively generalized to other data. There are approximately 15 

data points to each fold. The MATLAB® applet does not allow one to choose these data points 

manually however it is possible to create a composite model wherein one has greater control 

over this process. Done later in through the process of internal validation and yields results 

similar to the ones derived directly from the model. More detail will be given in the section 

regarding predicitons/validation. 
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Figure 4. An example model generated from the data gathered. It has an RMSE of 30.144 and an 

R2 value of 0.63. 

 

 Figure 4 is an example model generated by the machine learning algorithm employed; 

more specifically, it employs the bootstrap aggregation to generate the model. Furthermore, not 

just bagging was used to generate a model. Eighteen other machine learning algorithms were 

employed. These eighteen algorithms were eventually discarded from use for a variety of 

reasons. Three failed to produce a model outright for various reasons, nine overfit the data, two 

were similar to taking averages of the data, and three failed to respond to variation of the input 

stimuli. Of the two remaining algorithms left (bagging and boosting), bagging was ultimately 

chosen for its ability to avoid the problem of overfitting the data. The nineteen models have been 

included in the supplementary tables and figures section.  
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Analysis of Model and Generated Data 

In order to analyze the model and how each input variable affected the output model 

generated, the inputs were varied, and the outputs recorded. This variation of inputs testing 

allowed for assessment of the relative importance of different variables by assessing the impact 

that removal of dependent variables would have on the RMSE and R2 values. As a result, it is 

possible to determine the relative importance of the variables to the overall fit of the model but 

not how, more specifically, they impact the model. This is no real issue and does not result in 

any loss of data as ensemble of tree methods inherently do not allow for one to determine how 

variables impact the model. Only their relative importance is a factor that can be known. 

Predictions and Validation 

Results of the model were used to predict two different data sets and these two data sets were 

used to validate the predictive capabilities of the model in different ways. One data set utilized 

the existing data already used to generate the primary predictive model to validate the method of 

generating the predictive model. This method will be termed here as internal validation. The 

other method by which the model was validated was to use the model to predict data from 

outside of the original data set. This method will be termed external validation. Both the internal 

and external validation methods are designed to detect the problem of overfitting. Internal 

validation detects the problem of overfitting by assessing the goodness of the algorithm itself for 

generating a model while the external validation method assesses the effectiveness of the model 

itself. This means that internal validation looks towards the data the model uses and manually 

validates the model in a manner similar to Both these methods, together, should detect the 

problem of overfitting and allow one to assess how good the model is with regards to making 
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actual predictions. As the goal of this model is to eventually be used to predict colloidal 

properties of nanoemulsions, this is critical. 

 

 

Results 

Results can be broadly broken down into three broad categories: the models generated, the 

results from the validation (external and internal), and data generated through model exploration. 

The results from these three categories will respectively describe how efficacious machine 

learning is at generating a model that fits the data, whether this model is valid as a means of 

predicting data outside of the model, and what features are important to the accuracy of the 

model and therefore may be good predictors for those colloidal properties.  

 

 

Figure 5. Response plots of PDI, zeta potential, and size (left to right). These models have 

respective R2 values of 0.14, 0.69, and 0.58. These response plots correspond to the training data 

sets. The predicted values are in yellow whereas the actual values are in blue. 
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 Figure 3 contains the model data for the training data used to construct those models. On 

these response plots, the x-axis corresponds to the entry number as opposed to any dimension of 

the data’s features. The y-axis on the other hand corresponds to the independent variable that is 

being measured. For the PDI this is unitless, whereas for zeta potential this is in mV while size is 

in nanometers. These values indicate that the model was capable of generating predictions for 

both size and zeta potential but not able to accurately make predictions for PDI. A value close to 

zero for R2 indicates that the model is only slightly better than taking an average of the data and 

using that as a prediction. This can be seen in how the data in the response plot for PDI clusters 

about a central line for the most part. These R2 values indicate the predictability of the data and 

as such they indicate that the zeta potential and size are relatively predictable based on the 

information given whereas PDI is unpredictable for the most part. 

 

Table 1.  These values are the results of the variation of inputs study on the size model. Baseline 

is indicated on the first row with no features removed. Following entries to the table indicated 

various features being removed. 
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Table 2. These values are the results of the variation of inputs study on the zeta potential model. 

Baseline is indicated on the first row with no features removed. Following entries to the table 

indicated various features being removed.  

Model RMSE R-squaredMSE MAE Feature Removed 1 Feature Removed 2 Feature Removed 3 Feature Removed 4 # of Features Removed
1.15 31.103 0.58 967.39 22.958 NA NA NA NA 0

2 31.517 0.57 993.31 23.817 PFC type NA NA NA 2
3 30.865 0.59 952.67 23.359 NA PFC conc NA NA 5
4 34.526 0.49 1192.1 25.94 PFC type PFC conc NA NA 7
5 35.013 0.47 1225.9 25.818 Surfactant type NA NA NA 3
6 31.764 0.57 1008.9 23.79 NA NA Surfactant Category NA 3
7 33.493 0.52 1121.8 24.836 NA Surfactant conc NA NA 7
8 35.106 0.47 1232.4 27.304 Surfactant type Surfactant conc Surfactant Category NA 13
9 31.535 0.57 994.47 23.964 Buffer type NA NA NA 1

10 35.752 0.45 1278.2 26.139 NA Buffer conc NA NA 2
11 31.299 0.58 979.64 23.202 NA NA Buffer pH NA 1
12 34.421 0.49 1184.8 25.473 Buffer type Buffer conc Buffer pH NA 4
13 31.69 0.57 1004.3 23.906 Active Drug NA NA NA 1
14 31.547 0.57 995.21 23.727 NA Active Drug conc NA NA 1
15 35.345 0.46 1249.3 26.476 Active Drug Active Drug conc NA NA 2
16 31.198 0.58 973.3 23.553 Solvent type NA NA NA 1
17 35.233 0.47 1241.3 25.839 NA Solvent conc NA NA 2
18 30.694 0.6 942.09 23.252 Solvent type Solvent conc NA NA 3
19 35.35 0.46 1249.6 26.315 Excipient Type NA NA NA 4
20 32.453 0.55 1053.2 24.21 NA Excipient conc NA NA 7
21 35.024 0.47 1226.7 26.747 Excipient Type Excipient conc NA NA 11
22 34.079 0.5 1161.4 23.349 NA NA RPM NA 2
23 33.744 0.51 1138.7 25.067 NA NA NA Time 2
24 33.701 0.51 1135.8 24.999 NA NA RPM Time 4
25 31.713 0.57 1005.7 23.953 NA NA Micro Cycles NA 1
26 31.221 0.58 974.77 23.316 NA NA NA Micro PSI 1
27 33.609 0.51 1129.5 25.556 NA NA Micro Cycles Micro PSI 2
28 31.133 0.58 969.28 23.102 NA NA Sonication NA 1
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 Variation of input testing reveals other information through the variation in R2 value. 

Features are removed in batches of related features as removing the features individually would 

tell nothing regarding the actual importance of that data. Only when removed in these related 

batches is it possible to tell what data is actually important to the model. With regard to zeta 

potential, it can be seen in table 2 that surfactant type, category, and concentration play a large 

role in being able to make an accurate prediction. This can be seen by the large drop in R2 value 

for each category of data and an even large cumulative drop when all three categories of data are 

removed. There are other factors as well that are important to zeta potential, though less so. 

These include categories of data for which an R2 less than 0.55 results from their removal. With 

regard to size data a very different picture is painted. As can be seen from table 1, there is a 

much larger variety of factors that seem to play a role in size prediction and by extension what 

factors may play a role in determining the size of PFC nanoemulsions. There were some results, 

however that coincided with the results of previous work, wherein it was found that PFC oil type 

and concentration were critical to determining nanoemulsion size.160 

Model RMSE R-squaredMSE MAE Feature Removed 1 Feature Removed 2 Feature Removed 3 Feature Removed 4 # of Features Removed
1.15 6.3763 0.69 40.657 4.6322 Baseline NA NA NA 0

2 6.3143 0.69 39.87 4.5345 PFC Type NA NA NA 2
3 7.9434 0.51 63.097 5.0893 PFC conc NA NA NA 5
5 7.4598 0.57 55.649 6.0169 PFC Type PFC conc NA NA 7
6 7.0813 0.61 50.144 4.7278 Surf Type NA NA NA 3
7 7.0847 0.61 50.193 4.6638 Surf Category NA NA NA 3
8 7.324 0.59 53.641 5.115 Surf Conc NA NA NA 4
9 8.3625 0.46 69.931 5.7156 Surf Type Surf Category Surf conc NA 10

10 6.6463 0.66 44.173 4.9141 Buffer type NA NA NA 1
11 7.5625 0.56 57.192 5.2897 Buffer conc NA NA NA 2
12 60.0145 0.72 36.174 4.1317 Bueffer pH NA NA NA 1
13 7.3944 0.58 54.678 5.0708 Buffer type Buffer conc Buffer pH NA 4
14 6.2601 0.7 39.188 4.5542 Active Drug NA NA NA 1
15 6.1523 0.71 37.851 4.4029 Active drug conc NA NA NA 1
16 7.7162 0.54 59.54 5.5498 Active Drug Active Drug conc NA NA 2
17 6.2475 0.7 39.031 4.6214 Solvent Type NA NA NA 1
18 7.4741 0.57 55.862 5.3775 Solvent conc NA NA NA 2
19 7.3071 0.59 53.394 4.9248 Solvent Type Solvent conc NA NA 3
20 6.4205 0.68 41.222 4.5997 Excipient Type NA NA NA 4
21 6.5202 0.67 42.513 4.839 Excipient conc NA NA NA 4
22 7.616 0.55 58.003 5.4299 Excipient Type Excipient conc NA NA 8
23 7.5918 0.56 57.635 5.3547 RPM NA NA NA 2
24 7.8322 0.53 61.343 5.5507 Time RPM NA NA NA 2
25 6.2642 0.7 39.24 4.6277 RPM Time RPM NA NA 4
26 6.7696 0.65 45.827 4.9598 Micro Cycles NA NA NA 1
27 6.7103 0.65 45.038 4.8571 micro PSI NA NA NA 1
28 7.8083 0.53 60.97 5.6932 Micro Cycles Micro PSI NA NA 2
29 6.6294 0.66 43.95 4.7779 Sonication Time NA NA NA 1
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Figure 6. Data generated through the self-validation of the model. This composite model has and 

RMSE of 22.37 nm and an R2 value of 0.639.  

 

 Going beyond simply exploring the model, the model was utilized to make predictions of 

size data. The reason only size data was used was because of size and zeta potential, only data 

for size was found for external validation. For this reason, only the size data was validated. It 

was found through the internal validation method, as shown in figure 4, that the model does not 

have the problem of overfitting. Since the composite model generated from utilizing the bagged 

tree method generated a model with an RMSE as low as 22.37 nm and a relatively high R2 value, 
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it can be said that internal validation indicates, the model generated can be applicable to data 

outside the model. However these results contrast with those of the external validation testing 

shown in figure 4. Here the R2 value is negative, therefore indicating that the model is not a good 

fit for the data. A low R2 value (close to zero) implies that the prediction is no better than 

selecting the mean of the data. A negative R2 value suggests that the fit of the data is worse than 

that. It implies that the predicted data doe not follow the pattern of the actual data. In spite of 

this, the RMSE value is exceptionally low and indicates the model may not be entirely bad at 

predicting the size data. The predicted data78,199 however consists heavily of complex triphasic 

PFC nanoemulsions. The bulk of the data used to generate the models consisted of biphasic 

nanoemulsions. This difference may account for the relative degree of inaccuracy present in the 

model via external validation. 
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Figure 7. The external validation model with an RMSE of  20.45 and an R2 value of -0.478. 

 

Conclusion 

Conclusions that can be drawn from the machine learning analysis are mixed with regard to 

the general utility of the model generated. While the initial models generated to predict size and 

zeta potential show good promise in being able to predict the data from the predictor data set, it 

is not enough to show the utility of the model. This is why validation is so critically important to 

the ensuring the model has good predictive capabilities outside of the training data set. To this 

end validation was employed, however the results of validation were mixed. Self-validating 
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utilizing the data from the training data set indicate that the model is just as good, if not better, at 

predicting data from outside of the data used to generate the predictive model. On the other hand, 

predicting data from completely outside the training data set indicates that model is not good at 

predicting size. This could be a result of not having enough data in the original training data set 

that would apply to the data from outside the testing data set. This is the most likely case, as 

there was a vast number of biphasic PFC nanoemulsion formulations used to train the data while 

there were only a few triphasic formulations to train the data set. As the testing set consisted 

primarily of triphasic, this can be where the failure derived from. In order to more effectively 

predict the data, more triphasic formulation data must be employed to train the model. In this 

fashion not only will the model be able to predict the size of biphasic nanoemulsions but also 

more complex triphasic nanoemulsions.  

Overall results can be said to be mixed with regard to the results of using machine learning to 

assess predict the colloidal properties of PFC nanoemulsions. Size and zeta potential were found 

to be able to be predicted by the machine learning model to a certain extent, while PDI was 

impossible to predict. Regarding size and zeta potential, there were models that could be 

generated with relatively high R2 values. With regard to validation, however, there mixed results 

regarding size. Internal validation indicated that size predictions using machine learning is a 

valid approach whereas external validation indicated that machine learning may not be the most 

optimal method by which to predict size. However, these mixed results may be the result of not 

having enough data to train the model. Results from external validation tended to cluster 

depending on the article form which data was derived. This, combined with the relative lack of 

complex triphasic nanoemulsions used to train the model, indicate that there was simply not 

enough breadth of data used to train the machine learning model. Before, this model can be 
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broadly applied to understanding the properties critical to the performance of PFC nanoemulsion 

nanomedicine systems, the training data set must be expanded. This thesis however provide a 

framework for using machine learning as a predictive tool once those necessary experimental 

measurements can be made.  
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Appendix 
 

Supplementary Figures and Tables 

 
Figure S1. Linear Regression (RMSE: 6.7095, R2: 0.98) – This is the multiple linear regression 
model generated for size related data. 
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Figure S2. Fine Tree Model (RMSE: 32.863, R2:0.56) – This is the fine decision tree model for 
size related data. This model was eventually discarded for its inability to respond to variation of 
input stimuli. 
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Figure S3. Medium Tree Model (RMSE: 36.944, R2: 0.45) - This is the medium decision tree 
model for size related data. This model was eventually discarded for its inability to respond to 
variation of input stimuli. 
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Figure S4. Coarse Tree Model (RMSE: 49.654, R2: 0.00) - This is the coarse decision tree model 
for size related data. This model was eventually discarded for its inability to respond to variation 
of input stimuli. 
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Figure S5. Linear SVM (RMSE:11.581, R2: 0.93) – linear support vector machine 
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Figure S6. Quadratic SVM (RMSE:12.048, R2: 0.92) – Quadratic Support Vector Machine 
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Figure S7. Cubic SVM (RMSE: 12.291, R2: 0.92) – Cubic Support Vector Machine 
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Figure S8. Fine Gaussian SVM (RMSE: 29.602, R2: 0.53)  
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Figure S9. Medium Gaussian SVM (RMSE: 11.651, R2: 0.93) 
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Figure S10.  Coarse Gaussian SVM (RMSE:13.649, R2: 0.90) 
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Figure S11. Boosted Tree (RMSE:29.37, R2: 0.65) 
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Figure S12. Bagged Tree (RMSE: 30.261, R2: 0.63) 
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Figure S13. Squared Exponential GPR (RMSE: 35.888, R2: 0.32) 
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Figure S14. Matern 5/2 GPR (RMSE: 50.875, R2: -0.05) – Gaussian Process Regression 
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Figure S15. Exponential GPR (RMSE: 46.948, R2: 0.11) – Gaussian Process Regression 
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Figure S16. Rational Quadratic GPR (RMSE:10.013, R2: 0.95) – Gaussian Process Regression 
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