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ABSTRACT 

 

DEVELOPMENT OF A COMBINED FEEDFORWARD-FEEDBACK QUALITY CONTROL 

SYSTEM FOR EXTENDED-RELEASE GRANULES USING A QUALITY BY DESIGN 

APPROACH 

 

 

By 

Yuxiang Zhao 

August 2021 

 

Dissertation supervised by Carl A. Anderson, Ph.D. 

Objectives 

For a fluid bed film coating process to consistently deliver quality products, its control system 

needs to be robust against the variability of input materials and environmental disturbances. 

Presently, limited studies have been reported to understand the effects and interactions of the 

material attributes, environmental variables, and process parameters on the product in vitro drug 

dissolution. A control system can be developed with a proper understanding of the coating process, 

by adjusting the process parameters in feedback and feedforward manners to compensate for the 

undesired effect caused by disturbances, and ensure consistent product quality.  

Methods 

The control system was developed and evaluated using a quality by design approach. The 

formulation variables, material attributes, and process parameters of the coating process were 
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systematically assessed using Ishikawa and failure mode and effect analysis. The risk assessment 

was followed by a fractional factorial design to screen the criticality of four process variables: 

product temperature, airflow volume, atomization air pressure, and inlet air relative humidity. The 

size distribution of the input granules was constrained to a narrow range in the factorial design. 

The information gained from the screening study was used to guide the response surface design 

for process modeling, in which granule size distribution, relative humidity, inlet air volume, and 

target coating weight gain were investigated, and the studied response was in vitro dissolution. 

Using two regression methods (partial least squares and Gaussian process regression) and two 

curve-fitting methods (Weibull function and principal component analysis) in conjunction, four 

modeling approaches were applied to analyze the experimental data and establish the process 

models. A control system was subsequently developed. The feedback loops relied on the real-time 

measurements of near-infrared spectroscopy (NIR) to stabilize the in-process moisture level and 

determine the process endpoint. The feedforward components were built upon the process models. 

The controllers modified the target weight gain and airflow volume to accommodate the undesired 

size distribution of input granules and relative humidity. The combined feedforward-feedback 

control system was evaluated by comparing the control performance with and without the 

feedforward elements, using Monte Carlo simulation and 12 additional test runs. 

Results 

The initial risk assessment and the statistical designs of experiments identified the critical 

material attributes and process parameters and elucidated their impacts on the coating process and 

final product quality. The in-process moisture level was found to play an essential role in 

preventing batch collapse and improving coating efficiency. The hydration of the active 

pharmaceutical ingredient (API), theophylline, was identified as a high-risk failure mode that 
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requested proper control. The in-line NIR models had 0.3% and 0.5% errors in predicting the 

moisture level and coating weight gain. The process models were established using different 

modeling algorithms including partial least squares regression, Gaussian process regression, 

Weibull function fitting, and principal component analysis. The partial least squares regression 

model coupled with the Weibull function as a dissolution curve-fitting method outperformed the 

other models as it had the lowest error profile and great simplicity for control application. The 

feedforward controllers were established by mathematically transforming the process model into 

an optimization problem, which searched for the best solution of process parameters given the 

initial condition of material attributes and environmental variables. The tolerance space of the 

coating process supervised by the feedforward-feedback control system was established. 

Conclusion 

The combined feedforward-feedback control system reduced batch failures and improved 

product quality consistency in both Monte Carlo simulations and test batches. The combined 

control system also showed robustness against the variability of incoming material attributes, 

which would grant pharmaceutical companies tremendous flexibility in choosing the sources of 

raw materials.   
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Chapter 1 : Introduction  

1.1 Statement of Problem    

Pharmaceutical Quality by Design (QbD) is a "systematic approach to pharmaceutical 

development that begins with predefined objectives and emphasizes product and processes 

understanding and process control."1 The QbD elements2 often include  

(1) a quality target product profile (QTPP) that identifies the critical quality attributes (CQAs), 

(2) product and process designs, including the identification of the critical material attributes 

(CMAs) and the critical process parameters (CPPs), 

(3) process understanding and modeling, 

(4) a control strategy that mitigates risks and ensures product quality and consistency.  

Yu and coworkers1 defined three levels of control strategies from the regulatory agents’ 

perspective. Quality by test is the lowest level of control, ensuring quality by extensive end-

product testing with tightly constrained material attributes and process parameters. The input 

materials and final products are rejected if they fail to meet the specifications.1, 3 The second level 

of control relies on the establishment of a robust design space. It grants the pharmaceutical industry 

flexibility in adjusting process parameters within a validated and approved design space. Design 

of experiments (DoE) is often used to explore the knowledge space that reveals the impact of 

material and process variables on product quality.1, 4 Design space (Figure 1-1) is a subset of the 

knowledge space statistically determined based on the CQA acceptance criteria.5 It is common 

within the pharmaceutical industry to restrict raw material specifications, run the manufacturing 

process in a normal operating range (NOR), and implement a hybrid control strategy combining 

the first two control levels.6 Over time, the design space will need to be modified for new 
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knowledge gathered in the post-approval stage. For instance, the change of a supplier for excipients 

or active pharmaceutical ingredient (API), lot-to-lot variability in raw materials, equipment aging, 

and environmental changes can significantly impact the product quality and ultimately alter 

clinical outcomes.7, 8 In those cases, the robustness of the design space is challenged, and additional 

studies are often required to adapt to the original design space.  

 

Figure 1-1: knowledge space, design space, and normal operating range (NOR). 

 

The third and highest control level is to monitor the disturbances and adjust process parameters 

accordingly, which adapts the design space to material and environmental changes automatically. 

Process analytical technology (PAT) is often involved in this level to allow for real-time 

monitoring and control operations. This type of control is not entirely new since the concept has 

been widely adopted in chemical engineering for decades.9, 10 Meanwhile, the regulatory agents 

are encouraging the pharmaceutical industry to follow this path. It is also stated in ICH Q8, "…the 

control of the process such that the variability (e.g., of raw materials) can be compensated for in 

an adaptable manner to deliver consistent product quality.”11 However, pharmaceutical companies 
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hesitate to fulfill the highest control level because of the increased time and cost during the product 

development stage and potential delays of the drug approval. The pharmaceutical industry has yet 

to realize the strength of the systematic quality by design approach: development speed can be 

improved, and the robustness of the design space can be enhanced.10 Furthermore, it is imperative 

to realize the benefits of incorporating the feedforward components into the quality control strategy. 

Well-established feedforward controllers can transfer resources from a downstream corrective 

mode to an upstream proactive mode.1 Proactive controls allow the adaptation of design space to 

tolerate more material variability and adjust process parameters within the design space more 

efficiently than corrective controls. 

This dissertation demonstrates the development of a combined feedforward-feedback control 

system for a fluid bed coating process. The feedforward components were designed 10, 12, 13 for the 

satisfaction of end-product CQAs. Several algorithms exist in the literature to tune feedforward 

controllers.12-16 The most promising algorithm was described by Muteki and coworkers,13 in which 

partial least squares regression (PLS) was applied to construct the process models, and the control 

output was generated using a constrained quadratic searching method.12, 13 A non-parametrical 

algorithm, Gaussian process regression, was also investigated as an alternative. The feedback 

components were mainly built-in functions in a synTQ data management system to stabilize 

process variables.17 The near-infrared (NIR) spectroscopy was integrated into the feedback loops 

for continuous monitoring of CQAs to allow timely adjustment of process parameters.18-20 

 

1.2 Hypothesis and Specific Aims 

The dissertation is based on the central hypothesis: 
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The combined feedforward-feedback control system, developed via the quality by design 

approach, will (1) improve the quality and consistency of extended-release granules produced by 

fluid bed coating process and (2) increase the process robustness against the input material 

attributes and environmental disturbance, comparing to a feedback control alone system. 

Figure 1-2 illustrates the scheme of the pharmaceutical quality by design. The systematic 

approach is split into the following specific aims: 

1. understand the fluid bed coating process: 

- define the quality target product profile (QTTP), 

- perform risk assessment, 

- use one-variable-at-a-time experiments to develop a coating formulation, 

- conduct a screening study to evaluate critical parameters related to high-risk failure 

modes. 

 

2. conduct a response surface study to explore the knowledge space and develop process 

models that predict dissolution profiles of coated granules using two algorithms: Partial 

least squares regression (PLS) and Gaussian process regression (GPR), and two curve-

fitting methods: Weibull function and principal component analysis (PCA).  

 

3. establish feedback control loops based on real-time predictive models using process 

analytical technologies (PAT) and chemometric tools: 

- use NIR spectroscopy to monitor in-process moisture and coating weight gain, 

- use Raman spectroscopy to monitor API solid-state form. 
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4. construct and test the combined feedforward-feedback control system in the following 

steps: 

- integrate the combined feedforward-feedback control system using the process models 

and the real-time predictive models to control the product critical quality attributes, 

- apply Monte Carlo simulations to evaluate the process capability, and establish the 

design space of the control systems with and without feedforward components, 

- conduct test batches at the edge of the design space of the coating process, with and 

without the feedforward components. 

 

Figure 1-2: The illustration of a quality by design (QbD) approach. 
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1.3 Literature Survey 

This work utilizes a quality by design approach to develop a combined feedforward-feedback 

control system. An extended-release multiparticulate dosage form and a fluid bed coating process 

were utilized as the model drug product and manufacturing process for this demonstration because 

of their inherent complexity, thus requiring advanced control to assure quality and consistency. 

The literature was reviewed on three subjects: (1) product and process of the aqueous fluid bed 

coating, (2) QbD principles, and (3) control tools. 

 

1.3.1 Extended-Release Multiparticulates: Formulation and Process  

Extended-release dosage forms provide the benefits of minimum fluctuation of plasma drug 

concentration, decreased probability of side effects, reduced dosing frequency, and improved 

patient compliance.21, 22 The extended-release profile of the dosage form comes from the design of 

the formulation. In a tablet dosage form, the extended drug release is controlled by the coating 

around the tablet surface or achieved by forming a matrix mass consolidating the mixture of drug 

and polymeric excipients. An alternative is to manufacture drug-loaded multiparticulates (beads 

or granules) and then subject the particles to a non-enteric coating. The coated particles can be 

encapsulated or compressed into a tablet, depending on the target product profile. The 

multiparticulate drug delivery system (MDDS) has become the preferred dosage form in the 

pharmaceutical industry owing to its flexibility in adjusting formulation to achieve a specific 

release profile.23 The major advantage of employing an MDDS is from pharmacokinetics and 

pharmacodynamics perspectives. Its formulation robustness yields a consistent pharmacokinetic 

profile with reduced variability in the in vivo performance and ensures patient safety.24 Compared 

to the development of matrix compacts and film-coated tablets, the MDDS prevents dose dumping 
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and allows the adjustment of release profile by changing the thickness of the polymer coat while 

keeping the same formulation of the core. The MDDS also provides the flexibility of 

encapsulating/tableting different amounts of beads or granules from the same formulation to 

generate a series of dosage strengths, thus benefiting formulation optimization and scale up.  

 

1.3.1.1 Coating Formulation 

Film coating can be broadly classified into two types based on the application: functional and 

non-functional. Non-functional coating is used to improve esthetics or protect the product from 

dust, whereas functional coatings include drug release modification, taste masking, preventing 

drug degradation, and acting as a moisture barrier.25 Along with the physicochemical properties of 

the drug substance and the unit operations adapted, the coating formulation is one of the three key 

factors contributing to the success of the coating process. 

The most used modified-release coating system can be classified into pH-dependent and pH-

independent. Enteric coatings use pH-dependent polymers where the pH change in the 

gastrointestinal tract dictates the dissolution of the polymer coating, and, therefore, the drug.26 This 

dissertation focuses on non-enteric formulations where pH-independent polymers are of primary 

interest.21, 27 Due to safety and environmental considerations, aqueous polymer dispersion has 

become more popular than organic solvent-based polymer solutions over the past decades.28 There 

are three classes of aqueous polymers based on their chemical nature: Acrylic resin (e.g., ammonio 

methacrylate copolymer), polyvinyl derivatives (e.g., polyvinyl acetate), and cellulose derivatives 

(e.g., ethylcellulose).29 The selection of aqueous coating polymer is usually based on its solubility, 

permeability, mechanical properties, minimum film formation temperature (MFFT), and glass 

transition temperature (Tg). The minimum film formation temperature (MFFT) is defined as the 
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approximate temperature at which the forces driving polymer particle deformation exceed the 

resistance.30 The coating temperature must be above the MFFT to obtain a continuous film. The 

types and ratio of monomers, particle size distribution, molecular weight, and degree of 

crosslinking are the major factors influencing the MFFT.31 The film formation tends to be uniform 

and reproducible when the polymer is in a rubbery state and readily spreadable during the coating 

process.32 Cellulose derivatives often exhibit high glass transition temperature and do not yield 

smooth continuous film upon spraying onto the core substrates. Hence a plasticizer is required to 

reduce the Tg and MFFT to facilitate film coalescence. The plasticizers are low molecular weight 

substances embedded into space within individual polymer strands, thus reducing the polymer-

polymer interactions. The mobility of the polymer molecules increases with the addition of 

plasticizer, and the Tg of the formulation is decreased, ultimately leading to the transition of the 

polymer system from a brittle, glassy state to a flexible rubbery state.33, 34 The plasticizers may 

also significantly modify the physicochemical properties of the coating with regards to water 

uptake, thermal behavior, and drug permeability. Aqueous soluble plasticizers mix with the coating 

dispersion upon preparation and may form channels in the formed film whereas insoluble 

plasticizers require longer mixing time to emulsify into the dispersion and decrease the film 

permeability.35 The amount and type of plasticizer required for a desired coating formulation 

depend on the glass transition temperature of the polymer and the plasticizer, which can be 

calculated by the Fox equation.36 

1
T𝑔𝑔

=
W1

T𝑔𝑔1
+

W2

T𝑔𝑔2
 Eq. 1.1 

where Tg is the desired glass transition temperature of the coating dispersion; Tg1 and Tg2 are the 

respective Tgs of the individual components; and W1 and W2 are weight fractions of components 

1 and 2, respectively.  
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A subsequent process to coating, namely curing, is sometimes essential to complete the film 

formation. The curing temperature needs to be above the glass transition temperature to allow the 

coalescence of latex or pseudolatex particles. Insufficient polymer film coating or film curing can 

lead to erratic dissolution, which ultimately leads to sub-therapeutic drug levels or toxic levels 

depending on the properties of the drug molecules. The type and level of the plasticizer determine 

the glass transition temperature of the formulation, which at the same time governs the MFFT 

during coating and curing. 

Acrylic resins and polyvinyl derivatives tend to have much lower Tg values than cellulose 

derivatives, and in general, they do not require the addition of a plasticizer to process at mild 

temperature (20 – 40 °C).37 The drawback is that the low Tg and MFFT lead to tackiness and 

excessive particle adhesion. Anti-tacking agents, such as talc, are often necessary in those cases to 

prevent tablets or particulates from sticking together or adhering to the container surface during 

process and storage.38 Accompany with the coating polymer, pore-forming agents (e.g., 

hydroxypropyl methylcellulose, povidone) are sometimes used to adjust the drug release rate to 

achieve the desired profile.39,40 Aqueous insoluble pigments can be added to the coating dispersion 

to make the film opaque or colored. However, the incorporation of pigments can induce stability 

problems and alter the film properties.41 To solve the instability problem, surfactants or emulsifiers, 

such as sodium lauryl sulfate (SLS), help improve the wettability of polymer and pigment particles 

by decreasing the surface tension. The reduced surface tension improves the spreading of coating 

dispersion and the generation of uniform droplet distribution over the surface of the drug-loaded 

core.  
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1.3.1.2 Film Formation 

An aqueous pseudolatex coating dispersion consists of discrete polymer spheres, which must 

coalesce to form a continuous film once sprayed onto the substrates. The commercially available 

polymers are usually stabilized using emulsifiers so that the polymer spheres do not agglomerate 

in the dispersion, however, in the film formation, the same spheres need to overcome their 

repulsive forces to fuse. The most accepted film formation mechanism is that the loss of solvent 

constrains the movement of colloidal particles to form a densely packed stack and ultimately 

becomes a uniform and continuous film.42 In other words, film formation happens in three stages: 

(1) evaporation and particle ordering, (2) particle deformation, and (3) interdiffusion of polymer 

particles.31, 43 

Stage 1: Evaporation and Particle Ordering 

When the dispersion is deposited onto the surface of the substrate, evaporation of the water 

drives the polymer particle to come in contact as a close-packed array. The most generally accepted 

model assumes that transport of water occurs efficiently between water and air interface. 

Vanderhoff et al.44 categorized the evaporation of water into three phases: (1) rapid water loss 

from the surface of the polymer dispersion, (2) decreased rate of water loss when the polymer 

particles start to assemble in an ordered manner, (3) diminished rate of water loss when the 

particles are fully ordered. During the evaporation, the water diffuses through the capillary space 

between ordered particles, impairing the stability of the pseudolatex dispersion and initiating the 

particle deformation.   

Stage 2: Particle Deformation 

Particle deformation only occurs at a temperature above the MFFT of an aqueous dispersion 

system. The MFFT is an experimentally determined temperature at which the film becomes 
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continuous and crack-free. Above the MFFT, polymer particles have adequate mobility to disrupt 

the repulsive forces of the polymer particles. Subsequent particle deformation results in the 

fragmentation of the hydrophilic layers between the polymer particles, leading to phase inversion 

in which the remaining water is no longer the continuous phase.28 The negative curvature of the 

polymer-water droplet surface45, 46 allows the generation of three driving forces for the deformation, 

including the water-polymer interfacial tension, dry sintering due to the air-polymer interfacial 

tension, and the capillary force from the water-air interface.47 The driving force can be reduced 

with the presence of surfactant. Hence the formulators need to balance the stability of the 

dispersion with its propensity to overcome the energy barrier during film formation.  

Stage 3: Interdiffusion of Polymer Particles 

Interdiffusion of polymer chains across the interface between discrete polymer particles is the 

final step to form integral homogeneous films.48 The interdiffusion requires a temperature above 

the Tg of the polymer system. The polymer chains have increased molecular mobility and free 

volume in the rubbery state.49 They come close to each other, leading to coalescence and fusion of 

the particles, accompanied by surfactant exudation within the film.50      

 

1.3.1.3 Fluid Bed Coating  

Fluid bed coating is a unit operation in which dry solid particles are fluidized, wetted by the 

coating liquid, and dried simultaneously. Although employed as a pharmaceutical manufacturing 

process for decades, the trajectories of particles in the fluid bed are still unpredictable. The 

fluidized particles are susceptible to fragmentation and attrition, which can result in a significant 

material loss in operation. The competition between the layering of coating material on the dried 

particles and the agglomeration of wetted particles is always a challenge to the developers. Despite 
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these challenges, the fluid bed provides advantages over other coating processes:  superior heat 

and mass transfer efficiency and the ability to process material with a broad range of size 

distributions.51 With the increased demand for high-quality and efficient production in the 

pharmaceutical industry, a deep understanding of the fluid bed process is essential to enable 

process control and automation of coating operations.  

Fluidization maintains the suspension of particles by blowing pressurized air into the system 

from the bottom of the fluid bed processor through the particle bed.52 Particles become fluidized 

when the dragging force from upward air current overcomes the force of gravity. The minimum 

fluidization velocity is a critical parameter for a steady fluid bed. When the air velocity increases 

beyond the minimum fluidization velocity, bubbles start to form in the packed bed, and the 

particles start to behave like a liquid at the beginning of boiling. However, by its principle, 

fluidization is an elutriation system where the particles of different sizes or densities are readily 

separated, especially when the air velocity is just above the minimum fluidization velocity. As the 

air velocity continues to increase, the fluidized particle may transition from a bubbling regime to 

a turbulent regime in which the bubbles are no longer in regular shapes, the mass and heat transfer 

then becoming heterogeneous. Therefore, the fluidization airflow must be carefully managed to 

support the entire bed as a smooth and homogeneous suspension.  

The point of bubble formation depends on the particle properties. Geldart53 classified the 

particles into four groups based on their density (fluid and solid) and mean particle size, illustrated 

in Figure 1-3. Particles in Group C are cohesive and difficult to fluidize. The small particle size 

and strong interparticle forces (e.g., electrostatic charge, liquid bridge during wetting) make them 

behave more like clusters than single particles. These particles are often inadequately fluidized, 

resulting in poor mixing and heat/mass transfer. In contrast to Group C, Group D particles are large 



13 
 

and dense, which require intensive airflow for fluidization. The bubbles formed in the Group D 

particle bed are often large and tend to grow to the diameter of the fluid bed chamber. The large 

bubbles are called slugs. Group A particles often exhibit an aeration property that allows them to 

expand significantly at low air velocity without bubbles. Group B particles have more extensive 

size distributions (150 -1000 µm) than group A. They tend not to form smooth fluidized beds like 

Group A but undergo a stable bubbling regime. Group B particles allow the formation of a large 

bubble so that sometimes slugging can occur. In general, both Group A and B are easily fluidized 

and are used in a wide range of fluid bed applications with few difficulties.51 

 

Figure 1-3：Geldart’s classification of powder in fluidization. It is adapted from ref 52, permission 
granted. 

 

A few phenomena among the particles, coating liquid, and fluidizing air, occur simultaneously 

in the fluid bed to enable a stable process. They are: 
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(1) interaction between air and particles. As discussed previously, the particles need to undergo 

fluidization in a homogeneous flow to maximize heat and mass transfer between the air 

and the particle surface. 

(2) interaction between particles and liquid. The atomization of spraying liquid increases the 

probability of the collision between droplets and particles. The droplets spread on the 

particle surface from a liquid layer. The agglomeration between two or several particles 

may occur before drying the liquid causes a high risk to the coating process.  

(3) interaction between air and liquid. The air helps evaporate the liquid layer on the particle 

surface, and the polymer coalesces into a continuous film. However, droplets can be dried 

before contacting with the particles, and thus no coating is formed. 

Successful coating depends on the droplets spreading on the particle surface and the efficiency of 

the heat and mass transfer.54  

Fluid bed processor can be roughly categorized by three configurations, which are shown in 

Figure 1-4, including (a) top-spray, in which the nozzle is placed at the top over the fluidized 

particle bed, (b) bottom-spray Wurster system, where the fluid bed contains a draft column 

(Wurster insert) to create a circulation particle flow (c) rotary system, in which a rotor is placed at 

the bed bottom and air blow through a gap between the rotor and wall, and the nozzle is positioned 

on the side of the chamber. 
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Figure 1-4： configurations of different fluid bed processors: (a) top-spray system, (b)bottom-
spray Wurster system, and (c) rotary system. Figure adapted from ref55, permission granted. 

 

The bottom-spray Wurster system is widely acknowledged as the best design for fluid bed 

coating.56 The insertion of the Wurster column divides the fluid bed chamber into four zones where 

the particles flow through each of them in circulation. Particles are first wetted in the spouting 

zone in the bottom center of the chamber, where the spray droplets and the fluidization air travel 

in the same upward direction. The drying process occurs in the inner column zone, where particles 

are pneumatically transported from the bottom to the top. After reaching the top, the particles start 

to fall to the bottom through the annular external column zone. When the particles return to the 

bottom, they move slowly from the peripheral zone to the spouting in the center. The motion trace 

of the particles is just like water in a vertical fountain. This mechanism of circulation limits the 

number of particles in the spraying zone, minimizes the droplet traveling time, and regulated the 

trajectory of the particles. The risk of agglomeration is reduced. The coating uniformity and 

efficiency are improved in this setup comparing to the other two configurations. However, the 

scale-up of Wurster system is difficult since some of the phenomena depend on the distance, and 
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the others are related to the area of the process zone. The complexity of the configuration is the 

main challenge in applying the Wurster system.57-59 

In contrast, the use of a top-spray fluid bed for coating, without the additional Wurster insert, 

is often limited in barrier coating (against moisture, light, oxygen), ease of handling, and taste-

masking, where perfect coating film is generally not required.60-62 The challenge for coating in the 

top spray system is that the particle motion is unconfined and presumably random. The fluidization 

pattern, droplet travel distance, and drying efficiency are influenced by the mixed effects of two 

or more process parameters. However, the top-spray fluid bed coating has the advantages of high 

versatility, large batch capacity, and low capital cost.63 It also requires less effort in scale-up than 

the Wurster setup due to its simplicity.64 In addition, the top-spray feature allows the convenience 

of assembling a continuous horizontal fluid bed processor. Particles are charged to the fluidized 

chamber at one end and move slowly to the other end while the liquid is sprayed into the system 

from the top. This type of fluid bed exists and is used in the food industry for many years.52 

Numerous variables are involved in top-spray coating process, and the interdependence of those 

parameters remains unclear. The layering of the coating does not occur during one single pass 

through the coating zone, but relies on many passes to allow sufficient liquid to cover the particle 

surface. As previously discussed, droplet formation, collision, spreading, coalescence, and 

evaporation are occurring simultaneously during the process. The droplet size and distribution are 

more relevant to the nozzle configuration and atomization of air. The fluidization air contributes 

the most to evaporation. However, the opposing direction of atomization air to fluidization air 

made the flow patterns of solid particles and liquid droplets unpredictable. Experimental study and 

empirical modeling are often required to provide a thorough insight into the coating operation so 
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that a comprehensive control may be established to produce products of consistent and desired 

quality, batch by batch or continuously.   

The rotary coating system is a relatively new approach, often referred to as the tangential-spray 

coating. It utilizes a rotor disc driven by an electric motor, which generates high kinetic energy 

that makes it difficult to coat weak and non-spherical products (e.g., granules). There is a high 

probability of destroying them. The rotor system is suitable for producing pallets that require 

spheronization and subsequent coating as a one-pot manufacturing process.63, 65 

 

1.3.1.4 Drying and Curing 

The coated substrate is often dried in situ simultaneous with the polymeric coating, and it may 

or may not require subsequent curing to complete the polymer coalescence fully. As discussed 

previously, water evaporation concentrates the polymer particles in a closely packed arrangement 

on the substrate surface. The capillary force, one of the main driving forces for polymer 

deformation, will dissipate if the polymer particles are too rigid to be deformed, or if the drying 

conditions are not optimized. The polymer particles are rigid if the coating temperature is below 

the Tg of the polymer system or if the plasticization is inadequate. Additionally, inappropriate 

drying conditions regarding temperature, humidity, and time may affect the rate of heat transfer, 

the evaporation of the water, and particle deformation. They are indirectly varying the degree of 

polymer coalescence. Rapid loss of water, although generally desirable, may at times diminish the 

capillary force action resulting in incomplete film coalescence.  

The necessity of a curing step is dependent on the Tg of the dispersion system, plasticizer type 

and amount, and drying conditions. Curing ensures consistent drug release and physical stability. 

Partially coalesced films (uncured) show faster drug release and thermodynamically unstable, 
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resulting in a gradual decrease in drug release on long-term storage. From product development 

and regulatory perspective, it is imperative to demonstrate complete film coalescence for the long-

term stability of the drug product. On the other hand, over-curing a polymer coating excessively 

at an elevated temperature can adversely affect drug release. Due to drug-polymer affinity, the 

drug may migrate to the coating surface, and consequently, faster drug release may be observed 

because of drug crystallization and the creation of a void in the coating layer. Balanced curing 

conditions from the coating process need to be adapted and optimized using the principles of 

quality by design.66 

 

1.3.2 Quality by Design 

Quality by design is a systematic approach initiated by regulatory bodies to enhance 

pharmaceutical development through proper process design and control strategies to deliver 

consistent quality products.67, 68 Implementing QbD in the development phase enables formulators 

and process engineers to analyze reasons for batch failures based on a thorough process 

understanding and predict the effect of scale up on the final product, finally establishing a 

comprehensive control strategy. In this section, the systematic approach is discussed, starting with 

the definitions of quality target product profile, critical quality attributes, critical material attributes, 

and critical process parameters, and followed by the steps to perform a risk assessment and to 

design experiments using statistical principles for the construction of knowledge space and then 

design space and control strategy. 
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1.3.2.1 Key Terms for QbD 

According to the International Council for Harmonization (ICH), “quality target product profile 

can be defined as a prospective summary of the quality characteristics of the drug product that 

ideally will be achieved to ensure the desired quality, taking into account safety and efficacy of 

the drug product.”69 In modern pharmaceutical product development, the first step is to define the 

quality target product profile (QTPP) from the perspectives of quality, safety, and efficacy. The 

attributes presented in the initial QTTP are not fixed and may be changed when additional 

information is obtained during the product and process development. The initial QTPP attributes 

are defined based on the prior knowledge of the API properties, commercially desired dosage form 

and strength, and target patient population. The quality attributes pertinent to the safety and 

efficacy of the target patient population should be listed in the QTTP. The commonly listed 

attributes in QTTP are administration route, dosage form, identity, strength, assay, content 

uniformity, impurities, stability, and dissolution.69 The QTPP philosophy of starting with the end 

in mind allows a product developer to think ahead about selecting appropriate excipients and unit 

operation, identifying risks, planning experimental design, and ultimately developing a control 

strategy to ensure consistent drug product quality. All these elements in conjunction fulfill the 

target of quality by design: building quality into the product instead of testing at the end.  

The critical quality attributes of a drug product are identified from QTTP, which directly affect 

the safety and efficacy of the target patients.4  They are defined as “a physical, chemical, biological 

or microbiological property or characteristic that should be maintained within an appropriate limit, 

range or distribution to ensure the desired product quality.”67 The CQAs are dynamic elements 

that are updated during the product development phases. From the product developer’s perspective, 

the CQAs need to be met to yield reproducible quality pharmaceutical products. They are 
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dependent on the formulation, raw material, and process parameters since these attributes can drive 

the manufacturing process outside the established design space and change the CQAs significantly. 

Identifying the CQAs in the early stage helps guide product development, including selecting 

appropriate excipients, choosing unit operations, and establishing control strategies. Typically, an 

initial risk assessment is conducted using prior knowledge to plot out a list of potentially critical 

quality attributes that have direct clinical impacts. The risk assessment enables the CQAs as a link 

between product quality and clinical performance. The list of CQAs should be updated once 

additional information is obtained from experimental data. The variety of dosage forms requires 

different types of CQAs, i.e., product purity, drug release, and stability for most dosage forms; 

aerodynamic properties for inhalation dosage form; sterility for parenteral drug delivery system; 

adhesion for a transdermal patch.  

Critical material attributes are the physicochemical properties of raw materials or intermediate 

drug products that can significantly impact the performance of the final drug product or cause a 

substantial issue in the manufacturing process. They should be identified from both drug 

substances and excipients using risk assessment tools, and their criticalities should be confirmed 

along with the design of experiments in the following studies. Process parameters include the type 

of equipment, batch setting, and process conditions. Critical process parameters are process inputs 

that significantly impact the critical quality attribute of the drug product. Roy70 created a compiled 

list of potential critical process parameters (CPP) for various unit operations related to a solid 

dosage form in his review article. The list is based on theoretical assumptions on strength, dosage 

form, selection of excipient, and related critical material attributes (CMA). In practice, the 

criticality of process parameters can be determined systematically using risk assessment tools and 
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statistical designs of experiments. The CPPs and CMAs of fluid bed coating are discussed and 

justified in detail in Chapter 2.  

 

1.3.2.2 Risk Assessment 

Quality risk management in ICH Q9 indicates that “the evaluation of the risk to quality should 

be based on scientific knowledge and ultimately link to the protection of the patient and the level 

of effort, formality, and documentation of the quality risk management process should be 

commensurate with the level of risk.”71 The risk assessment tools in the ICH Q9 are applicable to 

risk assessment in the product development phase. As one of the early steps in a QbD project, the 

purpose of risk assessment is to identify potential high-risk formulation and process variables that 

have the potential to have a substantial impact on the final product quality. The risk assessment 

outcome prioritizes the critical parameters and determines the experimental design for the 

following studies. A poor risk assessment that mistakenly identified a critical parameter as non-

critical at the early stage may result in extra cost and delay of the new product launch. Therefore, 

the risk assessment should be performed periodically throughout the entire circle of product 

development.72 

Initial risk assessment is often performed using an Ishikawa diagram and a failure mode and 

effect analysis (FMEA) to classify the risk modes as low, medium, and high. The low-level risk 

modes are deemed acceptable risks since they do not significantly impact the clinical performance 

of the drug product. The medium risks are deemed acceptable, but require close monitoring. The 

high-level risks are unacceptable and need further investigation. The Ishikawa diagram, sometimes 

referred to as the fishbone diagram, is a theoretical evaluation of all possible attributes that may 

significantly impact the final product quality. Those attributes could be from raw material (drug 
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substance and excipients), process, analytical method, environment, etc. The Ishikawa diagram for 

the fluid bed coating process has been developed for this work and is presented in section 2.3.2.1. 

The extensive list of potential parameters from the initial evaluation can be narrowed based on 

subsequent FMEA and preliminary experiments.73 To assign risk level in FMEA, usually, a team 

of experts from different fields like pre-formulation, formulation, process, and analytical method 

development participates in brainstorming to determine the scores of severity (S), occurrence (O), 

and detection (D) for every attribute. The scores can be assigned on a scale of 1-5, 1- 10, or any 

user-defined range. The numbers may be linearly (e.g., 1, 2, 3,…) or non-linearly ordered (e.g., 1, 

3, 6,…).74 The severity is evaluated on the seriousness of failure and its impact on the clinical 

performance of the product. The occurrence measures the frequency of failure during the 

manufacturing, especially for operating outside the proven range. The detection represents the 

probability of timely detection of the failure before the release of final products. The three scores 

are multiplied (S×O×D) to generate a risk priority number (RPN), which are then utilized to 

classify the risk levels of the failure modes as low, medium, and high. The risk levels are indicators 

that determine the criticality of material attributes and process parameters. RPN is the most 

commonly used technique in the food and pharmaceutical industry, while an alternative, called 

military standard method, is often used by the Department of Defense to rank potential failure 

modes in the defense, aerospace, and nuclear power generation industries. The military standard 

method uses similar principles (occurrence, severity) to RPN and includes an operating time index 

to reflect the time dependence of failure modes for complex systems.75 

The preliminary risk assessment on the formulation, material, and process variables helps 

design an appropriate experimental plan to gain product and process understanding and ultimately 

to establish the design space. With the assistance of risk assessment, the QbD approach utilizes 
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the design of experiments in multiple stages during the product development to screen, identify 

and control the source of variability in materials and process. As the experimental plan progresses, 

the collected information forms the basis to re-evaluate the risk level assignment. The risk level of 

each identified failure mode can be reduced with the implementation of an appropriate control 

strategy, and the misclassified criticality of variables should be corrected based on the knowledge 

gained from experimental data.  

 

1.3.2.3 Statistical Design of Experiments 

Relationship between independent variables, i.e., material, formulation, or process factors, and 

the responses, i.e., process outcomes or quality attributes, can be deduced using statistical design 

of experiments (DoE). The design of experiments helps determine the most influential factors and 

the operational ranges of those factors to minimize the variability in product quality. The objectives 

of performing DoE include screening, process understanding, interaction, process optimization, 

and design space establishment. Due to the formulation complexity of multiparticulate extended-

release dosage forms, the design of experiments can help decide on the selection of excipients and 

mass fractions based on the identified material attributes in the early stage. With a carefully 

designed experimental plan, the critical formulation attributes can be studied in parallel with the 

process conditions. This improves the overall robustness of the product formulation and 

manufacturing process by designing experiments.76 However, it is often infeasible to study all 

material attributes and process parameters simultaneously. The developers are often required to 

sequentially conduct a series of experimental designs to apply the information gained from one set 

of experiments to subsequent experiments. Time and resources are saved by conducting small sets 

of experiments and building up a conclusion. 
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The most adapted statistical designs of experiments are factorial design (full or fractional) and 

response surface methodologies. Often, an extensive list of variables needs to be screened in the 

early stages of product development to evaluate their criticalities. The full factorial design, which 

tries all possible combinations to separate the main effects and two-factor interactions, generates 

a massive number of experiments. For instance, a two-level-six-factor full factorial design with 6 

replicated center points requires 26 + 6 = 70 runs. Replicates of the center point are essential for 

assessing curvature effect, range of linearity, experimental uncertainty, and lack of fit of the DoE 

results. Every increase in the factorial number doubles the total number of experiments. The full 

factorial design becomes inapplicable with large factorial numbers and limited resources. Using a 

fraction of the full factorial design is a more feasible and cost-effective approach in this scenario. 

The fractional factorial design lowers the resolution to reduce the number of experiments but 

causes confounding between certain interaction effects and main effects. There are multiple types 

of resolutions for the fractional factorial design that can be adapted depending on the expected 

outcome, i.e., whether the two-factor interaction needs to be independently evaluated. Another 

design approach that is commonly applied is Plackett and Burman design.77 This design uses a 

different algorithm from the factorial design to fractionalize the experiments to allow the total runs 

to be further reduced. The drawback is the decreased resolution whereby the effects of main factors 

are aliased with two-factor interactions. The confounding effect can result in difficulty for 

decision-making for further investigation.  

Screening studies identify the critical material attributes and process parameters, which are then 

subjected to the response surface methodology for process optimization. Orthogonality and 

rotatability must be achieved to build a proper response surface design. A circumscribed central 

composite design (CCCD) is an excellent example to reveal the principle of response surface 
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methodology. In a CCCD, a two-level full factorial design serves as the basis, while star points 

and center points are added to complete the design. The star points are defined as the points having 

equal distance to the distance of full factorial design points from the center point. In such a way, 

all factors are evaluated at five different levels to map the response surface while conducting a 

relatively small amount of experiments. For all types of statistical design, analysis of variance 

(ANOVA) and least squares regression are the primary methods to understand experimental data. 

Thus, it is always prudent to evaluate the power of the design of experiments (e.g., the change in 

the response over the experimental error) and to make sure that an adequate number of experiments 

are designed to achieve a minimum 80% chance to reveal a change in response at 95% confidence 

level. Other attributes to be considered are the uncertainty of estimated coefficient, multi-

collinearity, the leverages of the design points, and the minimum degree of freedom to assess the 

lack of fit and protect the pure error. 

 

1.3.2.4 Design Space  

Design space, by the definition of ICH Q8 (R2), is “the multidimensional combination and 

interaction of input variables (e.g., material attributes) and process parameters that have been 

demonstrated to provide assurance of quality.”11 Process adjustment within the design space is not 

considered a change and is not required to notify regulatory bodies. While moving out of the design 

space usually initiates a post-approval change process. Design space is the direct outcome of 

process development that defines the acceptable ranges of process parameters. However, design 

space is based on a statistical analysis of DoE data for the process, which means operating within 

the acceptable range does not lead to desired product quality with a 100% chance.  
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Process robustness enables a process to deliver acceptable drug product quality and 

performance while tolerating variability in the material when operated within predefined ranges.78 

A pharmaceutical company must demonstrate the robustness of the manufacturing process to yield 

a consistent quality product. For scientists, the approach to establish a robust design space is via a 

process model and related statistics based on product and process understanding. A process model 

is often developed from a response surface design and can be expressed in the form of a quadratic 

function: 

𝑌𝑌 = �𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖 
𝑛𝑛

𝑖𝑖=1

+ � 𝛽𝛽𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1,𝑖𝑖=1

+ 𝛽𝛽0 + ε   Eq. 1.2 

where Y is the response (CQA) of the product, 𝛽𝛽0 is the constant term, ∑ 𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖 𝑛𝑛
𝑖𝑖=1 is the linear 

combination of material attributes and process parameters, and � 𝛽𝛽𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖
𝑛𝑛
𝑖𝑖=1,𝑖𝑖=1  represents the sum 

of the quadratic and interaction terms. The uncertainty of the model parameters (𝛽𝛽0 , 𝛽𝛽𝑖𝑖, 𝛽𝛽𝑖𝑖𝑖𝑖) and 

the error term ε are the keys to define a statistic tolerance interval that ensures a level of confidence 

(say 95%) that a target proportion (say 99%) of batches meets the specification. The calculation of 

the confidence level is based on the model uncertainty, while the proportion of batches depends 

on the intrinsic variability of the material and manufacturing process. Thus, the more demanding 

the confidence or the requirement for the nearer to 100% successful batch, the smaller the design 

space becomes. A proper control strategy for the known variabilities (e.g., environmental 

disturbance, material variability) needs to be implemented to reduce the process uncertainty and 

allow for a feasible operational condition. It should be noted that design space is scale and 

equipment-dependent. Mechanistic process models based on first principles are preferred as they 

are more often justifiable when adapting a lab-scale design space to the commercial scale. 
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The model response in one process model may become a model input for the other process 

models. Pharmaceutical products are often manufactured by a train of unit operations. For instance, 

the production of the extended-release granules involves high shear wet granulation, drying, fluid 

bed coating, and the second drying. In this case, the intermediate product of the first unit operation 

(wet granulation) becomes the input material of the subsequent unit operation. The CQAs 

determined in the early unit operation become CMAs in the following unit operations and can be 

used as inputs for the process model of the subsequent unit operation.  

 

1.3.2.5 Control strategy 

A control strategy is a plan of controls for the attributes of the incoming material, intermediate 

product, process parameters, in-process controllers, and final product. In the scope of quality by 

design, the control strategy aims at reducing the risks associated with the drug product and the 

manufacturing process. The control strategy should be established based on the understanding of 

product, formulation, and process. It includes but is not limited to79 

1. control of material attributes, 

2. product specification, 

3. control of process parameters for unit operations, 

4. in-process monitoring and real-time release testing, and 

5. continual process improvement. 

A good control strategy enables real-time release testing (RTRT), which falls within the scope 

of QbD. The RTRT models can assess the quality of the in-process and final product during 

manufacturing using the real-time measure of material and process information, which reduced the 

turn-around time required from the traditional release testing.80, 81 Process analytical technology 
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tools like near-infrared spectroscopy, Raman spectroscopy, and acoustic signaling can be utilized 

to develop an in-process control strategy that can help to develop a real-time release testing 

model.82-86  It should be noted that adaption of PAT is not the only way to implement real-time 

monitoring. Predictive models built on traditional material characterization and real-time 

measurements of process parameters are used as soft sensors. 

When the source and impact of variability are well understood, the knowledge can be utilized 

to constrain the attributes of material from upstream or change the process parameters for 

downstream in a feedforward manner. From the engineering perspective, the process capability, 

which is a measure of the inherent variability in an established process relevant to the acceptance 

criteria, can be improved by using feedforward controllers to monitor the disturbances and enable 

adjustment to the process as required during manufacturing to assure the target process conditions 

are met.  

 

1.3.3 Control Tools 

1.3.3.1 Real-Time Predictive Model for in vitro dissolution 

The fluid bed coating process applies the aqueous insoluble polymer onto the surface of the 

drug-loaded core to achieve desired product release profile. Due to the cost, time, and need for 

human subjects for in vivo drug release tests, the in vitro dissolution test is commonly used as a 

surrogate to predict in vivo behavior of traditional oral solid dosage form.87 The conventional 

method of a dissolution test for an extended-release dosage form is laborious and time-consuming. 

It often delays the batch release and provides no benefit for the improvement of batch quality.88 

Predictive dissolution modeling is an emerging methodology defined as the ability to 

mathematically generate a time profile of the dissolved fraction of an API using information 
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including material properties, dissolution method conditions, formulation, and process parameters. 

The in vitro dissolution modeling in the pharmaceutical industry is mainly used for formulation 

and process development. Dissolution modeling can help screen the best plausible formulation for 

robust operational design space and patient performance. Dissolution prediction enables a fast 

comparison between candidates of excipients, which speeds formulation development. For real-

time release testing (RTRT),89 the model uses process understanding and real-time data to predict 

in vitro dissolution in continuous or traditional batch process manufacturing.90 It can minimize or 

eliminate destructive dissolution testing and speed product release. In addition to the applications 

for product understanding and RTRT, dissolution models can work as surrogates for real-time 

monitoring, which initiates feedback and feedforward mechanisms to improve drug product 

consistency. However, despite the importance of dissolution modeling in product and process 

development, few literature reports show examples of dissolution models in a quality control 

environment and even fewer in RTRT situations.  

In the development of predictive dissolution models, both empirical and first principle-based 

approaches can be employed for various intentions. The first principle-based approaches for 

dissolution modeling can be traced back to Arthur Noyes and Willis Whitney’s work in 1897.91 It 

described dissolution as a first-order rate process depending on the API solubility and a rate 

parameter. The process can be further reduced to a zero-order rate if sink conditions are assumed, 

and the dissolution rate parameters are often modified to match the experimental data.92 The first 

principle-based dissolution modeling is usually encouraged in drug product development. The 

dissolution model can be developed from mechanistic models using dissolution contributing 

parameters (e.g., solubility, pKa, average particle size) before a lab dissolution test is performed. 

It guides dosage and formulation development without conducting frequent dissolution testing.89  
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Empirical approaches for dissolution modeling are typically data-driven methods employing 

statistical inferences. Empirical models are generally developed with an intention for real-time 

release and quality control. A successful empirical model is heavily dependent on the process and 

product understanding, and as feedback, it can support product and process development. During 

the formulation and process optimization, it is a common practice to use response surface 

methodology for process modeling. Multi-linear functions are often utilized to describe the 

processes, and the desired dissolution profiles can be achieved based on those functions for both 

intermediate and modified release products. For a complex process like fluid bed coating involving 

multiple interactions, it is imperative to study the raw material characteristics in conjunction with 

the process parameters. With appropriate statistical treatment, the models can also utilize spectral 

data from noninvasive analytical tools as additional information to obtain a precise and accurate 

prediction.93 

 

1.3.3.2 Process Analytical Technology 

As part of the QbD paradigm, process analytical technology (PAT) is often utilized to help 

establish control strategies for both upstream and downstream manufacturing processes. In a basic 

control scheme, PAT provides continuous monitoring of CPPS, CMAs, or CQAs to demonstrate 

that the process is maintained in the design space and detects failure online or in-line. In addition, 

PAT detects the variability in the input materials in an advanced control system and enables timely 

adjustment of the process parameters to compensate for any adverse impact on the drug product 

quality. In this dissertation, two spectroscopic techniques are utilized: 1) in-line monitoring of loss 

on drying and coating weight gain using near-infrared spectroscopy, and 2) at-line monitoring of 
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API solid-state form (transition between theophylline anhydrous and monohydrate) using Raman 

spectroscopy.  

Near-infrared Spectroscopy   

As a rapid and non-destructive technology, near-infrared spectroscopy (NIRS) has been used 

for real-time monitoring of coating weight gain/film thickness for decades.94-97 Most of the active 

pharmaceutical ingredients have IR-sensitive bonds, such as O-H, C=O, C-H, etc. Asymmetrical 

molecular vibration, stretching, and rotation lead to IR absorption. The NIR region, 800 – 2500 

nm, represents information from overtones and combinations of the fundamental molecular 

vibrations.98 The difference in the chemical composition of the coating film and the core substance 

allows the change of NIR incident radiation to be detected during the coating process. The peaks 

of the film increase, and the peaks of the core decrease on the reflectance spectra during the film 

deposition onto the core surface.99 

Despite the advantages that NIR brings to coating monitoring, the broad and overlapping peaks 

are difficult to resolve. Scattering effects of physical variations such as density, particle size, and 

particle motion complicate the data analysis. Therefore, NIR was not adopted until the data 

treatment methods were developed and modern computational power was advanced. Qualitative 

and quantitative analyses such as principal component analysis (PCA), partial least squares 

regression (PLS), and support vector machine (SVM) became available to extract relevant 

information from the NIR data.  

The first application of NIR spectroscopy for pharmaceutical coating was reported by Kirsch et 

al.100 The authors utilized an at-line diffuse reflectance NIR spectrometer to monitor the film 

thickness of a tablet-coating process. A quantitative model was built on the correlation (R2 = 0.90) 

between the NIR signal and the coating thickness.  The NIR spectral increase was found in the 
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wavelength region of 1750-1850 nm, corresponding to the coating thickness. On the contrary, the 

1500-1650 and 1950-2250 nm regions, which were related to the tablet core, showed decreasing 

trends of absorbance.  

Andersson et al.99 reported the first NIR in-line application for the pharmaceutical particle 

coating process in a fluid bed. This group mounted a fiber-optic probe at the sapphire window of 

the fluid bed to collect data every 0.25 seconds. The in-line collected NIR spectra required data 

filtration and smoothing to minimize the undesired signal caused by the particle motion. In the 

work of Andersson, eleven coating batches were conducted to capture the inter-batch variability 

to advance the model robustness to ensure the model accuracy in future batches. Bogomolov et 

al.101 reported similar works using in-line NIR data for model calibration and test in a pilot-scale 

fluid bed coating process for pharmaceutical particles. The calibrated NIR model successfully 

predicted the coating thickness of the test batch. The successful in-line applications indicate that 

the NIR spectroscopy is suitable for coating monitoring but requires proper calibration and data 

treatment to build a robust predictive model. 

 

Raman spectroscopy  

Raman spectroscopy is one of the widely used techniques for detecting solid-state 

transformation.102 In the application of Raman spectroscopy, a monochromatic laser interacts with 

molecular vibration, phonos, and other excitations in the sample, resulting in the energy change of 

the laser photons.103 The energy change causes a frequency shift of the incident light and shows 

on a Raman spectrum. Molecules in crystal material are arranged in a repetitive structure, and the 

vibrational change of the long-range ordered structure is Raman sensitive. Comparing to NIR 

techniques, Raman spectra are usually less complicated and present well-resolved peaks. The 
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Raman data interpretation is, therefore, more straightforward and requires less chemometric 

analysis than NIR.  

The application of Raman spectroscopy to detect solid-state transformation has been increasing 

in the past decades. Taylor et al.104 reported a successful off-line application of Fourier transform 

(FT)-Raman spectroscopy to probe the solid-state form of active substances present in tablets and 

capsules containing enalapril maleate, prednisolone, Form I and Form II polymorphs of ranitidine, 

anhydrous and monohydrate theophylline, and warfarin sodium clathrate. Their work showed that 

Raman spectroscopy was a useful tool to determine the presence of different drug solid-state forms 

in intact tablets qualitatively.  

Wikström et al.105 utilized Raman spectroscopy for the in-line monitoring of process-induced 

hydrate formation. The Raman spectroscopy was successfully used to monitor the transformation 

of theophylline anhydrous to theophylline monohydrate during high-shear wet granulation. 

Raman spectroscopy is insensitive to water, making it attractive for pharmaceutical applications 

involving hydrate from characterization. The work of Wikström showed that Raman spectroscopy 

monitored the transformation kinetics of theophylline during the wet granulation, while NIR 

spectroscopy had strongly interfered with the presence of water. However, using a high-intensity 

laser can induce sample heating during Raman spectral scanning, potentially degrading the sample 

or converting the drug crystal to another solid-state form. The Raman heating effect on compressed 

theophylline monohydrate powder was studied by Johansson et al.106  that the extent of heating 

depended on both the compactness of the powder and the laser power. Raman signal can be 

influenced by fluorescence which leads to a shape change of the entire Raman spectrum. A robust 

experimental design with proper data pretreatment is necessary for robust calibration development 

in such a situation. 

https://pubmed.ncbi.nlm.nih.gov/?term=Wikstr%C3%B6m+H&cauthor_id=15761944
https://pubmed.ncbi.nlm.nih.gov/?term=Wikstr%C3%B6m+H&cauthor_id=15761944
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1.3.3.3 Feedforward Control  

Feedforward control measures the input variability and proactively adjusts the manipulated 

parameters before the process output changes.107 The drug product quality is influenced by 

complex effects from monitored variables (e.g., material attribute, environmental disturbances, or 

equipment drift) and manipulatable process parameters. Feedforward control provides an 

opportunity to account for the complex effects simultaneously and fulfills the requirements of 

control strategy in pharmaceutical product development (ICH Q8): “…the control of the process 

such that the variability (e.g., of raw materials) can be compensated for in an adaptable manner to 

deliver consistent product quality.”108 The implementation of feedforward controllers falls along 

a spectrum of complexity. A simple feedforward controller detects the disturbance and gates the 

products to the waste,109 while advanced feedforward controllers involve multivariate regression 

and global searching algorithms.12, 13 Most publications discussed the simple or advanced 

feedforward control algorithms, but a few works were on when and how to apply feedforward 

control, especially in pharmaceutical manufacturing.  

Igne et al.2 demonstrated an approach that adapted the design space to raw material variability, 

equipment aging, and environmental changes in a feedforward manner. The feedforward 

component enabled a flexible manufacturing paradigm where the input materials could be less 

tightly constrained. Close et al.110 provided an example of adaptive design space in the 

chromatographic purification process using a first-principle model combined with stochastic 

simulation methods.  

Within the scope of QbD, the combined feedforward-feedback control system is often designed 

using a two-layer structure (Figure 1-5). The stabilizing layer stabilizes process variables at the 
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setpoints. A fast and straightforward feedback control loop, such as proportional-differential-

integral controller (PID)17 and fuzzy controller111, is preferred at this layer. The optimizing control 

layer works in a feedforward manner10, 12, 13 for the satisfaction of product CQAs. The key to 

building a successful feedforward controller is to gain adequate process and product understanding 

and identify sources of variability. Understanding sources of variability and their impact on the 

downstream process, in-process materials, and drug products provide the basis for process 

modeling, which allows us to predict the behavior of a manufacturing process and final product 

quality.  

 

Figure 1-5: The cascade structure of a combined feedforward/feedback control, including an 
optimizing control layer and a stabilizing control layer.  

 

The first attempt of developing the structured feedforward control strategy in the 

pharmaceutical industrial application was presented by Westerhuis et al. for a two-step batch 

process in 1997.15 The powder mixture was granulated using wet granulation in the first step and 

the granules were compressed into tablets in the second step. An in-process control scheme was 

proposed to monitor the granule properties and adjust the compression settings of the process 

variables accordingly. The feedforward controller was built on the correlations between the CQAs 

and the process variables, the formulation variables of the powder blend, and the physical 

properties of the intermediate granules. Partial least squares regression (PLS) algorithm was 
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applied to overcome the overfitting problem caused by the collinearity of granule properties. 

Compared with ordinary least squares (OLS), the PLS regression had the advantage of reducing 

the high dimensionality space of the total variables into a lower dimensionality subspace of PLS 

components, called latent variables. Therefore, the value of the degrees of freedom required to 

estimate the model parameters was small enough that a limited number of experiments was 

sufficient.13, 14 In the literature example (Figure 1-6), Batch B had a smaller mean granule size, 

higher bulk/tapped volumes than Batch A, although they were manufactured using the same 

settings of process parameters. The result revealed crushing strength and disintegration time of 

tablets from batch B were higher than the tablets from Batch A at the same moisture level and 

compression force. Therefore, a feedforward controller was developed to accommodate the 

impacts by adjusting the setting values of compression process parameters based on granule 

properties. The feedforward control scheme was built by constructing a contour plot including two 

variables: compression force and % moisture, to reflect the level of critical responses for each 

granulation batch. Near-infrared spectroscopy was used for real-time data collection in a similar 

study by the same authors.112 The NIR spectra were subjected to a principal component analysis 

(PCA) and the scores of principal components of NIR were used instead of the physical (particle 

size) and physicochemical (API solid-state form) material attributes for the feedforward model 

calibration and implementation. The employment of NIR reduced the time, labor, and cost 

associated with material characterization but demonstrated similar model performance and control 

capability.  
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Figure 1-6：Contour plot of the control scheme for two batches of granules: A and B. Predictions 
for the ejection force (dashed line, unit: N), crushing force (stars, unit: N), and disintegration time 
(solid line, unit: s) are given for different setpoints of compression force (kN) and moisture in the 
granules (%). The plots are adapted from reference 15, permission granted. 

 

Westerhuis’s method relied on the contour plots for all critical responses, which required 

information from an extensive database of manufactured batches and intensive computational 

power. There was no optimization algorithm involved in the control application. The operators 

manually adjusted the parameter settings based on information from the contour plots and their 

prior experience, which introduced human error and undermined the control performance. Muteki 

et al. extended the work of Westerhuis12, 13, 113 by integrating a sequential quadratic programming 

function to solve for the set values of process parameters, shown as Figure 1-7. The feedforward 

controller was applied on a blending – roller compaction – milling – compression manufacturing 

chain.13 Four raw material attributes and six process parameters were evaluated in 11 experimental 

runs. PLS-2 regression models were independently established to correlate process parameters and 

material attributes with three tablet attributes: hardness profile, dissolution profile, and 

disintegration time (Array Y). The six process parameters (Array Z) and the material attributes 
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(Array X) of three excipients were arrayed in one matrix, experimental batches being rows and 

variables being columns. When implementing the controller, sequential quadratic programming 

was applied to solve the process parameters (Array Z).  

 

Figure 1-7：The structure of the feedforward controller. 𝑦𝑦𝑑𝑑𝑑𝑑𝑑𝑑: desired product quality profile, 
 𝑦𝑦�𝑃𝑃𝑃𝑃𝑃𝑃: model predicted quality profile, W: weight matrix, M: number of batches, K: number of raw 
material attributes, J: number of process parameters, and L: number of final tablet attributes, 
adapted and modified from reference 13, permission granted. 

 

The optimization criterion was to minimize the difference between the PLS-2 model predicted 

and the target product attribute. The weight matrix W assigned different weights to the quality 

attributes based on their criticality. The model performance was examined by simulation, 

indicating a significant improvement in reducing the product failure. This approach offered several 

advantages over Westerhuis’s method:  

(1) it provided the specific solution of process parameters for a given raw material, 

(2) it allowed for the simulation of the process to assess the impact of raw material and process 

variable on product quality to form an operating space,  

(3) it provided information for setting meaningful specifications in incoming materials and in 

assessing excipients from new sources. 
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The models provided additional benefits in detecting changes in excipient characteristics over 

time and tracking the impact on product quality. However, there were certain limitations of this 

method, including  

(1) the control performance heavily relied on the accuracy of the process model, and the 

feedback component cannot always mitigate the impact of uncertainty, 

(2) the regression method modeled the responses separately and ignored the inherent correlation 

between the quality attributes, and 

(3) the model development consumed substantial resources (material, time, and labor), and the 

controller was specific to one system and difficult to transfer between plants or across scales.  

In his most recent study, Muteki et al. integrated near-infrared spectroscopy into the control 

system to improve the model accuracy and robustness. In the same publication, the researchers 

also demonstrated the scale-up of the feedforward control for wet granulation.12 

Hattori et al.16 proposed a similar control system using another form of regression. Process 

parameters instead of quality attributes were used as dependent variables and regressed on the 

linear combination of material attributes, in-process measurements, and quality attributes. Instead 

of minimizing a cost function, the solution of this controller could be obtained by direct projection. 

This approach significantly decreased the required computational power and could always 

generate a solution. However, the process model was difficult to be interpreted, and no constraints 

were applied. The solution of manipulated variables sometimes fell outside the operating range.  

 

1.4 Summary 

This dissertation aims to demonstrate a control strategy, including feedforward and feedback 

components, to reduce product batch-to-batch variability and grant flexibility based on incoming 
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materials. A systematic QbD approach is essential to establish a clinically relevant specification 

and design a robust formulation and manufacturing process. The QbD approach includes several 

key steps: establishing QTPP, product and process understanding, and developing control 

strategies. In this work, an extended-release multiparticulate oral dosage form was used as an 

example product, and the top-spray fluid bed aqueous coating was applied as the manufacturing 

process to produce such product. A series of tools, including risk assessment, DoE, PAT, and 

process models, is available to develop product and process understanding. A comprehensive 

control strategy that adjusts process parameters to compensate for undesired effects caused by 

material variability can be established at the final stage of the process development. The control 

strategy should be adaptable for newly discovered material attribute change, and the design space 

should be continually modified to those changes. Incorporating feedforward controllers in the 

control strategy allows the process to be robust against known material variability and 

environmental disturbance. Feedforward control is also a solution to adapt the design space to 

newly discovered measurable variabilities.  
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Chapter 2 : A Systematic Approach of Employing Quality by Design 

Principles: Risk Assessment and Screening Design to Demonstrate Process 

Understanding for Fluid Bed Coating of Theophylline Loaded Granules 

 

Abstract 

The objective of this study was to utilize risk assessment tools and statistical design of 

experiments (DoE) to identify critical formulation variables and process parameters for the 

manufacture of the extended-release granules using a top-spray fluid bed process. The formulation 

of the coating dispersion was determined based on literature research and a one-factor-at-a-time 

study. The effect of formulation factors, including plasticizer concentration and total solid/liquid 

ratio, was evaluated. Material attributes and process parameters were systematically assessed using 

failure mode and effect analysis (FMEA). The high-risk process parameters were further explored 

using a fractional factorial design to understand the fluid bed coating process and identify the 

critical process parameters (CPP) that significantly impact the quality of the final drug product. 

Inlet air relative humidity, product temperature, fluidization air volume, atomization pressure, and 

theoretical coating weight gain were studied in the DoE at a constant spray rate. The responses of 

the study were agglomeration, in-process loss on drying, and coating deposition rate. A study on 

film curing was followed in which curing time, temperature, and relative humidity were varied, 

and their impacts on in vitro dissolution and API solid-state form were investigated. The study 

demonstrated the application of risk assessment and DoE in identifying critical formulation and 

process variables of the fluid bed coating process.  

 



42 
 

2.1 Introduction 

To successfully design a multiparticulate extended-release dosage form, the product and 

process developers must carefully consider three aspects: 1) coating formulation, 2) 

physicochemical properties of both the dosage form and the drug, and 3) process conditions. An 

aqueous coating formulation often includes a pseudolatex polymer as the base. The addition of 

plasticizers can enhance the flexibility of the film and facilitate polymer sphere coalescence. Anti-

adherents are sometimes required to prevent agglomeration during the coating process and storage. 

Surfactants are often added into commercially available polymer dispersions to stabilize the 

polymer dispersion and promote the spreading of the atomized droplets on the substrate surface. 

Dyes or pigments, as process indicators, can facilitate the in-process visual monitoring of the 

experiments. The formulation variables were subjected to risk assessment and then studied using 

a DoE. 

Top-spray fluid bed coating has advantages of large capacity, relative simplicity, and low 

capital cost.114 Despite being used and developed for decades, fluid bed coating is a complicated 

process since many operating parameters can impact the coating quality. In practice, the fluid bed 

is operated at high fluidization air velocity to obtain adequate heat and mass transfer rate, high 

particle mixing rate, and bed expansion. The drug-loaded core should be strong enough to 

withstand fragmentation and attrition during fluidization. The drug itself must be stable to the 

elevated coating temperatures and the moisture challenge of aqueous film coating. The evaporation 

rate of the solvent is determined by the temperature, air velocity, and inlet air humidity. The 

coating process needs careful optimization since a high evaporation rate may cause undesired 

product attributes, such as cracks of coating layer115 and the fissure of core particles.116 
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In contrast, low evaporation capability may lead to agglomeration of coated particles, and the 

bed of fluidized particles may be collapsed.117 Coating efficiency is another challenge since the 

coating dispersion is sprayed in the counter direction to the fluidization air, resulting in losing 

coating droplets due to premature droplet evaporation or being carried over to the filter surface. 

Low coating efficiency leads to prolonged coating time, which costs time and resources and 

increases the risks of nozzle and filter failure. In addition to fluidization air, coating efficiency can 

be impacted by the interaction between atomization air pressure and spray rate, affecting the size 

and distribution of the coating droplets. It may alter the collision probability between droplets and 

core particles and may influence the spreading of the liquid on the particle surface, leading to 

variation in coating uniformity and ultimately change dissolution behavior.118 

This chapter was to fulfill Specific Aim 1, defining TQPP, understanding the product and 

process, and identifying CPPs. A screening study utilized a full factorial design to investigate the 

impact of four factors, product temperature, air volume, atomization air pressure, and inlet air 

relative humidity, on process stability and efficiency. Theophylline anhydrous was the model drug, 

and the drug-loaded granules were prepared via high shear wet granulation. The film-coated 

products were subjected to a curing study. The effects of curing conditions and time on in vitro 

dissolution were investigated. 

 

2.2 Materials and Methods 

2.2.1 Materials and Coating Equipment 

The theophylline-loaded granules (granule size range 355 – 710 µm) were obtained from 

Purdue University, West Lafayette, IN. The polyvinyl acetate aqueous polymer dispersion 

(Kollicoat SR 30D), lot nos 57675147G0/58378447G0, were obtained from BASF, Ludwigshafen, 
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Germany. Triethyl citrate 99% (TEC), used as a hydrophilic plasticizer, lot no. C09Y001 was 

obtained from Alfa Aesar, Ward Hill, WA. Talc, USP Grade, used as an anti-tacking agent, lot no. 

iEF0433 was obtained from Spectrum, New Brunswick, NJ. The FD&C blue 1 lake, lot no. A992, 

obtained from Warner Jenkison Company, St Louis, MO, was used as a color marker to monitor 

the progress of the coating process. All reagents utilized for assay and dissolution testing were 

HPLC grade. 

A 7-liter top-spray fluid bed processor (Minilab, Diosna Dierks & Söhne GmbH, Osnabruck, 

Germany) was used for granular coating. The processor was coupled with an EGE-Electronik 

series LN/LG airflow sensor (Spezial-Sensoren GmbH, Gettorf, Germany) and two 

temperature/humidity transmitters (series RHL, Dwyer Instruments Inc., Michigan City, IN). The 

coating suspension was delivered into the system by a peristaltic pump (Series 120U, Watson-

Marlow Inc., Wilmington, MA), and the weight change was monitored using a lab-scale precision 

balance (Mettler Toledo PL602E, Columbus, OH). The coating process was controlled by an 

integrated system where an open platform communication system (DeltaV V9.7, Emerson, MO) 

received analog signal and delivered digital tags to a real-time data management system (SynTQ 

V3.5, Optimal, UK) for control implementation.  

 

2.2.2 Formulation Development Methods 

The granule core was produced at Purdue University using high shear wet granulation, 

comprised of 60% w/w theophylline anhydrous, 18.5% w/w microcrystalline cellulose, 19.5% w/w 

lactose monohydrate, and 2% w/w hydroxypropyl methylcellulose. Theophylline is a BCS class I 

drug substance mainly used for the treatment of asthma. A few known anhydrous forms of 

theophylline include Form I, II, III, and IV, where Form IV was reported as the most 
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thermodynamically stable.119 Theophylline also exists as a crystalline monohydrate. Conditions 

that introduce an aqueous solvent can promote pseudo-polymorphic change. The hydration and 

dehydration of theophylline are reversible, i.e., the critical relative humidity (RH) for hydration 

was found to be at ca. 79%, while the critical RH for dehydration was ca. 30%.120 The dehydration 

kinetics of theophylline monohydrate was investigated in several studies.119, 121, 122 The most recent 

study revealed the dehydration occurred in two steps: (1) the monohydrate form transited to the 

metastable anhydrate (Form III) after losing water, and (2) the metastable polymorph (Form III) 

converted to the more stable form (Form II) during storage.123 The aqueous solubility of 

theophylline monohydrate increases with a pH decrease, shown in Table 2-1. The solubility of the 

anhydrous Form II  is not readily measurable, but it can be approximated by comparing its initial 

dissolution rate (5 folds higher) to the monohydrate form.124 

Table 2-1: Solubility of theophylline monohydrate at different pH values, data adapted from ref. 
125 

pH Solubility (mg/mL) 
7.4 6.92 
5.5 7.03 
4.3 7.76 
3.5 9.48 

 

The coating film formulation was designed based on process requirements and a literature 

survey.126-128 Polyvinyl acetate (PVAc) was the coating polymer, triethyl citrate (TEC) was the 

plasticizer, and talc was the anti-tacking agent. A proper parameter to consider in evaluating 

various polymers was the minimum film forming temperature (MFFT). Literature suggests that 

during manufacturing, the process temperature needs to be at least 10 °C above the MFFT to 

achieve good film quality.129 Polyvinyl acetate provided the process advantage that the low MFFT 

(18 °C without plasticizer) of PVAc allowed for a flexible coating temperature and had no 
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requirement for further thermal treatment (curing).128, 130 Polyvinyl acetate was an atactic, non-

crystalline, thermoplastic, and water-insoluble polymer synthesized from the corresponding vinyl 

acetate monomers. The acetate groups were not ionizable, resulting in a pH-independent film 

coating.131 Kollicoat SR 30D was a commercial PVAc product stabilized with 9% povidone and 

1% sodium lauryl sulfate. PVAc formed the aqueous insoluble barrier, while povidone worked as 

a pore-forming agent. The lot-to-lot variability of the polymer dispersion, regarding agglomeration 

(<0.5%), residual monomers (<100 ppm), density (1.045 – 1.065 g/cm3), and acetic acid (<15000 

ppm), was listed in the safety data sheet. In house testing indicated the solid content ranged from 

28.5-31.5 g/100g, and the apparent viscosity of the received ranged from 50-60 mPa. PVAc films 

tend to swell when contacting with the aqueous medium and gradually close the aqueous 

channels.128 Triethyl citrate (TEC) was employed as the plasticizer. As an aqueous soluble 

plasticizer, TEC can migrate from the coating to the medium during dissolution testing, function 

as an additional pore forming agent and increasing the drug release rate.132 As a result of low 

MFFT, the polymer coating film can be sticky, and the addition of an anti-tacking agent is often 

necessary. The commonly used anti-tacking agent, talc, was selected. Blue lake (0.15% w/w of the 

total weight of polymer dispersion) was also added into the formulation as a process indicator. 

With the excipient determined, an initial risk assessment was performed to evaluate the coating 

formulation and material attributes to direct further experimental investigation. 

 

2.2.2.1 Initial Risk Assessment Methods 

An initial risk assessment of the drug substance was performed to evaluate the impact of each 

attribute (e.g., solid-state form, particle size, solubility, impurities, and chemical stability) on the 

drug product CQAs. Failure mode effect analysis (FMEA) was employed to perform the risk 
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assessment. A team of experts in regulation, pre-formulation, formulation, and manufacturing 

initiated the assessment with brainstorming and identified a list of failure modes. The author of the 

dissertation was one of the team members and independently assigned the scores of severity, 

occurrence, and chance of detection to the failure modes. The severity was assessed with the 

assumption that the failure occurred and impacted the final products. Since this study aimed to 

demonstrate the process development, the severity was scored on a scale of 1 - 5 as follows: 

1. has no appreciable consequences to quality (root cause is well understood) 

2. batch loss 

3. batch loss and mild risk to the patient 

4. between 3 and 5 

5. batch loss and severe (potentially lethal) risk to the patient 

The occurrence is the numerical presentation of the likelihood that the cause of the failure mode 

will occur during the product lifecycle. The initial risk assessment assumed proper control strategy 

was not established to reduce the likelihood. The criteria of assigning the occurrence scores were 

as follows: 

1. failure is very unlikely to occur 

2. relatively few failures 

3. occasional failures 

4. repeated failures 

5. failure is almost inevitable 

The chance of detection is the probability of detecting the outcome or the cause of a failure 

mode, assuming the failure already occurs but DoEs not impact any patient yet. The criteria to 

assign values of detection were tailored in the following list: 
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1. the failure and its subsequence are almost certainly detected 

2. high chance to detect the cause or impact of the failure mode 

3. moderate chance to detect the cause or impact of the failure mode 

4. low chance to detect the cause or impact of the failure mode 

5. the cause or impact of the failure mode cannot be detected, or there is a system for detection. 

The risk priority number (RPN) was calculated from the product of the three parameters, and 

the relative risk of each drug substance attribute was ranked as high (RPN 60 -125), medium (RPN 

31-59), or low (RPN 0 -30). The high risk is unacceptable and warrants further investigation, 

whereas the low and medium risks are acceptable and require fewer studies. It should be noted that 

the RPN values are not absolute measurements. The threshold values were used as references, but 

we did not assess risk purely based on the RPN values. The high severity failure modes were 

considered more critical and given high priority in experimental investigation. 

 

2.2.2.2 Design of Experiments 

A preliminary study was performed to test the selected excipients. The coating dispersion 

composition, shown in Table 2-2, was determined based on the literature provided formulation.129 

The amounts of anti-tacking agent and plasticizer were set at 15% and 10% of the dry polymer, 

respectively. The coating dispersion was prepared by diluting the commercial polymer dispersion 

with water. Triethyl citrate was added with continuous stirring of a magnetic stirrer. Talc and Blue 

Lake were then added and mixed for six hours. Before coating, the dispersion was screened 

through a 180 μm screen. The formulation was evaluated using a coating process of a 400 g batch 

size. Initial process parameters were selected based on previous experience: spray rate at 6 g/min, 

product temperature range at 30 - 40 °C, atomization air pressure at 1.6 bar, and air volume at 30 



49 
 

m3/h. The granule size range was controlled at 500 -600 µm, and the environmental humidity range 

was 20% - 40% RH to exclude the interference of material and environmental disturbances. 

Samples were pulled at different theoretical polymer coating levels: 10%, 15%, 20%, 25%, and 

30%. The samples were dried until the LoD was less than 2% and evaluated for drug release by 

dissolution testing. The drug release profile was too fast at 10 and 15% theoretical polymer coating 

and too slow at 30% theocratical polymer coating. Further optimization focused on 20% - 25% 

coating level. The amount of talc (15% w/w) was found adequate to prevent sticking, and thus no 

further optimization was performed for talc. Water in the coating dispersion served as a solvent 

and evaporated during the film formation. It was expected to influence the coating process and 

further investigated.  The compatibility study of API and excipients was conducted wherein the 

coated granules (30% coating level) were stored at 50°C/75% RH conditions for 60 days. No 

significant decrease in API concentration was observed (significance level α = 0.05).  

The optimization study was performed using one-factor-at-a-time experiments. TEC 

concentration was evaluated at three levels: 5%, 10%, and 15% w/w of the dry film. With the 

optimal TEC concentration being determined, the solid content of the coating dispersion was 

studied at three levels: 12.9%, 18.9%, and 24.9% w/w. The coating weight gain level was targeting 

at 25% w/w. The responses studied were the percentage agglomeration and in vitro dissolution. 

The drug fractions released at specific time points were often taken to represent product dissolution 

behavior. However, the errors of drug fraction released at the sampling time points were often not 

homoscedastic.133-135 Instead, the time that 50% of the drug was released was the studied response 

in the statistical design of experiments. The center points were replicated for both studies to 

evaluate the pure error and lack of fit. The experimental results were analyzed using analysis of 
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covariance (ANCOVA) to eliminate the variance caused by the unwanted covariate - actual coating 

level.  

Table 2-2: Formulation of the coating dispersion at the center point. The commercial coating 
polymer dispersion consists of three components: 70% water, 27% PVAc, 2.7 % PVP, and 0.3 % 
SLS where the solid content is 30%. 

Coating Dispersion Formulation 

Component Function Levels （% w/w） 

Polyvinyl acetate (PVAc), 
Povidone (PVP), 
Sodium Lauryl Sulfate (SLS) 

 Commercial Coating Polymer 
50%  
(50% ×30% = ×15% in terms of 
solid content) 

Triethyl Citrate (TEC) Plasticizer 1.5% 

Talc Anti-tacking agent 2.25% 

Blue Lake Color agent 0.15% 

Total Solid Content  18.90% 
 

2.2.3 Process Development Methods 

The process development was conducted after the coating formulation was fixed. The entire 

manufacturing process included four steps: 1) sieving uncoated granules, 2) polymer coating, 3) 

curing, and 4) sieving coated granules. The process development mainly focused on polymer 

coating and curing. The first sieving was performed before the coating process to obtain desired 

sieve cut of the uncoated granules. Although fragmentation and attrition of the uncoated granules 

may occur due to the particle-particle collision, the drug assay and content uniformity of the 

uncoated granules were examined prior to coating. API losses (1-3% w/w) due to sieving were 

detected in all batches. Thus, the drug potency of uncoated and coated granules was closely 

monitored to reduce the risk of this procedure on assay and content uniformity. The second sieving 

step was performed on the coated granules to exclude agglomerates and fines generated during the 

coating process. There was a chance that the film coating may be damaged if excessive force was 
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used during sieving. Considering the high flexibility of PVAc polymer and the addition of a 

plasticizer, the expected occurrence rate of the film rupture was low.  

Coating 

The coating was performed using the fluid bed to deliver film onto the surface of the drug load 

granules via a 1 mm nozzle spray gun. An OPC-SynTQ control system controlled the process 

parameters, including fluidization air volume, inlet air temperature, and pump rotation speed. The 

fluctuation of fluidization air volume was within +/-0.5 m3/h deviation from the set point. The 

temperatures were controlled by turning on and off the heater so that the inlet air temperature 

variation was from -5 °C to +10 °C relative to the set point. However, the product temperature 

showed relatively consistency with +/- 0.7 °C standard deviations. The pump rotation speed 

(rpm/min) was calibrated to the spray rate (g/min). The natural fluctuation of the spray rate was 

lower than 0.1 g/min. Atomization air pressure was manually controlled by adjusting the air gauge 

on the fluid bed. The input variables, including material attributes (e.g., particle size distribution, 

fragmentation resistance, moisture level, granule assay, and content uniformity) and relative 

humidity, contribute interactively with the process parameters to the product quality. Those 

variables were evaluated on their effects using risk assessment and followed by a factorial design 

of experiments. 

Curing 

Although the vendor states that curing is not required for PVAc, scientific publications reported 

contradictory results,128, 136 Dashevsky et al.128 indicated that post coating thermal treatment was 

unnecessary because of the low minimum film formation temperature of Kollicoat SR 30D (18 °C). 

Instead, curing at an elevated temperature (60 °C) for 24 h caused ibuprofen diffusion into the 

polymer film due to the drug and polymer affinity, which increased drug release. In contrast, Shao 
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et al.136 coated highly aqueous soluble compound (diphenhydramine hydrochloride) loaded pellets 

with a polymer film using premixed formulations of Kollicoat SR 30D and three different 

plasticizers. They observed that, at the 40 °C/75% curing condition, the dissolution rate gradually 

decreased over time, and the type of plasticizer influenced the change of the dissolution rate. 

Therefore, a curing study was performed to evaluate the effect of thermal treatment on our product, 

the PVAc film coated theophylline granules. 

 

2.2.3.1 Initial Risk Assessment Methods 

The initial risk assessment of the overall manufacturing process was performed in two steps. 

An Ishikawa fishbone diagram (shown in Figure 2-1 in Section 2.3.2.1) was first applied to list 

potential parameters that can significantly impact the quality of the final drug product, including 

manufacturing operations, environmental conditions, input material, and analytical methods. The 

extensive initial list of potential parameters was subsequently narrowed upon performing failure 

modes and effects analysis. To assign risk level, a team of experts participated in a brainstorming 

to determine the scores of severity, occurrence, and detection. Risk priority numbers were then 

calculated and ranked to identify the parameters with high (RPN 60 -125), medium (RPN 31-59), 

or low (RPN 0 -30) risks. 

 

2.2.3.2 Design of Experiments 

Conducting DoEs to evaluate all material and process variables of the fluid bed coating process 

in one study is not feasible. In the formulation studies, the actual coating level showed a significant 

impact on the drug release of the coated granules. The desired dissolution profile was found at the 

theoretical coating level of 20% - 25% w/w. The actual weight gain varied based on the coating 
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deposition rate. Therefore, the high-risk variables, e.g., particle size distribution and spraying time, 

were investigated after the screening study when the coating process was better understood. Spray 

rate was a process parameter that could rapidly change the liquid input of the coating system. It 

was kept constant at 5 g/min in the screening study, and it was used as a feedback control input 

for in-process moisture levels in later studies (Details are described in Chapters 3 and 4).  

Following the initial risk assessment, the DoE studies were split into two stages to identify and 

optimize critical process parameters. 

1. a screening DoE study was conducted to assess the impact of process parameters on the 

batch loss. 

2. an optimization DoE study was conducted to explore the knowledge space and establish 

process models to facilitate the construction of control systems. 

In the screening study, a 2-level 4-factor Fractional factorial design was applied to evaluate the 

effects of three critical process parameters (identified from initial risk assessment) and one 

environmental variable. They were product temperature, atomization pressure, fluidization air 

volume, and inlet air relative humidity. The relative humidity was based upon the relatively 

consistent ambient temperature (20 -21 °C). The levels of the factors are shown in Table 2-3. The 

numerical values of the design levels were determined based on preliminary coating experiments, 

which demonstrated a successful coating run and allowed substantial changes in the experimental 

responses. This design aimed to verify the critical process parameters and understand their 

influence on the process and final drug product. The factors of the design were evaluated on main 

effect and interaction terms. The 24-1 fractional factorial design allowed us to gain the essential 

information from a reduced number of experiments. The resolution of the design was IV (I=1234). 

In this design, two-way interactions were confounded, e.g., the interaction of product temperature 
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and atomization pressure (12) was confounded with the interaction of air volume and relative 

humidity (34). The main factors were not confounded with other main factors or interaction terms. 

Six center points were produced to determine pure error (random batch-to-batch variability) and 

check for curvature effects. In total, 14 experimental runs were conducted: 8 design points and 6 

center points. The experimental runs were not randomized in time sequence because the variation 

of inlet air relative humidity came from the seasonal change. Hence, the relative humidity level 

was a range instead of one value. Responses studied were agglomeration, steady-state moisture 

level, and coating deposition rate. The data from the screening study were analyzed by ANOVA 

using JMP. The significance of each term was deduced using the F-test and p-values calculated 

from the total sum of squares, the sum of squares of error, and the sum of squares of model.  

Table 2-3: Fractional factorial design of the 24-1 coating process screening study. 

Relation I=1234 

Resolution IV 

Factor Number Variable Name Low (-1) Center (0) High (+1) 

1 Product Temperature (°C) 30 33 36 

2 Atomization pressure (bar) 1.4 1.6 1.8 

3 Inlet air Relative humidity (% RH) Low (20 – 30) Medium (40-50) High (70-80) 

4 Fluidization Air Volume (m3/h) 25 30 35 

 Spray Rate (g/min)  5 (5.5 rpm)  

 

A narrow particle size distribution of 350 – 500 μm sieve cuts was utilized to conduct all 

experiments. The starting batch size was 400 g for all coating experiments. The fluid bed was 

preheated to 30 °C before charging the granules. The coating spray was started after the granules 

were equilibrated to the desired product temperature (38 °C, requiring around 5 min). Atomization 

air pressure and fluidization air volume (based on design points) were fixed while the inlet air 
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temperature was adjusted during the spray rate ramp-up to maintain the target product temperature 

(based on design points). The spray pump speed ramped up from 2.5 rpm to 4 rpm, and then to 5.5 

rpm (approximately 3, 4, and 5 g/min spray rate) in 10 minutes and then was kept constant at 5.5 

rpm. Room temperature and inlet air relative humidity (RH) were monitored for all individual 

batches. The coating process was terminated at 22.5% w/w theoretical weight gain, and the batch 

was transferred to a tray to dry at 35 °C for 48 h. The actual weight gain of every batch was 

measured, and the data were used to calculate the coating deposition rate. 

One of the six center batches of the film-coated granules was randomly selected for the curing 

study. The actual coating weight gain of this batch was 19% w/w. A two-level, two-factor design 

and one additional condition were applied: two humidity chambers with saturated sodium chloride 

solution (~75% RH) at either 35 °C or room temperature (20 - 22 °C), two humidity chambers 

with saturated lithium chloride solution (~11% RH) at either 35°C or room temperature (20 - 

22 °C), and a refrigerator condition (4 °C, ~15% RH). Data logger (EasyLog EL-USE-2 Lascar 

humidity and temperature USB logger, Lascar Electronics inc. Erie, PA) was used to track the 

temperature and relative humidity change upon the storage. Samples were taken and subjected to 

an in vitro dissolution test on Days 0, 3, 7, 14, and 21. Afterward, an additional study was 

conducted to understand potential solid-state form transformation and its influence on the 

dissolution profile of coated granules. One batch of coated granules, assumingly with the same 

assay and coating weight gain, was split into three parts and stored in three different humidity 

conditions: 11% RH, 52% RH, and 75%RH at 23 °C. After 30 days, samples were taken and 

subjected to 3D-Raman imaging and in vitro dissolution test. 

 



56 
 

2.2.4 Test Methods 

The methods to characterize uncoated and coated granules are listed in this section. The quality 

attributes of coated granules include assay, loss on dry, weight gain, dissolution profile, and API 

solid-state. The characterization methods for those attributes will be described along with the 

evaluation method for coating deposition rate. For uncoated granules, an in-house method was 

developed and utilized to evaluate the fragmentation resistance of uncoated granules. 

fragmentation-sensitive granules tended to break apart and generate excessive fines in the 

fluidization process. fragmentation resistance of 97% was arbitrarily used as a threshold to select 

uncoated granules for formulation and process development. The batches with lower 

fragmentation resistance than 97% were rejected. The fines generated from the fluidization process 

were monitored in the process development.  

 

2.2.4.1 Granule Fragmentation Resistance  

 Retsch mill (model MM200, Retsch, Inc. Newtown, PA) was used to simulate the 

fragmentation and attrition that granules underwent during the fluid bed coating process. The 

Retsch mill was used to shake a scintillation vial containing uncoated granules at 30Hz for 10 min. 

Two grams of granule samples were sieved through a 60-mesh sieve (250µm) before the shaking. 

Sieve was tapped at a frequency of 30 min-1 for 10 minutes (model SS-3, Gilson Company, Inc., 

Lewis Center, OH). Fines were removed. The granules that remained on the sieve were weighed 

(𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) and transferred into the vial and subjected to the shaking of the Retsch mill. Since no 

milling ball was used in the shaking process, the low loadings (around 2 g) and high frequency 

(30Hz) setting allows the uncoated granules to collide against each other or against the vial wall, 

simulating the impact in a fluid bed. Fragmentation is the primary mechanism of size reduction.137 
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The granules were transferred back onto the 60-mesh sieve after the shaking and subjected to the 

same tapping procedure. The granules that remained on the sieve were weighed again (𝑚𝑚𝑟𝑟𝑑𝑑𝑟𝑟𝑡𝑡𝑖𝑖𝑛𝑛). 

The weight-based fragmentation resistance was calculated using the following equation (Eq. 2.1): 

𝐹𝐹𝐹𝐹𝑠𝑠𝐹𝐹𝑚𝑚𝑦𝑦𝐹𝐹𝐹𝐹𝑠𝑠𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑅𝑅𝑦𝑦𝑦𝑦𝐹𝐹𝑦𝑦𝐹𝐹𝑠𝑠𝐹𝐹𝑠𝑠𝑦𝑦 =
𝑚𝑚𝑟𝑟𝑑𝑑𝑟𝑟𝑡𝑡𝑖𝑖𝑛𝑛

𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
× 100%   Eq. 2.1 

 

2.2.4.2 Sieve Analysis 

The sieve analysis was performed to separate the fines, single coated granules, and 

agglomerates. The coated products were screened through the sieve stacked consisted of 850 and 

250 μm screen sieves. The mechanical shave shaker (Series # 18480 CSC Scientific Co Inc. Fairfax 

VA) works in a throwing motion with angular momentum. The amplitude was set at level 3 and 

the sieving time was 15 min. The granules retained on the 850 μm screen were collected and 

weighed to determine the degree of agglomeration. The granules retained on the 250 μm screen 

were collected as the coating product for the following analyses. The granules that fell through the 

250 μm screen were treated as fines and were discarded. This process was repeated until the weight 

change of the fines, products, and agglomerates was negligible.  

 

2.2.4.3 Assay, Loss on Drying, % Actual Weight Gain, and Coating Deposition Rate.  

The % actual weight gain and coating deposition rate were calculated based on product assay 

and loss on drying (LoD). The assay of uncoated and coated granules was determined using a 

UV/Vis spectrometer (Agilent, Santa Clara, CA). 150 mg of uncoated granules were precisely 

weighed and dissolved in 500 mL DI water via 60 min sonication (Branson 8510 ultrasonic cleaner, 

Branson Ultrasonic Corporation, Danbury, CT) to prepare the sample solution. Three replicates of 

samples were prepared for every batch, and three repetitions were collected for each replicate. 
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Reference cells that contained only DI water were collected each time the UV/Vis test started. The 

sample absorbance value at a single wavelength (272 nm) was recorded to predict API content by 

interpolating a five-point linear regression calibration model of theophylline content. The same 

method was applied to coated granules for API content with one additional step: the coated 

granules were ground before the dissolution and sonication. 

Loss on drying measurement was performed using a moisture analyzer, Computrac Max-2000 

(Arizona Instrument LLC, Chandler, AZ). Approximately 1 g of granules was ground using mortar 

and pestle. The ground powder was precisely weighed in an aluminum pan by the instrument 

before the test. The testing temperature ramped up from 35 to 110 °C then stabilized at 110 °C 

until the weight change of the powder was less than 0.01%. The percentage loss of the powder was 

recorded as LoD values. Actual weight gain from the coating is calculated based on assay and LoD 

from coated and uncoated granules, as shown in Eq. 2.2. 

% 𝑠𝑠𝑠𝑠𝐹𝐹𝑎𝑎𝑠𝑠𝑠𝑠 𝑤𝑤𝑦𝑦𝐹𝐹𝐹𝐹ℎ𝐹𝐹 𝐹𝐹𝑠𝑠𝐹𝐹𝐹𝐹 =  

𝐴𝐴𝑦𝑦𝐴𝐴 𝑠𝑠𝐹𝐹𝐹𝐹𝐹𝐹𝑦𝑦𝐹𝐹𝐹𝐹𝑢𝑢𝑛𝑛𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡𝑑𝑑𝑑𝑑
(1− 𝑦𝑦𝐿𝐿𝐿𝐿𝑢𝑢𝑛𝑛𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡𝑑𝑑𝑑𝑑) − 𝐴𝐴𝑦𝑦𝐴𝐴 𝑠𝑠𝐹𝐹𝐹𝐹𝐹𝐹𝑦𝑦𝐹𝐹𝐹𝐹𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡𝑑𝑑𝑑𝑑

(1 − 𝑦𝑦𝐿𝐿𝐿𝐿𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡𝑑𝑑𝑑𝑑)
𝐴𝐴𝑦𝑦𝐴𝐴 𝑠𝑠𝐹𝐹𝐹𝐹𝐹𝐹𝑦𝑦𝐹𝐹𝐹𝐹𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡𝑑𝑑𝑑𝑑
(1− 𝑦𝑦𝐿𝐿𝐿𝐿𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡𝑑𝑑𝑑𝑑)

× 100   Eq. 2.2 

The coating deposition rate was defined as the ratio between the deposited film weight and the 

theoretical weight based on consumed suspension. It was calculated from the actual weight gain 

and theoretical weight gain (22.5%), as shown in Eq. 2.3.  

𝐶𝐶𝑠𝑠𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑦𝑦𝑦𝑦𝑑𝑑𝐹𝐹𝑦𝑦𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐹𝐹𝑠𝑠𝐹𝐹𝑦𝑦 =  
% 𝑠𝑠𝑠𝑠𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠  𝑤𝑤𝑦𝑦𝐹𝐹𝐹𝐹ℎ𝐹𝐹 𝐹𝐹𝑠𝑠𝐹𝐹𝐹𝐹 (%)

% 𝐹𝐹ℎ𝑦𝑦𝐹𝐹𝐹𝐹𝑦𝑦𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠 𝑤𝑤𝑦𝑦𝐹𝐹𝐹𝐹ℎ 𝐹𝐹𝑠𝑠𝐹𝐹𝐹𝐹 (%)
 × 100  Eq. 2.3 

The coating deposition rate was used to indicate the efficiency of polymer droplet deposition 

and film formation. This parameter is essential to determine the process endpoint for the coating 

process when there is a lack of a real-time monitoring system. 
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2.2.4.4 3D-Raman imaging 

The 3D-Raman images of the coated theophylline samples were collected using an H2Optx 

mPAT lab coupled with Pillerater (h2Optx, Inc. San Jose, CA). The granule samples were 

compressed into tablets with microcrystalline cellulose (MCC, a mixture of Avicel PH 105 and 

PH 101) as extragranular excipients. The weight ratio between granules and MCC powders is 

approximately 1:3. A 4 mm X 4mm area in the center of each tablet was scanned by the incident 

laser excitation (785 nm), with an operating amperage of 90 mA and exposure time of 10 ms. The 

Raman shift was measured from 100 to 1900 cm-1 wavenumber range. The spatial resolution of 

one image layer was 10 µm, one pixel being 10 µm X 10 µm. The tablets were sliced into 20 image 

layers with 20 µm third dimensional spatial resolution and scanned in sequence. The layers were 

assembled using Image-J to form 3D images with a voxel of 10 X 10 X 20 µm. The Raman data 

were processed and mapped using Meta Analyzer (h2Optx, Inc. San Jose, CA). 

 

2.2.4.5 In vitro Dissolution 

The in vitro drug release studies were conducted on the encapsulated coated theophylline 

granules (400 mg coated granules per capsule containing approximately 200 mg API) in 900 mL 

of DI water using a USP apparatus II – paddle-type at 75 rpm and 37 ± 3°C. The capsules were 

dropped into the dissolution media using spiral capsule sinkers. The samples were drawn every 10 

minutes using an autosampler and measured using a UV/VIS spectrometer (Agilent 8453 UV-

Visible Spectrophotometer G1103A, Agilent Technologies, Cranberry Twp, PA) at 272 nm 

wavelength. Phosphate buffer with pH = 4.5 was also used in the dissolution method development 

compared to DI water. No significant difference was found between the dissolution profiles of the 

capsules dissolved in phosphate buffer and DI water (F2 = 92.5). The fraction of drug released was 
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normalized to 100% released; the time point at 1,440 minutes was used for that purpose. Three 

replicates were tested for each design point. 

 

2.3 Results and Discussion 

This study aimed to gain product and process understanding and identify critical process 

parameters to manufacture extended-release multiparticulate drug dosage forms. Risk assessment 

and design of experiments were sequentially used for formulation and process development. In 

both cases, the high-risk formulation or process variables were qualitatively identified, and then 

experiments were designed to collect quantitative information. 

The quality target product profile (QTPP) for the theophylline coated granules was defined to 

facilitate the design of the product and the associated manufacturing process. The core part of the 

QTPP was established based on the knowledge of the drug substance and compendial standards, 

shown in Table 2-4. The dosage form was selected to grant pharmacokinetics and dose flexibility. 

The route of administration was determined based on patient compliance. Typically, the dosage 

strength should be determined based on clinical studies and the target patient population. However, 

this study was designed to demonstrate a fluid bed coating process development so that the dosage 

strength was determined based on the uncoated drug-loaded granules and the target coating weight 

gain. The product quality attributes were identified, taking account of the patient safety and 

product efficacy. 
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Table 2-4: Quality Target Product profile of the Theophylline Coated Granules 

QTPP Elements Target 
Dosage Form Extend Release Multiparticulate granules 

Route of Administration Oral 
Dosage Strength 250 mg 

Drug Product Quality 
Attributes 

Identification 
Assay 

Content Uniformity 
Drug Release 

Moisture 
Microbial Limits 

 

After the QTPP was defined, the drug product quality attributes were listed, and the criticality 

of every potential attribute was evaluated using an initial risk assessment. The justification is listed 

in Table 2-5. The following risk assessments of product and process focused on the attributes of 

high criticality. 

Table 2-5: Criticality and justification of the potential quality attributes for the coated granules 

Critical Quality Attributes Criticality Justification 

Identification Low The substance was identified and controlled upstream in 
the high shear wet granulation. 

Assay and Content 
Uniformity High Sub potent and super potent granules will steady-state 

moisture level variability in dose and dissolution profile. 

Drug Release High 
Various material attributes and process parameters may 
influence drug release. It reflects in-vivo performance: 
bioavailability to a certain degree. 

Moisture High 
Theophylline is chemically stable but may transfer to its 
monohydrate form in the presence of excessive moisture. 
It may impact the drug release. 

Microbial Limits Low The granules are coated with a hydrophobic polymer that 
does not promote microbial growth. 

 

2.3.1 Formulation Development 

For multiparticulate coating systems, the properties of the drug-loaded core and the coating 

formulation will have a significant impact on the critical quality attribute of the drug product. In 

this study, the theophylline granules were produced at Purdue University; hence the granule 

formulation was not included in the formulation risk assessment. Because of the independence 
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between formulation variables, we performed the formulation screening experiments using the one 

factor at a time approach to study plasticizer concentration and solid content successively. 

 

2.3.1.1 Risk Assessment 

A summary of the risk assessment of the drug substance attributes on the drug product is 

presented in Table 2-6. The drug-loaded granules were produced using high shear wet granulation. 

With intensive shear and mixing, assay and content uniformity were unlikely to deviate 

substantially from the label claim. The potency of the uncoated granules was monitored for each 

batch. The coating process does not introduce additional API into the system, and the potency of 

the coated granules was monitored as well. The risk of assay and content uniformity was low. The 

drug substance supplied by the vendor is consistently pure with <0.05% impurities, reported on 

the safety data sheets. The risk of the coating process introducing additional impurities is low. 

Solid-state form and solubility were identified as high risks that may impact drug release. 

Theophylline may convert to its hydrate form during wet granulation and aqueous fluid bed coating 

processes, and this transformation may impact drug release. Theophylline has a high intrinsic 

dissolution rate and a high solubility. It may migrate into the coating film and potentially impact 

the drug release. 

Table 2-6: initial risk assessment of the drug substance attributes. 

CQA 
Drug Substance Attributes 

Solid-state Form Particle Size Solubility Impurities Stability 
Assay Low Low Low Low Low 

Content 
Uniformity Low Low Low Low Low 

Drug Release High Low High Low Low 
 

In the initial risk assessment of coating formulation, briefly shown in Table 2-7, the formulation 

variables were evaluated against drug release, and the risk level was assigned based on prior 
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knowledge and literature. Justification for the risk ranking is presented in Table 2-8. The high-risk 

variables were further studied to reduce the risk to an acceptable level. 

Table 2-7: Initial risk assessment of the polymer coating formulation 

CQA 
Coating Formulation Variables 

Coating 
Level 

Polymer 
Aging 

Lot-to-lot 
Variability 

Pore Forming 
Agent Level 

Plasticizer 
Level 

Anti-tacking 
Agent Level Viscosity 

Drug 
Release High Low Low  High High Medium low 

 

Table 2-8: Justification for the initial risk assessment of the formulation variables drug dissolution 

Formulation Variables Justification 

Coating Level The coated granules may have an undesired extended drug release profile if the coating 
level is suboptimal. The risk of the polymer coating level is high. 

Polymer Aging 
Polymer aging or degradation may alter the polymer properties and affect drug release, 
but the stability of PVAc was well studied, and the degradant of PVAc (acetic acid) 
will not significantly change drug release profile 129. The risk is low. 

Lot-to-lot Variability 
Lot-to-lot variability is controlled by the chemical supplier (BASF) with a tight 
specification, and those properties are unlikely to impact the coating process. The risk 
is low. 

Pore Forming Agent Level 
A pore former in the film will dissolve in aqueous solution and form channels for drug 
release. The addition of a pore-forming agent will substantially impact drug release. 
The risk is high 

Plasticizer Level Plasticizers influence the film formation and function as a secondary pore former. The 
plasticizer level will substantially impact the drug release. The risk is high 

Anti-tacking Agent Level 

An insufficient anti-tacking agent may lead to agglomeration and twining of coated 
granules. However, talc may increase the hydrophobicity of the film, resulting in a 
change of drug release profile. Based on previous experiments, 15% w/w talc was 
enough to prevent tackiness and provide the desired dissolution profile. The risk is 
medium.  

Viscosity The viscosity of an aqueous pseudo-latex coating dispersion is low. The risk is low. 
 

2.3.1.2 Experimental Data Analysis 

Two stages of one-factor-at-a-time experiments were conducted for formulation development. 

In the first stage, three levels of plasticizer (TEC) concentration, 5%, 10%, and 15% w/w of the 

drying polymer film, were studied. The 10% w/w level was repeated three times. The second stage 

was designed based on the results of the first stage. The optimal plasticizer concentration (5% w/w) 

was employed while the solid content was studied in three levels. The detailed experimental design 
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and the results were listed in Table 2-9. The target coating weight gain was 25% w/w. The actual 

weight gains were substantially lower than the target because of the unoptimized coating efficiency. 

Due to the preheating loss of particle fragmentation, the actual weight gain was calculated using 

Eq. 2.2 and was treated as a covariate for statistical analysis. The coefficient of determination (R2) 

between TEC level and actual weight gain is 0.0147, indicating a lack of collinearity between the 

two independent variables. Analysis of covariance was performed to adjust the values of the 

responses (agglomeration and drug release) based on the actual weight gain so that the error was 

corrected, and the focus is on the effect of TEC levels.  

Table 2-9: Effect of coating formulation variables on coated granule characteristics 

Order Batch 
No. 

Factors Response 
TEC 
level 
(%) 

Solid 
Content 

(%) 

Weight 
Gain (%) 

Agglomeration 
(%) 

Time of 50% 
drug released 

(h) 
Comments 

Study on TEC 
1 2 10 18.9 22.1 8.8 4.15  
2 3 10 18.9 19.8 9.1 3.72  
3 1 5 18.9 21.6 3.4 3.37  
4 4 10 18.9 20.8 10.7 3.81  

5 5 15 18.9 21.3 33.3 4.53 
Large 

agglomerates 
formed 

Study on Solid Content 
6 6 5 18.9 20.5 5.2 3.21  

7 9 5 24.9 21.6 16.1 3.98 
Nozzle 

clogged after 
91 mins 

8 7 5 18.9 19.5 3.5 3.12  
9 8 5 12.9 20.1 4.1 3.33  

 

Stage 1: TEC level 

The covariate (actual weight gain) effect was estimated on the 10% TEC batches (Batch No. 2, 

3, 4). At 18.9% solid content, the actual weight gain had a minimum effect on agglomeration with 
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an R2 = 0.05 and p-value = 0.86. Thus, no adjustment was needed for % agglomeration. The 

ANOVA model (Table 2-10) revealed that the TEC level significantly impacted the % 

agglomeration at a 95% confidence level. The % agglomeration decreased with decreasing 

amounts of TEC. In addition, large agglomerates due to film tackiness were observed during the 

coating process with 15% TEC as the plasticizer.  

Table 2-10: ANOVA results for the effect of TEC level on % agglomeration. 

ANOVA 

Source of Variation df SS MS F p-value 

Between Groups 2 540.2 270.1 258.9 0.003847 

Within Groups 2 2.086 1.043   

 

The correlation between the covariate (actual weight gain) and the response (time of 50% drug 

released) was 0.969 with a p-value of 0.158. Since only three batches were included in the 

regression analysis to estimate two parameters, a significance level of α = 0.2 was used for the 

covariate. The regression equation (Eq. 2.4) was presented as follow: 

𝑇𝑇𝐹𝐹𝑚𝑚𝑦𝑦 𝐹𝐹𝑜𝑜 50% 𝑦𝑦𝐹𝐹𝑎𝑎𝐹𝐹 𝐹𝐹𝑦𝑦𝑠𝑠𝑦𝑦𝑠𝑠𝑦𝑦𝑦𝑦𝑦𝑦 =  0.1906 × 𝑠𝑠𝑠𝑠𝐹𝐹𝑎𝑎𝑠𝑠𝑠𝑠  𝑤𝑤𝑦𝑦𝐹𝐹𝐹𝐹ℎ𝐹𝐹 𝐹𝐹𝑠𝑠𝐹𝐹𝐹𝐹 − 0.0902 Eq. 2.4 

where 0.1906 is the slope indicating the rate of change in the dissolution time depending on the 

change of actual weight gain. The standard error (ε) was adjusted to 0.079 from the regression 

analysis (ε = 0.107 without the covariate adjustment). The mean values of the time of 50% drug 

released for 5%, 10%, and 15% TEC levels were adjusted to 3.24, 3.89, and 4.45, respectively. 

The statistical significance of the ANCOVA model was determined using an F-test, p-value < 0.05. 

The increased TEC level increased the time for 50% drug to release. Increased twinning granules 

were observed with the increase of the TEC level; the decreased surface area due to twinning was 

probably the primary cause of the decrease of dissolution rate. Comparing to the effect of twinning, 

the pore forming effect of TEC, which contributes to the increase of dissolution rate, was weak. 
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Considering both agglomeration propensity and drug release, 5% TEC level (w/w of the dry 

polymer) was used in the formulation for further investigation in the second stage. 

Stage 2: Solid Content 

Four runs were performed in the second stage, varying the solid contents of the coating 

dispersion. Batch No.1 (from the first stage) was considered as an additional center point. Thus, in 

total, five batches were subjected to statistical analysis. The covariate effects (actual weight gain) 

on agglomeration and dissolution were examined using regression analysis on the center batches 

(No. 1, 6, and 7). The results revealed that at a 5% TEC level, actual weight gain had little effect 

on the % agglomeration but a significant effect on the dissolution response - time of 50% drug 

released (α = 0.2 for the covariate). Thus, a one-way ANOVA model (Table 2-11) was utilized to 

analyze the effect of solid content on agglomeration. The % agglomeration values were different 

at a significance level of α = 0.05 amongst the three groups. The increased solid content leads to 

an increase in% agglomeration. During the coating process of batch No.9 (solid content = 24.9%), 

a nozzle clog was observed at 91 min. Thus, two additional replicates were conducted at a 24.9% 

solid content level. Nozzle clog was observed at 75 min and 110 min, respectively. 

Table 2-11: ANOVA results for the effect of solid content on % agglomeration. 

ANOVA 

Source of Variation df SS MS F p-value 

Between Groups 2 116.7 58.36 78.51 0.01257 

Within Groups 2 1.486 0.7433   

 

Before applying ANOVA to test the dissolution parameter, the regression analysis of weight 

gain was used to correct the group mean and standard error. The regression equation (Eq. 2.5) is 

presented as follows: 
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𝑇𝑇𝐹𝐹𝑚𝑚𝑦𝑦 𝐹𝐹𝑜𝑜 50% 𝑦𝑦𝐹𝐹𝑎𝑎𝐹𝐹 𝐹𝐹𝑦𝑦𝑠𝑠𝑦𝑦𝑠𝑠𝑦𝑦𝑦𝑦𝑦𝑦 =  0.1195 × 𝑠𝑠𝑠𝑠𝐹𝐹𝑎𝑎𝑠𝑠𝑠𝑠  𝑤𝑤𝑦𝑦𝐹𝐹𝐹𝐹ℎ𝐹𝐹 𝐹𝐹𝑠𝑠𝐹𝐹𝐹𝐹 + 0.7799 Eq. 2.5 

where 0.1195 is the slope that reveals the dissolution is a function of the actual weight gain. The 

slopes of the two regression models (Eq. 2.4 and Eq. 2.5) are different, suggesting an interaction 

between TEC levels and weight gain. However, the p-value of the interaction term is 0.31 from a 

regression analysis on the data from batches (No. 1, 2, 3, 4, 6, and 7), indicating a lack of statistical 

significance. It is probably due to the limited sample size and a relatively large number of 

parameters (for TEC levels, weight gain, and interaction) to be estimated. Since the formulation 

would be kept consistent in future studies, the effect of interaction between TEC level and weight 

gain on dissolution was deemed low risk, and thus no further investigation was pursued. The 

ANCOVA suggests the standard error is reduced from 0.060 to 0.024, and the mean values of the 

time of 50% drug released for 12.9%, 18,15%, and 24.9% solid content are 3.47, 3.16, and 4.05 

hours, respectively. The F-test results are shown in Table 2-12.  

Table 2-12：ANOVA results for the effect of solid content on time of 50% drug released. 

ANOVA 
Source of Variation df SS MS F p-value 
Between Groups 2 0.5891 0.2945 15.73 0.05977 

Within Groups 2 0.03745 0.01872   

Total 4 0.6265    

 

Although an insignificant effect of solid content is found at a 95% confidence level for the 

dissolution, it is noteworthy that the p-value = 0.06 is arguable low for a 5 sample ANOVA. 

However, regression analysis indicates the solid content and time of 50% drug released do not 

appear to have a linear correlation. The batches of 18.9% solid content had the fastest dissolution, 

while the batch of 24.9% solid content generated the slowest dissolution and the highest amount 

of agglomeration. A large portion of granular twinning was found in the batch of 24.9% solid 
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content, whereby the granule size distribution of this batch was shifted to the high end, potentially 

causing the nonlinearity. The solid content of 18.9% for the coating formulation would be used in 

future studies to (1) overcome the nozzle clogging issue, (2) minimize the agglomeration, and (3) 

minimize the coating time. The coating formulation was selected based on these results, as shown 

in Table 2-13 for the process development. 

Table 2-13: Coating dispersion formulation for further studies. 

Coating Dispersion Formulation 

Component Levels （% w/w） Function 

Polyvinyl acetate (PVAc), Povidone 
(PVP), Sodium Lauryl Sulfate (SLS) 

50%  
（50% ×30% = ×15% in terms of 
solid content） 

 Commercial Coating 
Polymer 

Triethyl Citrate (TEC) 0.75% (5% of dry polymer 
content) Plasticizer 

Talc 2.25% Anti-tacking agent 

Blue Lake 0.15% Color agent 

Total Solid Content 18.15%  
 

The formulation development addressed the identified high risks of the coating formulation. 

Since the commercial polymer dispersion (Kollicoat SR 30D) included 9% PVP as a pore-forming 

agent, no additional pore-forming agent was used. The plasticizer level was optimized at 5% of 

the dry polymer content. This level resulted in adequate film quality, and the risk of plasticizer 

concentration to impact drug release is reduced from high to low. The polymer coating level was 

identified as a critical factor impacting drug release, and its risk level remained as high. Further 

investigation is shown and discussed in the process development.  
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2.3.2 Process Development 

This section includes studies on polymer coating and curing. A risk assessment was initially 

performed to identify the critical process parameters. A fractional factorial design was followed to 

verify the criticalities for polymer coating. A curing study using five conditions for 21 days was 

conducted using a center coating batch (19% weight gain). The results were analyzed using 

ANOVA, and the risk assessment was updated after receiving the experimental results.  

 

2.3.2.1 Risk Assessment 

The initial risk assessment of the coating and curing was performed using prior knowledge in a 

two-step manner. An Ishikawa diagram was utilized to identify the high-risk factors that could 

affect the drug product CQAs. Subsequently, FMEA analysis was applied to determine the process 

variables with the highest potential to cause a CQA failure.  

The Ishikawa diagram was performed to catch up on all possible causes that lead to a batch 

failure or patient risks. The analysis (Figure 2-1) had five main categories: materials, sieving, 

coating, curing, and analytical methods. Since the coating dispersion was studied and understood 

in the previous formulation development, the materials, in this case, refer to the drug-loaded 

uncoated granules. In the branch of coating, the causes were divided into manipulated variables 

and measured variables. The manipulated variables were controllable and could impact some of 

the measured variables. Most of the measured variables were under close monitoring, while the 

inlet air relative humidity was an environmental disturbance subjected to further investigation. 
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Figure 2-1: Ishikawa diagram of the manufacturing process. 

Overall Risk Assessment 

The FMEA analysis was performed after constructing the Ishikawa diagram. The initial risk 

assessment of the overall manufacturing process, presented in Table 2-14, directly links the final 

product CQAs to the five categories. In the deemed high-risk mode, the process variables that 

could impact the drug product quality or cause batch failure became the focus of the risk 

assessment. The variables that have the highest potential to cause a failure need to be investigated 

to optimize the manufacturing process and reduce the risk of failure. 
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Table 2-14：Initial risk assessment of the manufacturing process and justification based on 
Ishikawa diagram 

Categories CQAs or Batch 
Loss Risk Level Justification 

Material 

Assay and Content 
Uniformity Low 

The uncoated granules were prepared via high shear wet 
granulation. The product assay and content uniformity were 
examined before the coating process for every batch. The 
risk is low. 

Drug Release Medium 
The variability of granule size distribution was not negligible 
but controlled to an acceptable level via sieving. The risk is 
medium. 

Process Failure Low Granules with lower fragmentation resistance than 97% were 
rejected. The risk of batch loss is low. 

Sieving 

Assay and Content 
Uniformity Low The purpose of the sieving step is to screen out agglomerates 

and fines. The risk of this separation process to impact the 
drug product or cause batch loss is low. Drug Release Low 

Process Failure Low 

Coating 

Assay and Content 
Uniformity Low 

Assay and content uniformity are mainly determined by the 
granulation step and are unaffected by the coating process 
variables. The risk is low. 

Drug Release High The polymer coating is the drug release rate controlling step 
for the coated granules. The risk is high. 

Process Failure High 
Undesired coating conditions may lead to the formation of 
large agglomerates and defluidization, resulting in a batch 
loss. The risk is high. 

Curing 

Assay and Content 
Uniformity Low 

Assay and content uniformity are mainly determined by the 
granulation step and are unaffected by the curing process 
variables. The risk is low. 

Drug Release High Curing affects the coating properties and ultimately impacts 
the drug release. The risk is high. 

Process Failure Medium 
Excessive humidity and heat cause coated granules to 
interfuse with each other and form agglomerates, resulting in 
a batch loss. The risk is medium. 

Analytical 
Method 

Assay and Content 
Uniformity Low The UV method is standardized, and the performance of the 

UV instrument was routinely examined. The risk is low. 

Drug Release Medium 
The in-process coating level is determined based on the 
performance of in-line NIR models. The robustness of the 
model is a challenge. The risk is medium.  

Process Failure Low The analytical method is unlikely to impact the 
manufacturing process. The risk is low. 
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Risk Assessment for variables 

The overall risk assessment indicated coating and curing as the high-risk steps to impact drug 

release and cause batch loss. Subsequently, material attributes, process variables, and associated 

risk on corresponding CQAs were evaluated based on prior experience and literature review. Table 

2-15 summarizes the initial risk assessment of the material and process variables. The justification 

and initial strategy to reduce the risks are provided. The variables subjected to the DoE study are 

indicated.   
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Table 2-15: Initial risk assessment of the material and process variables based on failure mode 
effect analysis (FMEA). 

Variables Risk Level Justification and initial strategy 

Input Material Attributes 

Drug-loaded granule 
assay 

Low The assay of drug-loaded granules was monitored for every coating batch. 
The risk is low. 

Drug substance 
solid-state form 

High 
Theophylline was known to have different apparent solubility as anhydrous 
or hydrate. Coating being a wet process, the risk of form conversion resulting 
in altered drug release is high. 

Granule size 
distribution High 

Granule size change leads to variations in granule surface area. The received 
drug-loaded granules are at a fraction between 250-850 µm. The risk is high. 
In the screening study, the granules were restricted to the fraction of 350 - 
500 µm. 
In the response surface study, the granule size distribution were in the range 
of 250 - 850 µm. 

Loss on drying 
(LoD) 

Medium Moisture may impact film formation and API solid-state. The LoD of 
uncoated granules is controlled to < 5%. The risk is medium. 

Uncoated granule 
release profile 

Low The film coating should control the drug release. The risk of drug release 
from uncoated granules is low. 

Equipment Variables 

Nozzle tip diameter Medium  
Improper selection of nozzle tip size may impact atomization and be 
vulnerable to nozzle clog. The risk is medium. Based on prior experience. A 
nozzle with a 1.0 mm diameter is selected. 

Nozzle tip/ air cap 
position low The positions of the nozzle and air cap were set constant and kept flush. The 

impact on atomization is low. 

Coating Process Variables 

Inlet air relative 
humidity High 

Variation of inlet air humidity may have an impact on drying and the quality 
of the polymer film. The risk is high. 
Investigate with DoE to optimize and reduce the risk. 

Preheating inlet air 
temperature 

Low 
Higher than optimal temperature may cause static charge and lead to 
processing problems. 
Preheating target product temperature was set at 38 °C 

Preheating air 
volume Medium 

If the air volume is higher than optimal, fragmentation and attrition to the 
granules may lead to excessive fines. Lower than optimal air volume may 
cause uneven heating. The risk is medium. 

Preheating time Low 
Initial drying capacity may be insufficient if the target product temperature 
is not reached. In practice, the preheating does not end until the target product 
temperature is reached. The risk is low. 

Inlet air temperature 
(spray phase) Medium 

Inlet air temperature is adjusted to reach the desired product temperature. If 
it is set higher than optimal, droplet premature may occur, and if it is set 
lower than optimal, agglomeration may occur. The product temperature will 
be monitored, and the inlet air temperature is adjusted accordingly. The risk 
is medium. 
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Variables Risk Level Justification and initial strategy 

Coating Process Variables 

Product temperature 
(spray phase) 

High 

The product temperature is impacted by inlet air temperature, air volume, 
and spray rate. Inlet air temperature had a much smaller effect on product 
temperature than air volume and spray rate. If product temperature is higher 
than optimal, droplet premature may occur and generate a large number of 
fines. If product temperature is lower than optimal, agglomeration may 
occur, and the film quality may be impacted. The risk is high. 
Investigate with DoE to optimize and reduce the risk. 

Air volume (spray 
phase) High 

If air volume is higher than optimal, droplet premature may occur, and the 
granules may be coated unevenly or blown onto the filter. If air volume is 
lower than optimal, agglomeration may occur, leading to batch collapse. The 
risk is high. 
Investigate with DoE to optimize and reduce the risk. 

Spray rate High 

If the spray rate is higher than optimal, agglomeration may occur. If the spray 
rate is low, spray time may be extended, and nozzle clog may occur. The risk 
is high. The coating process is interactively impacted by spray rate, 
atomization air pressure, product temperature, and volume. The spray rate is 
set at 5 g/min. 

Atomization air 
pressure 

High 

If atomization air pressure is higher than optimal, the droplets may be too 
tiny and sprayed onto the inner wall of the fluid bed bowl, leading to the 
generation of fines. If atomization air pressure is lower than optimal, 
agglomeration may occur. The risk is high. 
Investigate with DoE to optimize and reduce the risk. 

Coating time Medium 

The coating dispersion may settle because the coating time is typically 2- 3 
hours. The homogeneity of the dispersion may be undermined. The risk is 
medium. 
The coating dispersion is consistently mixed using a magnetic stirrer during 
the manufacturing process. 

Curing temperature High 

If the curing temperature is lower than optimal, the curing process may not 
occur. If the curing temperature is higher than optimal, the film on the 
granule surface may interfuse with each other, and agglomeration may occur. 
The risk is high. 
Investigate with DoE to optimize and reduce the risk. 

Curing humidity High 

If curing humidity is lower than optimal, the curing process may not occur. 
If curing humidity is higher than optimal, the film on the granule surface may 
interfuse with each other, and agglomeration may occur. The risk is high. 
Investigate with DoE to optimize and reduce the risk. 

Curing time High 
Under-curing may lead to incomplete film formation. However, unnecessary 
over-curing may increase the processing time. The risk is high. 
Investigate with DoE to optimize and reduce the risk. 
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2.3.2.2 Experimental Data Analysis for Screening Study. 

2.3.2.2.1 Coating Study 

The 24-1 fractional factorial design for coating was designed to isolate the effects of main factors 

and confound two-way interactions. It serves as a screening study to verify the criticality of process 

parameters and environmental disturbances. The center of the design was selected based on 

scientific literature and previous experimental experience.  

Table 2-16: Results of the screening study. The inlet temperature was adjusted during the process 
to maintain the desired product temperature. In the DoE, the set of process parameters were 
targeted at a steady state. During the coating process, the product temperature fluctuated when 
the spray rate was ramped up, and the air volume was adjusted accordingly. 

Order 

Factors Responses 

Atomization 
Pressure 

Product 
temperature 

Relative 
Humidity 

Air 
Volume Agglomeration LoD 

Coating 
deposition 

rate 
level level level level (g) (%) (%) 

11 -1 -1 1 1 28.2 4.82 91.19 
1 -1 -1 -1 -1 27.34 4.26 86.50 

12 -1 1 1 -1 68.39 9.14 93.81 
3 -1 1 -1 1 12.80 3.92 83.26 

14 1 -1 1 -1 67.43 7.98 94.74 
2 1 -1 -1 1 10.48 3.75 84.35 

13 1 1 1 1 27.28 5.61 88.19 
4  1 1 -1 -1 35.34 6.50 90.66 
5 0 0 0 0 32.41 5.51 90.23 
6 0 0 0 0 29.60 5.63 88.95 
7 0 0 0 0 29.89 5.23 87.74 
8 0 0 0 0 31.03 4.96 90.15 
9 0 0 0 0 33.45 5.02 91.86 

10 0 0 0 0 32.43 5.24 93.05 
*Atomization pressure: level -1 = 1.4 bar, level 0 = 1.6 bar, and level 1 = 1.8 bar. 
* Product temperature: level -1 = 30 °C, level 0 = 33 °C, and level 1 = 36 °C. 
* Relative Humidity: level -1 = 20 – 30 %, level 0 = 40 – 47%, and level 1 = 70 – 76%. 
* Air Volume: level -1 = 25 g/m3, level 0 = 30 g/m3, and level 1 = 35 g/m3. 
 
 

The design layout and results were listed in Table 2-16. The first column indicates that the 

experiments were conducted in a sequence from low to high humidity caused by the seasonal 

change. The three responses were agglomeration, steady-state moisture level, and coating 
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deposition rate. The results were analyzed using ANOVA. The factors, although having numeric 

values, were treated as categorical variables (Using numerical values did not change the results of 

the statistical analysis). 

 

Significant factors for Agglomeration  

Varying degrees of agglomerations were observed across all the design points. The 

agglomerations range from 10.48 to 68.39 g. The variation of agglomeration is attributed to either 

inadequate mass and heat transfer or the inherent tackiness of coating polymer at the given 

condition. It is beneficial to reduce agglomeration because 1) small agglomerates (twinning) that 

pass through the 850 µm screen may impact the drug release, and 2) excessive agglomeration may 

lead to defluidization and batch collapse.  The ANOVA table (Table 2-17) indicates the most 

significant factors (at 95% confidence level) contributing to agglomeration are relative humidity 

and air volume. Since there was no omitted interaction term, the statistically significant lack-of-fit 

term reveals the non-linear effects on the generation of agglomerates. 

Further optimization is necessary to gain more understanding of the non-linear effect. The p-

value of the interaction between relative humidity and air volume is 0.002. While, as mentioned 

previously, the two-factor interaction terms are confounded in the fractional factorial design. The 

interaction between relative humidity and air volume is 100% confounded with the interaction 

between atomization pressure and product temperature. Considering that product temperature and 

atomization pressure have little impact on agglomeration, this interaction term is probably more 

relevant to relative humidity and air volume. The minimal agglomeration is generated at low 

relative humidity and high air volume condition. It is noteworthy that the agglomeration rate at a 

high temperature is not significantly different from that value at a low temperature. The formation 
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of agglomerates, when performing risk assessment, is proposed to have two mechanisms: 1) the 

polymer becomes rubbery (above Tg, which is around 30 °C 138) and exhibits increased tackiness 

when exposed to an elevated product temperature, and 2) excessive moisture accumulates to form 

liquid bridges between granules due to low drying efficiency. The first mechanism is related to the 

product temperature, which is found insignificant. The second mechanism involves product 

temperature, relative humidity, and air volume. Increased air volume or decreased relative 

humidity significantly reduces the formation of agglomerates. The results suggest that insufficient 

drying efficiency is the predominant cause of agglomeration. 

Table 2-17: ANOVA results for agglomeration at 95% confidence level. DF is the degree of 
freedom. 

Source Estimate DF F-value 
p-value 

probability >F 
Comments 

Grand Mean 33.29 - - -  

Product Temperature 1.30 1 0.23 0.24  

Atomization pressure 0.48 1 1.72 0.65  

Relative Humidity 13.17 1 177.89 <0.0001 Significant 

Air Volume -14.97 1 229.85 <0.0001 Significant 

Atomization Pressure x Product Temperature 

(Relative Humidity x Air Volume) 
-5.12 1 26.87 0.002 Significant 

Air Volume x Product Temperature 

(Relative Humidity x atomization Pressure) 
-0.95 1 0.92 0.38  

Relative Humidity x Product Temperature 

(Atomization Pressure x Air Volume) 
-1.28 1 1.69 0.24  

Lack of Fit  1 14.63 0.012 Significant 

Pure Error  5    

Total  13    

  

Significant factors for Coating deposition rate 

The coating deposition rate is the ratio between actual weight gain and theoretical weight gain, 

describing the efficiency of polymer deposition. A low deposition efficiency leads to a prolonged 
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process, increasing material, time, and energy consumption. The ANOVA results (Table 2-18) 

show that relative humidity and air volume significantly affect the coating deposition rate at a 95% 

confidence level. The other terms, including lack of fit, were statistically insignificant.  

Mechanistically, variable drying efficiency is the primary cause of variation in coating 

deposition rate. The polymer dispersion is atomized into many droplets via the spray nozzle. The 

droplets travel in the counter direction of the fluidization airflow. The fluidization air volume 

determines the throughput of the air. The air conveys heat to a product to evaporate water and 

drives the water vapor out of the system. The level of water loading in the airstream determines 

the drying efficiency. High air volume leads to excessive drying capacity and promotes the 

premature of spray droplets before they arrive at the granule surface. An undesired fluidization 

pattern due to inappropriate air volume reduces collision probability between spray droplets and 

granules.  

Relative humidity level, as another significant factor, determines the moisture level in the 

incoming air. The incoming air of higher relative humidity has less capacity to uptake the water 

vapor per unit volume, and the reduced drying capacity prevents droplets premature and decreases 

fines generation.  

Atomization pressure, theoretically, changes the spray pattern and the droplet size. The small 

average droplet size increases the overall evaporation area, which promotes drying efficiency. 

However, in the studied range, atomization pressure had an insignificant impact on coating 

deposition rate.  
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Table 2-18: ANOVA results for Coating deposition rate at 95% confidence level. DF is the degree 
of freedom. 

Source Estimate DF F-value 
p-value 

probability >F 
Comments 

Grand Mean 89.62 - - -  

Product Temperature -0.11 1 0.02 0.88  

Atomization pressure 0.40 1 0.03 0.59  

Relative Humidity 2.895 1 16.98 0.006 Significant 

Air Volume -2.34 1 11.09 0.016 Significant 

Atomization Pressure x Product Temperature 

(Relative Humidity x Air Volume) 
0.048 1 0.005 0.95  

Air Volume x Product Temperature 

(Relative Humidity x atomization Pressure) 
-0.92 1 1.70 0.24  

Relative Humidity x Product Temperature 

(Atomization Pressure x Air Volume) 
-0.88 1 1.55 0.26  

Lack of Fit  1 1.44 0.87  

Pure Error  5    

Total  13    

 

Significant factors for steady-state moisture level 

The steady-state moisture level is calculated by averaging the loss on drying of granules 

sampled during the steady-state of the coating process. The steady-state is defined as the period 

after the spray rate ramp-up when product temperature became stable. Samples were taken every 

30 minutes during the steady state. The LoD values are averaged after first becoming stable. The 

result of ANOVA is listed in Table 2-19. Product temperature, relative humidity, air volume, and 

the interaction between air volume and relative humidity (confounded with the interaction between 

atomization Pressure and product temperature) are the most significant factors affecting the steady-

state moisture level.  The lack-of-fit term is significant, suggesting the presence of a curvature 

effect. The steady-state moisture is an indirect measure of the propensity of batch failure and 

process efficiency. Figure 2-2 shows 1) increased moisture leads to the increased agglomeration 
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in a linear correlation, and 2) increased moisture level increases coating deposition rate. The rate 

of increase in coating deposition rate drops after the moisture level exceeded 5.5% w/w. Thus, the 

balance point between agglomerate formation and the coating deposition rate is around 5.5% w/w 

steady-state moisture level. The moisture level can be monitored using PAT tools and affiliated 

feedback control.  

Table 2-19: ANOVA results for Steady-state moisture level at 95% confidence level. DF is the 
degree of freedom. 

Source Estimate DF F-value 
p-value 

probability >F 
Comments 

Grand Mean 5.54 - - -  

Product Temperature 0.54 1 12.40 0.013 Significant 

Atomization pressure 0.22 1 1.94 0.21  

Relative Humidity 1.14 1 54.51 0.0003 Significant 

Air Volume -1.22 1 62.55 0.0002 Significant 

Atomization Pressure x Product Temperature 

(Relative Humidity x Air Volume) 
-0.45 1 8.59 0.0263 Significant 

Air Volume x Product Temperature 

(Relative Humidity x atomization Pressure) 
-0.31 1 3.93 0.095  

Relative Humidity x Product Temperature 

(Atomization Pressure x Air Volume) 
-0.055 1 0.13 0.73  

Lack of Fit  1 11.59 0.02 Significant 

Pure Error  5    

Total  13    

 

The screening DoE study on coating demonstrates that product temperature, air volume, and 

relative humidity are the critical parameters to prevent batch collapse, reduce agglomeration and 

improve coating deposit. The impacts of atomization air pressure on the responses are not 

significant within the studied range. Although the initial risk of atomization air pressure is high, it 

is not critical in the screening study. 
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Figure 2-2: correlations between moisture level and agglomeration/coating deposition rate. 

 

2.3.2.2.2 Curing Study 

The curing study was performed using the coated granules (19% w/w actual weight gain) to 

understand the risks of post-coating thermal treatments. The summary of the results is depicted in 
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Figure 2-3. The dissolution rate increased by a small extent from Day 0 to Day 3 and stabilized 

from Day 3 to Day 21 in the storage condition of a refrigerator (4°C, 15% RH), shown in Figure 

2-3A. The dissolution rate increased by a small extent from Day 0 to Day 3 while decreased from 

Day 3 to Day 14 and stabilized from Day 14 to Day 21 at room temperature and 75% relative 

humidity storage condition, shown in Figure 2-3B. The dissolution rate increased from Day 0 to 

Day 14 and stabilized from Day 14 to Day 21 at room temperature and 11% relative humidity 

storage condition, shown in Figure 2-3C. The dissolution rate decreased from Day 0 to Day 3 and 

stabilized from Day 3 to Day 21 at 35°C and 75% relative humidity storage condition, shown in 

Figure 2-3D. The dissolution rate increased from Day 0 to Day 3 and stabilized from Day 3 to Day 

21 at 35°C and 11% relative humidity storage condition, shown in Figure 2-3E. The dissolution 

profiles of samples stored in 11% relative humidity but different temperatures (room temperature 

and 35°C) were not significantly different from each other at Day 21 (f2 = 96, Figure 2-3F). 

Similarly, the dissolution profiles between samples stored in 75% relative humidity but 

different temperatures (room temperature and 35°C) were not statistically significant (f2 = 92, 

Figure 23-F). The results indicated the relative humidity was the primary cause altering the 

dissolution profiles of coated theophylline granules. Granules equilibrated in low relative humidity 

(11%) possessed fast dissolution profiles, while high relative humidity (75%) resulted in slow 

dissolution profiles. Temperature influenced the rate of dissolution change during the storage. 

Elevated temperature accelerated the coated granules to reach an equilibrium state of dissolution, 

but it did not impact the dissolution profile significantly at the equilibrium state. The different 

dissolution behaviors revealed that the stability of the dissolution profile was related to storage 

moisture. Two possible mechanisms could explain the dissolution changes: (1) the coalescence 
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degree of the coating film changed during the post-coating storage, and (2) The theophylline in the 

coated granule underwent a pseudo polymorphic transformation upon the storage. 

A similar curing study was performed on film-coated acetaminophen granules (the same intra-

granular formulation as theophylline granules except for API identity) to test the film stability. The 

dissolution profiles of coated acetaminophen granules did not change during the 21 days storage. 

Both temperature and relative humidity showed no effect on acetaminophen in vitro release 

profiles. The acetaminophen dissolution stability study indicated that the change in theophylline 

dissolution was probably not caused by film change.  

The second mechanism assumed a portion of the theophylline transformed to its monohydrate 

at 75% relative humidity condition. The relatively low solubility of theophylline monohydrate 

resulted in a slower dissolution profile. The 11% relative humidity condition, on the other hand, 

allowed theophylline transform to its anhydrous form (Form II) leading to a fast dissolution profile. 

Figure 2-3G showed the results of an additional experiment. Samples stored at 35°C with 75% RH 

were taken out on Day 7 and stored at two other conditions: 35°C with 11% RH and room 

temperature with 75% RH until Day 21. Those samples were subjected to the dissolution test on 

Day 14 and Day 21. The dissolution profiles of the samples transferred to room temperature with 

75% RH at Day 14 and Day 21 were not significantly different from Day 7 (F2 = 98). However, 

the dissolution rate of the samples transferred to 35°C with 11% RH increased over time. This 

indicated that the dissolution profile was reversible with the change of relative humidity. Further, 

it suggested temperature was kinetically impacting the transformation.  
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Figure 2-3: Result of the curing study A) dissolution profiles from Day 0 to Day 21 at refrigerator 
storage condition; B) dissolution profiles from Day 0 to Day 21 at room temperature and 75% 
relative humidity storage condition; C) dissolution profiles from Day 0 to Day 21 at room 
temperature and 11% relative humidity storage condition; D) dissolution profiles from Day 0 to 
Day 21 at 35°C and 75% relative humidity storage condition; E) dissolution profiles from Day 0 
to Day 21 at 35°C and 11% relative humidity storage condition; F) dissolution profiles at Day 21 
of all storage conditions; G) dissolution profile of samples at different storage conditions. 
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2.3.2.2.3 Theophylline Solid State Form and Product Dissolution 

In order to better understand the theophylline monohydrate formation and the dissolution of the 

coated granules, samples of a center batch (19%w/w weight gain) of the screening study were 

stored in three humidity chambers (11%, 52%, and 75% RH) at 35 °C for 21 days. Three replicates 

from each humidity chamber were subjected to in vitro dissolution tests. The dissolution profiles 

of samples of the three storage conditions are depicted in Figure 2-4. The samples stored at 11% 

RH had the fastest dissolution rate, and the samples of 75% RH had the slowest dissolution rate. 

 

Figure 2-4: the dissolution profiles of the coated granules stored 11% RH, 53% RH, and 75% RH 
of 23 °C. 

Raman imaging was utilized to understand the pseudo polymorphic transformation of 

theophylline. Figure 2-5 shows the representative layers of the granules stored at the three relative 

humidities. The images were analyzed using classic least squares regression based on pure 

component spectra from microcrystalline cellulose, theophylline anhydrous, and monohydrate. 

The image of granules stored at 11% RH showed 25.1% pixels of theophylline anhydrous and 0.25% 

monohydrate. While stored at 52% RH, a portion of theophylline (10.47% pixels) transferred to 
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the monohydrate form, and the majority (14.03% pixels) remained anhydrous. At the highest 

relative humidity condition of 75% RH, the highest ratio (16.47% pixels) of theophylline 

anhydrous was transferred to the monohydrate form.  

 

Figure 2-5: Raman images from granules stored at three relative humidity conditions: 11% RH, 
53% RH, and 75% RH of 23 °C. Green indicates theophylline anhydrous; red indicates 
theophylline monohydrate 

The study revealed that solid-state form changes due to storage RH conditions and the coated 

granule dissolution profiles had correlation. The dissolution of the coated theophylline granules 

was a complicated process. The coating film consisted of two polymers: an aqueous insoluble 

polymer (PVAc) which absorbs water and swells during the dissolution process, and an aqueous 

soluble polymer (PVP) which is a pore forming agent dissolving and leaving a channel in the film 

coating after exposed to the dissolution medium. The kinetics of the theophylline release from the 

granule core to the dissolution medium involves multiple mechanisms: (1) drug dissolution in the 

core, (2) drug diffusion through the film, and (3) drug diffusion through the aqueous channels 

formed by the pore forming agent or plasticizer. The driving forces of drug release includes the 

gradient of drug concentrations and the osmotic pressure between the core and the dissolution 

medium. The correlation between the dissolution rate and the theophylline monohydrate formation 
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is probably due to the difference between the solubilities of theophylline anhydrous (Form II) and 

monohydrate. The lower solubility of theophylline monohydrate leads to the lower gradient of 

drug concentrations between the core and the dissolution medium, and ultimately results in slower 

dissolution rate.  

Literature reported that in an intrinsic dissolution test, the solvent-mediated transformation of 

theophylline anhydrous took about 6 minutes for the monohydrate crystals to grow and completely 

cover the surface of the anhydrous form, shown in Figure 2-7.139-141 Therefore, the difference in 

dissolution rates was hardly observed in the dissolution tests of uncoated theophylline anhydrous 

and monohydrate granules. For the coated granules, theophylline and other excipients were 

constrained by the coating film, forming a wet mass in the initial stage of the dissolution process. 

Wikström et al. showed that the monohydrate formation could be prevented during wet granulation 

when 0.3% w/w of hydroxypropyl methylcellulose was added to a formulation containing 30% 

w/w theophylline anhydrous.142 The same group also showed the completion of theophylline 

hydration took more than 60 min after the theophylline anhydrous was exposed to 1% w/w HPMC 

solution, shown in Figure 2-8. The alternation of hydrate morphology can be observed, comparing 

Figures 2-7 and 2-8. The needle-shaped theophylline monohydrate was formed in pure water 

(Figure 2-7), while rectangular crystals of theophylline monohydrate were produced with the 

presence of HPMC. Wikström et al. suggested that the HPMC polymer adsorbed to fast-growing 

faces of the hydrate crystal, thus retarded the overall transformation rate.142 In this study, the 

uncoated granules contained 60% theophylline and 2% HPMC. HPMC probably detained the 

solvent-mediated transformation of the theophylline anhydrous. Therefore, differences in the 

apparent dissolution rates were observed among coated granules containing different amounts of 

theophylline monohydrate.  
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The solid-state form of theophylline was of high risk to the in vitro dissolution. The FMEA was 

updated from the outcome of the study. The moisture level of both the drying process and storage 

of the coated granules should be carefully controlled. 

 

Figure 2-6: SEM scan of the surface of theophylline anhydrous during the solvent-mediated 
transformation. (a) t = 0 min, (b) t = 2 min, (c) t = 6 min. The figure was adapted from ref. 139  
permission granted. 
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Figure 2-7: Micrographs illustrating the growth and morphology for hydrate formation in 1% w/w 
HPMC solution. (g) after 5 min exposure to HPMC solution, (h) after 30 min exposure to HPMC 
solution, (i) after 60 min exposure to HPMC solution. The figure was adapted from ref.142 
permission granted. 

 

 

2.4 Conclusion  

The quality target product profile of the extended-release multiparticulate dosage form was 

defined, and the fluid bed granular coating process was studied. The critical quality attributes, 

critical formulation variables, and critical process parameters were identified and confirmed using 

risk assessments and screening studies. A feasible coating formulation was developed and used to 

understand the manufacturing process. The screening studies identified that relative humidity and 

air volume are critical parameters to reduce agglomerates and increase the coating deposition rate. 

Steady-state moisture level as an in-process measurement also showed a correlation with the 

formation of agglomeration and coating deposition rate. Atomization air pressure was found to 

have insignificant impacts on the agglomeration, coating deposition, and moisture level and thus 

not to be investigated in the following study. 

The curing study showed that the theophylline in the granules underwent solid-state form 

change during the coating process and storage. The dissolution tests indicated that the conversion 

of theophylline monohydrate was a high risk that significantly influenced the in vitro dissolution 
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of coated granules. A literature review suggested the formulation of the granule core, including a 

polymer binder HPMC, retarded the solvent-mediated transformation of theophylline and 

increased the in vitro dissolution rate of the coated granules. 

The study of this chapter accommodated the requirements of Specific Aim 1, identifying the 

risks of the failure modes and narrowing down the critical parameters that needed further 

investigation in the following response surface study.   
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Chapter 3 : Utilization of Design of Experiments and Statistical Tools to 

Establish Process Models to Predict in vitro Dissolution Profiles 

 

Abstract 

This chapter utilized design of experiments (DoE) to establish process models that predict in 

vitro dissolution profiles using material attributes, environmental variables, and process 

parameters. The DoE consisted of two sub-designs: (1) a full factorial design and (2) a D-optimal 

design. In total, 19 coating experiments were conducted. The experimental response, in vitro 

dissolution profile, was empirically fitted using two algorithms: Weibull function and principal 

component analysis (PCA). The Weibull function had two parameters: scale factor and shape 

factor. The dissolution data were decomposed by PCA into scores and loadings. Thus, the 

responses for modeling were either Weibull parameters or scores of PCA. The predictors for 

modeling (i.e., air volume, inlet air relative humidity, granule size distribution, and coating weight 

gain) were subjected to two statistical modeling methods: partial least squares regression (PLS) 

and Gaussian process regression (GPR). The regression methods and the curve-fitting algorithms 

were used in conjunction to build four sets of models (the PLS models that predicted the Weibull 

parameters, the GPR models that predicted the Weibull parameters, the PLS models that predicted 

the PCA scores, and the GPR models that predicted the PCA scores). The regression coefficients 

of all models were significant at a 95% confidence level. The two regression models had similar 

errors in predicting the Weibull parameters, while GPR predicted the PCA scores slightly better 

than the PLS.  The error profiles between the actual and model-predicted dissolution curves 

suggested the PLS model combining with the Weibull function fitting outperformed the other three 

modeling approaches. 



92 
 

3.1 Introduction 

Numerous studies in the literature have reported different ways to model pharmaceutical 

manufacturing processes.143-146 However, there is still a lack of research that clearly illustrates the 

utilization of process modeling to predict critical quality attributes and enable corresponding 

controls. The trial-and-error approach with inadequate exploration leads to process models that are 

not robust and may undermine the product quality. Design of experiments (DoEs) is a statistically 

sound approach that systematically collects data for modeling with reduced costs. Key issues that 

need investigation are proper selections of (1) experimental design to produce robust process 

models that predict future samples with accuracy and precision and (2) modeling methodology 

that best fits the experimental data. 

Several statistical designs are available to serve different purposes of applications.147, 148 Under 

some circumstances, a model involving only main effects and interactions is adequate to describe 

a response surface. Nevertheless, when dealing with a complex process incorporating non-linear 

dynamics, the first-order linear functions are inadequate to describe the process. The full factorial 

designs at three or more levels are often regarded as the most comprehensive but redundant 

methodology to include interaction and quadratic terms to map a response surface. Investigating 

multiple variables at multiple levels costs a massive amount of resources, making the design 

infeasible to be conducted. In such instances, response surface methodology can reduce the number 

of experimental runs and retain the power to evaluate the non-linear quadratic effects. Several 

aspects need to be considered to deduce meaningful information from the response surface design 

and adequately map the response surface. Process ranges of the investigated variables define the 

underlying design structure, being of the most importance. The design levels of the variables 

cannot exceed their allowable range, leading to insignificant responses. Also, some variables start 



93 
 

to exhibit nonlinear effects when the studied ranges are increased.149 Therefore, the levels of 

readily controlled variables can be set in narrower ranges to reduce their nonlinearity and decrease 

modeling complexity. Orthogonality and rotatability are two common features in classical 

response surface designs (i.e., Box-Behnken design and central composite design). Orthogonality 

allows main effects and interaction terms to be estimated independently (no correlation) with each 

other. Rotatability allows the variance of the responses to be a function of the distance (not the 

direction) of the design points from the center. It is imperative to recognize that orthogonality and 

rotatability are useful in conducting an unbiased investigation for unknown matters, but they are 

not required for all response surface methodology. 

In contrast to the classical designs, optimal designs are computer-aided designs that optimize 

the design structure according to a statistical criterion based on a prespecified model. For instance, 

A-optimality minimizes the average variance of the estimated parameters; D-optimality maximizes 

the geometrical volume of the design explored space; I-optimality minimizes the average 

prediction variance over the space of the design. As a result, the optimal designs generally do not 

satisfy the desirable properties such as orthogonality and rotatability that classical designs do. The 

optimal designs had two features that are different from classical designs: (1) the user defines the 

number of experiments and (2) the design allows for constraints. The features provide great 

flexibility to the design of experiments. It is critical to realize that the optimality criterion is model-

dependent, meaning the design is only optimal for the pre-specified model using a quadratic or 

cubic function.  

Least squares regression is the most common approach of fitting a model that maps the response 

surface to experimental data. In the application of ordinary least squares (OLS) regression for 

process modeling, the model coefficients are calculated by taking the inverse of the variance-
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covariance matrix of the predictors.150 High multicollinearity of the predictors increases the 

probability of the inverse being a near singular matrix. In other words, when the predictors exhibit 

multicollinearity or when the number of degrees of freedom of the pure error is low, OLS models 

have high uncertainty and tend to be statistically insignificant due to increased errors of the 

estimated coefficients.151 Feature selection is a common solution, where insignificant variables 

and interactions are eliminated stepwise in a forward or a backward manner. In addition to feature 

selection, partial least squares (PLS) regression is an alternative to handle the colinearity. The PLS 

algorithm projects the predictors onto a latent space where the covariance between the predictors 

and the responses is maximized.152 Mathematically, the predictor matrix is decomposed into an 

orthogonal matrix T and a near orthogonal matrix P. The matrix T, often referred to as scores, has 

the same number of rows as the number of samples in the predictor matrix. The matrix P, often 

called loadings, has the same number of rows as the number of predictors. The model can be built 

on the first few columns of matrix T, often referred to as latent variables. The number of latent 

variables can be determined based on the user’s knowledge or cross-validation. The regression on 

the latent variables decreases the number of model parameters and, by default, increases the 

degrees of freedom of pure error.  

As an alternative, a nonparametric Bayesian approach, namely Gaussian process regression 

(GPR), has been drawing a great deal of attention as a machine learning method in pharmaceutical 

applications.153-156 This method does not assume the linearity of the correlation between the 

predictors and the responses. Instead, GPR assumes multi-dimensional normal distribution 

consisting of the responses from all batches and calculates the probability distributions over all 

admissible covariance functions that fit the data. With the covariance function built on the factors, 

future prediction can be made via algebra transformation. In GPR, the selection of kernel function 
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for the covariance is the key to a successful model. The kernel functions include constant, linear, 

square exponential, Matern kernel, etc., to accommodate potential shapes of the response surface. 

A linear kernel with the assumption of no stochastic error in the factors (i.e., measurement error in 

temperature, air volume, spectral collection, etc.) makes GPR equivalent to ordinary least squares 

regression. GPR provides the benefit of flexibility in model fitting but has drawbacks, including 

increased computational cost (requiring simulation to tune kernel parameters), increased number 

of user-selected parameters, and increased risk of overfitting. 

The framework of this chapter was built upon the results of the risk assessments and 

experiments of Chapter 2, where critical process parameters were identified in the coating and 

curing processes. Figure 3-1 illustrates the experimental plan and the steps for data analysis. The 

experimental plan included (1) a full factorial design as the calibration set to train the process 

models and (2) a D-optimal design as the test set to evaluate the process model on new batches. 

The model utilized four predictors (target weight gain, air volume, relative humidity, and uncoated 

granule size distribution) to predict the in vitro dissolution profiles of coated granules. Target 

weight gain, air volume, relative humidity were used as their numerical values, while uncoated 

granule size distribution was subjected to five curve fitting methods to reduce the number of 

predictors. The in vitro dissolution profile of coated granule consisted of fractions of drug release 

at different dissolution time points, which were fitted using two methods: (1) two-parameter 

Weibull function and (2) principal component analysis. The process models were established using 

two algorithms: (1) partial least squares (PLS) regression and (2) Gaussian process regression 

(GPR) to correlate the predictors to the response. Thus, in total, four sets of models were 

established: 

(1) the PLS model that predicted the Weibull parameters (λ and k) of the dissolution profiles,  
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(2) the GPR model that predicted the Weibull parameters (λ and k) of the dissolution profiles,  

(3) the PLS model that predicted the PCA scores (PC1 and PC2) of the dissolution profiles,  

(4) the GPR model that predicted the PCA scores (PC1 and PC2) of the dissolution profiles.  

Each set had two independent models predicting two interdependent parameters, which were 

from the curve fitting of coated granule dissolution profiles. 

 

Figure 3-1: Illustration of the experimental plan and data analysis for the process modeling. The 
experimental plan included a full factorial design for calibration and a D-optimal design for 
testing. 
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3.2 Materials and Methods 

3.2.1 Materials and Coating Processor 

The theophylline-loaded granules (granule size range 250 – 850 µm) were obtained from 

Purdue University, West Lafayette, IN. The granules comprised 60% theophylline anhydrous, 19.5% 

lactose monohydrate, 18.5% microcrystalline cellulose, and 2% hydroxypropyl methylcellulose. 

They were produced by high shear wet granulation using a 10 L capacity granulator (Diosna 

P/VAC 10-60, Osnabruck, Germany) and dried in the oven at 45°C for 48 hours. The other 

materials and testing agents were described in Section 2.2.1. 

A 7-liter top-spray fluid bed processor (Minilab, Diosna Dierks & Söhne GmbH, Osnabruck, 

Germany) was used for granular coating. The processor was coupled with an EGE-Electronik 

series LN/LG airflow sensor (Spezial-Sensoren GmbH, Gettorf, Germany) and two 

temperature/humidity transmitters (series RHL, Dwyer Instruments Inc., Michigan City, IN). The 

coating suspension was delivered into the system by a peristaltic pump (Series 120U, Watson-

Marlow Inc., Wilmington, MA). The coating process was controlled by an integrated system where 

an open platform communication system (DeltaV V9.7, Emerson, MO) received analog signal and 

delivered digital tags to a real-time data management system (SynTQ V3.5, Optimal, UK) for 

control implementation. A near-infrared reflectance spectrometer (NIR256L-2.2T2, Control 

Development Inc., South Bend, IN) and a halogen light source (HL-2000, Control Development 

Inc., South Bend, IN) coupled with a fiber-optic probe (Ocean Optics, Dunedin, FL) were used to 

collect real-time signal during the coating process. The configuration of the fluid bed processor is 

illustrated in Figure 3-2. 
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Figure 3-2: Fluid bed processor with in-line monitoring sensors and NIR spectral measurement. 

 

3.2.2 Design of Experiments 

The risk assessment outcomes and the screening study (Chapter 2) suggested that the assay and 

physical attributes were of low risks in the studied range of the fluid bed coating process. One of 

the critical quality attributes, dissolution, was not investigated as a response in the screening study 

when there was a lack of process understanding to prevent batch collapse. Because a large number 

of experimental runs (in minimum, 27 = 128 runs for a 2-level full factorial design) is practically 

infeasible to study all disturbances (granule size distribution and inlet air relative humidity) and 

process conditions (product temperature, air volume, atomization air pressure, spray rate, and 

target weight gain) simultaneously. By dividing the study into two consecutive steps, a screening 

study followed by a response surface study, the total runs could be reduced to a practically feasible 



99 
 

number. The response surface study serves two purposes: (1) to establish process models that 

predict dissolution profiles with accuracy, precision, and robustness, and (2) to develop a real-time 

monitoring and control system for the in-process moisture and coating level using NIR 

spectroscopy. Chapter 3 will focus on process modeling, and Chapter 4 will discuss the real-time 

NIR models in detail.  

The experimental design of the response surface study included a calibration set and a test set. 

The calibration set followed a full factorial design, and the test set adopted a D-optimal design, 

illustrated in Figure 3-3. The full factorial design included ten coating runs, eight corner points, 

and two replicated center points. The center points were reproduced to determine pure error 

(random batch-to-batch variability) and potential non-linear effects. The investigated factors 

included uncoated granule size distribution (GSD), relative humidity (RH), and fluidization air 

volume. A fourth factor, target weight gain, was studied at three levels of every design point. The 

batch size was 400g. The previously explored process parameters, including atomization air 

pressure and product temperature, were kept constant in all experiments to prevent agglomeration. 

Atomization air pressure was manually set at 1.6 bar, and the product temperature was set at 33 ± 

0.7 °C. The spray rate ramped from 3, 4, to 5 g/min in 10 minutes and stayed constant in the 

calibration experiments, and the granule samples were taken at 0, 5, 15, 45, 80, 120, and 140 min 

of the spraying phase for loss on drying (LoD) measurement. Other than water, the substances in 

the granules and coating dispersion were not volatile. The LoD measurement was used as a 

surrogate indicator for the moisture level, including both bonded and unbonded water in coated 

granules. The NIR spectra were collected during the coating experiments of the calibration set, 

and they were used to develop a quantitative model to predict the moisture level. 
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Figure 3-3: the experimental design of calibration and test in the response surface study. 

 

The levels of the four factors are shown in Table 3-1. Five levels of granule size distributions 

were identified from the input uncoated granule batches. The lowest, medium, and highest levels 

of the five GSDs were included in the calibration design. The variability of RH was caused by 

operating the coating experiments at different weathers and seasons, and thus the RH levels were 

indicated as ranges (20-30%, 40-50%, and 70-80% RH) instead of exact values. The seasonal 

dependence of relative humidity constrained the randomization of experimental order for both 

calibration and test designs. Fluidization air volume was an experimentally controlled process 

parameter explored at the center and two extreme levels. The target coating weight was the fourth 
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factor that varied within every experiment by sampling granules after spaying for 80, 110, and 140 

minutes. However, the weight gain cannot be accurately controlled without real-time monitoring 

due to variable polymer deposition rates between the design points. The NIR spectra collected for 

the moisture model were also used to develop a real-time weight gain predictive model. The target 

weight gain was expected to impact the dissolution of the coated granules substantially 142,143. The 

sample size was 10 g per sampling time point and stored in a desiccator at 35°C to allow the 

granules to be dried entirely before the dissolution test. 

Table 3-1: Full factorial design - design levels. 

Variable Name Lowest 
Level (-1) 

Lower level 
(-0.5) 

Center Point 
(0) 

Higher level 
(0.5) 

Highest 
Level (+1) 

Granule Size (Dv50, µm) 392 419 460 480 504 

Inlet air Relative humidity 
(% RH) 20 - 30 - 40 - 50 - 70 - 80 

Fluidization Air Volume 
(m3/h) 25 - 30 - 35 

Spray Time (min) 80 - 110 - 140 

 

A total of nine test coating runs were designed to maximize the D-optimality of a quadratic 

function of three factors: GSD, air volume, and RH with the constriction of granule availability. 

The D-optimal design included all five particle size levels of incoming granules, and the D- 

optimality was optimized using JMP software (Version 13, SAS Institute, Cary, NC). For the 

convenience of NIR model development, the sampling time points were adjusted to allow the 

weight gain of the samples from the D-optimal design to be within the range of the samples 

collected from the full factorial design: samples were taken at 85, 105, and 125 minutes after 

spraying for weight gain measurements, and corresponding NIR spectra were recorded. The 

predictive model for LoD was developed using NIR spectra collected from the calibration set. The 
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model was implemented in the test set to facilitate a feedback controller, adjusting the spray rate 

to stabilize the in-process LoD value at 5.5% w/w. The sample size was 10 g per time point. In 

summary, the full factorial design included 30 design points in total (10 coating experiments × 3 

sampling times = 30), and the D-optimal design included 27 design points in total (9 coating 

experiments × 3 sampling times = 27).  

The analytical measurements, including granule fragmentation resistance, assay, loss on drying, 

in vitro dissolution, followed the same procedure described in Chapter 2. The actual weight gain 

was calculated using Eq 2-3, presented in section 2.2.4.3. The incoming granules with lower 

fragmentation resistance than 97% were rejected to prevent the generation of excessive fines 

during preheating.  

 

3.2.3 Granule Size Characterization and Fitting Methods 

The granule size distributions of uncoated and coated granules were measured using a CANTY 

SolidSizer dynamic image analyzer (JM Canty, Inc., Buffalo, NY). The CANTY SolidSizer is a 

lab-scale image-based analyzer for dry particle size measurement. Granules were fed into a 

vibrating chute and precisely released in front of a bright field. A high-resolution camera 

continuously collected images of free-falling particles through a magnifying lens. The instrument 

automatically adjusted the vibrating frequency of the chute only to allow ten particles on each 

image. The CANTY software analyzed the 2-D images and output the granule size/shape 

information. Upon analyzing the images, a filter threshold was set to exclude the particles with 

aspect ratios greater than 2 to eliminate overlapping particles. The circular equivalent diameter 

from the image analysis was used to describe the granule size. 
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Five GSDs, corresponding to the five granule size levels in the DoE, were generated by 

counting the particle numbers in 12 size intervals, from 0 to 1200 µm with a resolution of 100 µm. 

The five distributions were then normalized by taking each interval's granule counts as a fraction 

of the total granule counts, namely frequency. The highly autocorrelated frequencies of a 

normalized GSD were not suitable as independent variables for multivariate linear regression. 

Thus, the normalized GSDs were fitted using five empirical curve-fitting methods to reduce the 

number of variables. The curve-fitting methods included: 

1. Three-parameter Weibull model157 

F(d) = a �1 − e�−�
d
b�

c
�� + ε   Eq. 3.1 

2. Power-law model158 

F(d) = a × 𝑦𝑦−𝑏𝑏 + ε Eq. 3.2 

3. Van Genuchten model159 

F(d) = (1 + �
𝑠𝑠
𝑦𝑦
�
𝑏𝑏

)−𝑢𝑢 + ε Eq. 3.3 

4. Logarithmic model160 

F(d) = a × ln𝑦𝑦 + b + ε Eq. 3.4 

5. Principle component analysis161 

𝐺𝐺𝑦𝑦𝐿𝐿 = 𝑦𝑦𝑠𝑠𝐹𝐹𝐹𝐹𝑦𝑦 𝑝𝑝𝑢𝑢1,GSD × 𝑦𝑦𝐶𝐶1GSD + 𝑦𝑦𝑠𝑠𝐹𝐹𝐹𝐹𝑦𝑦 𝑝𝑝𝑢𝑢2 × 𝑦𝑦𝐶𝐶2GSD + ⋯+ 𝜀𝜀 Eq. 3.5 

In the first four curve-fitting models, F(d) is the cumulative frequency of granules in the interval 

of the median equivalent diameter d (µm), and the model parameters are a, b, and c. In the PCA 

modeling, GSD is the entire granule size distribution, 𝑦𝑦𝑠𝑠𝐹𝐹𝐹𝐹𝑦𝑦 𝑝𝑝𝑢𝑢1,GSD  and 𝑦𝑦𝑠𝑠𝐹𝐹𝐹𝐹𝑦𝑦 𝑝𝑝𝑢𝑢1,GSD  are the 

scores, and 𝑦𝑦𝐶𝐶1GSD  and 𝑦𝑦𝐶𝐶2GSD  are the loadings. An unconstrained non-linear optimization 

algorithm was applied to solve the fitting parameters using Matlab 2017a and optimization 
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Toolbox (function name: lsqnonlin). Two statistical measures, root-means-square error (RMSE) 

and coefficient of determination (R2), were utilized to determine the model performances. The sum 

of squared residual (SSE) was calculated using Eq. 3.6. 

 SSE = ��𝐹𝐹(𝑦𝑦)𝑓𝑓𝑖𝑖𝑡𝑡 − 𝐹𝐹(𝑦𝑦)𝑟𝑟𝑑𝑑𝑡𝑡𝑑𝑑𝑢𝑢𝑟𝑟𝑑𝑑𝑑𝑑�
2

12

1

 Eq. 3.6 

Since the numbers of model parameters were different for the five methods, it is essential to 

adjust the RMSE and R2 based on their degrees of freedom to allow a fair comparison, calculation 

illustrated in Eq. 3.7 and 3.8, 

RMSE = �
𝑦𝑦𝑦𝑦𝑆𝑆

12 − 𝐹𝐹 − 1
  Eq. 3.7 

and 

R2 = 1 − (
𝑦𝑦𝑦𝑦𝑆𝑆

12 − 𝐹𝐹 − 1
𝑦𝑦𝑦𝑦𝑇𝑇

12 − 1
) Eq. 3.8 

where SST is the sum of squared total and n is the number of model parameters. The number 

of data points on the GSD curve is twelve.  The curve-fitting method of the best adjusted RMSE 

and R2 was utilized to describe the GSD as material attributes for process modeling. 

 

3.2.4 Empirical Modeling Methods for Dissolution Curves 

The in vitro dissolution profiles have drug concentration values every ten minutes from 10 to 

600 minutes, including 60 data points. An in-house specification for in vitro dissolution was 

adapted from the USP standard drug release test #2 for theophylline extended-release capsules, 

illustrated in Table 3-2. The autocorrelation in the dissolution profiles could challenge the 

robustness of the process model if directly using the fractions of the drug released at 1, 2, 4, and 8 
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hours as responses. The practice may also cause stability issues in the feedforward controller 

(Chapter 5). Therefore, we employed two curve-fitting methods, Weibull function and principal 

component analysis, to fit the dissolution curves. The fitting parameters, instead of the dissolution 

profiles, were used as new responses for process modeling. This approach reduced the 

dimensionality of the responses and, at the same time, allowed independence between the 

responses. 

Table 3-2: In-house specification of theophylline extended-release capsules: times and tolerances 

Time (hours) Fraction dissolved 

1 Between 10% and 30% 

2 Between 30% and 55% 

4 Between 55% and 80% 

8 Not less than 80% 
 

3.2.4.1 Weibull Function Fitting 

The Weibull function fitting is an empirical method that has great flexibility to fit most 

dissolution curves.134, 135, 162, 163 The Weibull function can be expressed in multiple mathematical 

forms using two to four fitting parameters. A two-parameter Weibull function was employed in 

our study, represented as the following equation: 

ϕ = �1 − e
�−�tλ�

k
�
�+ ε Eq. 3.9 

where ϕ is the fraction of API dissolved at time t, λ is the scale factor, and k is the shape factor. 

Known ϕ and t, the Weibull parameters λ and k can be solved using logarithm transformation on 

both sides of Eq. 3.9 twice and then fitting a linear line. The dissolution profile can be reconstructed 

using the Weibull parameters λ and k, which means the degrees of freedom of multi-points 

dissolution profiles can be reduced to two. It is noteworthy that the Weibull function, as an 
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empirical fitting method, does not explain the dissolution kinetics and cannot be generalized 

beyond the studied range. 

 

3.2.4.2 Principal Component Analysis 

Principal component analysis (PCA) is a matrix operation for dimensionality reduction. Instead 

of fitting dissolution profiles using a predefined mathematic function, PCA focuses on the variance 

of a set of dissolution profiles and finds the shapes representing the bases of the maximum variance 

(PC1), second maximum variance (PC2), etc. This type of operation is empirical, and the PCA 

model is fully dependent on the studied dissolution profiles. The mathematical expression of the 

PCA model is presented as the following equation 

C(t) = Mean + Score pc1,dis × 𝑦𝑦𝐶𝐶1𝑑𝑑𝑖𝑖𝑑𝑑 + Score pc2,dis × 𝑦𝑦𝐶𝐶2𝑑𝑑𝑖𝑖𝑑𝑑 + ⋯+  ε Eq. 3.10 

where C(t) is the mean-centered dissolution profile, Score pc1,dis and Score pc2,dis are the scores, 

and 𝑦𝑦𝐶𝐶1dis and 𝑦𝑦𝐶𝐶2dis are the loadings of the dissolution profile. The PCA model was built on 

the variance space. The scores of PCs are the model parameters indicating the weights of the shapes 

(PCs). Recombination of the mean, the scored weighted shapes, and the fitting errors can return 

the original dissolution profiles.  

 

3.2.5 Process Modeling Methods 

The process model provides a mathematical understanding of the manufacturing process to 

speed development and facilitate control. Modeling a solids-based process is not as mature as the 

API synthesis and crystallization in the pharmaceutical industry.164 It is partially due to the 

challenge associated with the continuum duality of particulate materials, which means the bulk 

behavior of particulates is determined by particle-level phenomena (details were discussed in 
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Section 1.3.1.3). The multivariate nature of material attributes and process parameters brings 

another challenge since no generalized equation can link those variables to process performance.165 

A mechanistic modeling approach such as discrete element method149,166 and population balance 

modeling150 are simulation methods that can accurately evaluate all particles in a system over a 

short period. However, the computational cost and the challenges related to robustness limit their 

applications for a comprehensive process model.167 In contrast, the empirical approach assuming 

a quadratic function to map the response surface is widely adopted to establish process models for 

design space.168-170 The complete form of a quadratic function is a linear combination of the main 

factors, their quadratic terms, and interaction terms expressed as the following equation.  

Y = �𝑋𝑋i

𝑛𝑛

𝑖𝑖=0

𝛽𝛽𝑖𝑖 + � 𝑋𝑋i

𝑛𝑛

𝑖𝑖=1,𝑖𝑖=1

𝑋𝑋j𝛽𝛽𝑖𝑖𝑖𝑖 + �𝑋𝑋𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

𝛽𝛽𝑖𝑖_2 +  ε Eq. 3.11 

where X is the main factor, and β is the coefficient. Practically, the main factor needs to be 

investigated in at least three levels to have a meaningful quadratic term. In this study, the designed 

variability in the calibration set allowed the model to include the quadratic term of coating weight 

gain. We applied two regression methods to fit the model and compared their performance using 

the test set. 

 

3.2.5.1 Partial Least Squares Regression 

Partial least squares regression (PLS) is a statistical modeling method that reduces the number 

of model parameters by projecting the predictors to a latent space and thus increases the degrees 

of freedom of the errors. The latent space is structured based on the covariance between the 

predictors and the responses. Those properties make the PLS approach suitable for data sets with 

either more variables than samples or collinearity among the variables. In this study, the calibration 
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set of the DoE encompassed four main factors, including GSD, relative humidity, fluidization air 

volume, and coating weight gain. The predictor matrix had 11 variables (the GSDs were 

represented using one PC) after the addition of interactions and quadratic terms. The responses 

were the fitting parameters of the dissolution profiles. Four PLS models were built using Eq. 3.11 

to independently predict the scale factor λ and the shape factor k from the Weibull function fitting 

and the scores of PC1 and PC2 from the PCA model. The PLS modeling approach was relatively 

straightforward, and the model statistics provided us some interpretability to better understand the 

coating process. However, as a linear combination of the variables, PLS was not always the optimal 

solution, which meant the model was sometimes underfitted. 

 

3.2.5.2 Gaussian Process Regression 

Gaussian process regression (GPR) is a non-parametric method that takes measures of the 

similarity between samples and generates the predicted value with the uncertainty (Gaussian 

distribution) for the future sample. A Gaussian process is a stochastic process assuming that every 

studied response (Y) follows a Gaussian distribution, and so does every linear combination of them. 

The predictors (X) are used to calculate the covariance between responses from different samples. 

The joint distribution of Y values of the calibration and test sets can be expressed using an X 

matrix, shown as the following distribution. 

�𝑌𝑌𝑢𝑢𝑡𝑡𝑡𝑡𝑖𝑖𝑏𝑏𝑟𝑟𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡𝑛𝑛𝑌𝑌𝑡𝑡𝑑𝑑𝑑𝑑𝑡𝑡
�~ 𝑁𝑁�µ, �𝐾𝐾

(𝑋𝑋𝑢𝑢𝑡𝑡𝑡𝑡𝑖𝑖𝑏𝑏𝑟𝑟𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡𝑛𝑛,𝑋𝑋𝑢𝑢𝑡𝑡𝑡𝑡𝑖𝑖𝑏𝑏𝑟𝑟𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡𝑛𝑛) + 𝜎𝜎2𝐴𝐴 𝐾𝐾(𝑋𝑋𝑢𝑢𝑡𝑡𝑡𝑡𝑖𝑖𝑏𝑏𝑟𝑟𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡𝑛𝑛,𝑋𝑋𝑡𝑡𝑑𝑑𝑑𝑑𝑡𝑡)
𝐾𝐾(𝑋𝑋𝑡𝑡𝑑𝑑𝑑𝑑𝑡𝑡,𝑋𝑋𝑢𝑢𝑡𝑡𝑡𝑡𝑖𝑖𝑏𝑏𝑟𝑟𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡𝑛𝑛) 𝐾𝐾(𝑋𝑋𝑡𝑡𝑑𝑑𝑑𝑑𝑡𝑡,𝑋𝑋𝑡𝑡𝑑𝑑𝑑𝑑𝑡𝑡)

�� 

where X and Y are mean-centered data, N standards for normal distribution, K is the kernel 

function used to measure the similarity between samples, 𝜎𝜎 is the uncertainty of X, and 𝐴𝐴 is the 

identity matrix. The joint distribution is essential to the GPR model. The prediction format is 

expressed as Eq. 3.12. 
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𝑌𝑌𝑡𝑡𝑑𝑑𝑑𝑑𝑡𝑡� = 𝐾𝐾(𝑋𝑋𝑡𝑡𝑑𝑑𝑑𝑑𝑡𝑡,𝑋𝑋𝑢𝑢𝑡𝑡𝑡𝑡𝑖𝑖𝑏𝑏𝑟𝑟𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡𝑛𝑛)[𝐾𝐾(𝑋𝑋𝑢𝑢𝑡𝑡𝑡𝑡𝑖𝑖𝑏𝑏𝑟𝑟𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡𝑛𝑛,𝑋𝑋𝑢𝑢𝑡𝑡𝑡𝑡𝑖𝑖𝑏𝑏𝑟𝑟𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡𝑛𝑛) + 𝜎𝜎2𝐴𝐴]−1𝑌𝑌𝑢𝑢𝑡𝑡𝑡𝑡𝑖𝑖𝑏𝑏𝑟𝑟𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡𝑛𝑛 Eq. 3.12 

The kernel function K is the critical component that grants GPR tremendous flexibility to fit almost 

any type of data but at the same time increases the risk of overfitting. A GPR model becomes 

equivalent to an ordinary least squares regression when a linear kernel (Euclidian distance) is used, 

and 𝜎𝜎 is set as zero. Four GPR models were established to predict the four responses: two Weibull 

parameters and two PC scores. A radial basis function was used as the kernel to allow the similarity 

between samples to be assessed in infinite dimensions. The kernel helped handle the nonlinearity 

in the response surface where the fitting of a quadratic function was insufficient.   

 

3.3 Results and Discussion 

The process models that captured the relationship between the investigated factors and their 

effects on in vitro dissolutions were established and tested in this study. The multivariate nature 

of the GSD and the dissolution profile made them difficult to be directly used in the process model, 

and thus curve-fitting methods were employed to transform them into fewer variables. After the 

data pretreatment, the process models were established using PLS and GPR regressions.  

 

3.3.1 Modeling of Granule Size Distribution 

There were three levels of GSDs in the calibration set and five levels in the test set. The curve 

fitting results of the GSDs are shown in Table 3-3, the R2s and RMSEs being in the range of 0.843 

- 0.988 and 0.029 - 0.108, respectively, calculated by comparing the fitted and original GSDs. The 

power-law model has the weakest prediction accuracy in comparison with other models. Weibull 

and Van Genuchten models have statistically similar performance (p > 0.05) in their R2s and 

RMSEs, which outperform the power law and logarithmic models. The PCA model is a little tricky 
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since there are only three different distributions in the calibration set. There were only two degrees 

of freedom available for the PCA modeling after the mean-centering preprocessing.  

Table 3-3: Results of the five curve-fitting methods on the three GSDs of the calibration set 

Models 
R2 RMSE 

mean standard deviation mean standard deviation 

Weibull 0.988 0.063 0.029 0.008 

Power law 0.843 0.093 0.108 0.045 

Van Genuchten 0.976 0.071 0.032 0.008 

logarithmic 0.922 0.097 0.076 0.029 

PCA (1 latent Variables) 0.996 0.003 0.008 0.006 

 

The PCA model describes the 96.7% variance of the GSDs with only one parameter. The 

highest R2 (0.996) and the lowest RMSE (0.008) indicate the PCA model is the optimal method 

compared to the other four (p ≤ 0.05). Eq. 3.13 was used to calculate the scores of PC1, which 

were later used as predictors in process modeling. 

𝐺𝐺𝑦𝑦𝐿𝐿 = 𝑀𝑀𝑦𝑦𝑠𝑠𝐹𝐹 + 𝑦𝑦𝑠𝑠𝐹𝐹𝐹𝐹𝑦𝑦 𝑝𝑝𝑢𝑢1,GSD × 𝑦𝑦𝐶𝐶1GSD + 𝜀𝜀 Eq. 3.13 

The five GSDs of the uncoated granules are illustrated in Figure 3-4A, three of them being used 

in the calibration (level 1, 3, and 5) of the PCA model. The PCA model captured the difference 

between the GSDs. The term “Mean” in Eq. 3.13 means the mean shape of the three calibration 

batches. The loading of PC1, shown in Figure 3-4B, illustrated the primary shape of the variability 

of GSDs. Any GSD could be constructed by a linear combination of the mean shape and the 

weighted loading shape of PC1, using Eq. 3.13. The weight of the loading was “𝑦𝑦𝑠𝑠𝐹𝐹𝐹𝐹𝑦𝑦 𝑝𝑝𝑢𝑢1”. With 

the known shapes of mean and the loading of PC1, The values of  “𝑦𝑦𝑠𝑠𝐹𝐹𝐹𝐹𝑦𝑦 𝑝𝑝𝑢𝑢1” could be used to 

represent the GSDs. Comparing to the other four methods, the PCA model provides the advantage 
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of simplicity and accuracy. In this study, the R2 and RMSE of the test data were 0.983 and 0.009, 

respectively. 

 

Figure 3-4: (A) the five GSDs of uncoated granules and (B) the loading of PC1 from the PCA 
model of GSDs. 

 

3.3.2 Empirical Fitting Results of Dissolution Curve  

The in vitro dissolution profiles of the calibration (30 design points) and the test (27 design 

points) are shown in Figure 3-5. The calibration set covers a broad range of dissolution profiles, 

and the test data falls within the designed range. The Weibull function and the PCA model were 

used to fit the dissolution profiles. The Weibull function fitting results in high R2 values (0.975 – 

0.998) for the dissolution profiles, indicating that the primary curve shapes are captured. The PCA 

model decomposed the variance space of the dissolution profiles. The first three PCs explain 

97.32%, 2.43%, and 0.10% of the total variance, respectively. The loading shapes of the PCs are 

illustrated in Figure 3-6. Since the dissolution data were mean-centered before subjected to PCA 

modeling, the loadings represent the variability but not the mean of the dissolution profiles. The 

loadings of PC1 and PC2 are smoother than that of PC3, suggesting more noise is captured by PC3 
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than PC1 and PC2. The first two PCs were used as the best fit of the dissolution profiles to 

minimize the modeled noise and simplify the process models. The total variance captured by the 

PCA model equals the sum of PC1 and PC2, 99.75%. 

 

Figure 3-5: The mean dissolution profiles calculated from the three replicates of the calibration 
and test sets  
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Figure 3-6: The loadings of PC1, PC2, and PC3 are calculated from the dissolution curves of the 
calibration set. 

 

The two fitting residual profiles were examined, and the patterns are illustrated in Figure 3-7. 

The Weibull function fitting causes a bias between the measured and fitted data where the 

measured fractions of drug released are consistently lower than the fitted data during the initial 30 

minutes. The residual pattern from 30 to 600 minutes is a continuous smooth wave shape. The 

error bars indicate that the pure error is more significant than the bias at most of the time points 

(the 95% confidence intervals included zero). In contrast, the PCA approach does not introduce 

any bias to the error structure due to its mean centering step. In both the Weibull function and PCA 
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fittings, the errors change along the time-axis in the 600 minutes interval, and the absolute values 

of the pure errors are around 0.005 at most time points. 

 

Figure 3-7: The error shapes of the Weibull function fitting and the PCA model. 

 

3.3.3 Process Modeling Results 

Four process models were established by regressing the four responses (two Weibull parameters 

and two PC scores) on the predictors, including fluidization air volume, weight gain, particle size 

distribution, and relative humidity.  Fluidization air volume, weight gain, and relative humidity 

were continuous variables. Particle size distribution was in the form of a probability density 

function, which the PCA model fitted. The scores of the first two PCs (in place of the GSD) were 

used as the regression predictors.  
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3.3.3.1 Partial Least Squares Regression (PLS) 

The numbers of latent variables were optimized in the PLS models using a random-subset cross-

validation method with five data splits and five iterations, randomly partitioning the full calibration 

into five equal-sized subsets. One of the five subsets was retained as validation data for model 

testing, and the remaining four were used as calibration data. Five results were generated from the 

five subsets for one iteration and were averaged to produce a single root-mean-square error of 

cross-validation (RMSECV). Five iterations were applied, and the RMSECVs of all iterations were 

averaged. The latent variable selection minimized the cross-validation errors using a reasonable 

number of latent variables.  

With the Weibull parameters being the model responses, three latent variables were selected in 

the PLS models to predict the scale (λ) and shape (k) factors. The number of chemical and physical 

factors is far greater than three, suggesting that the number of selected latent variables does not 

put the model at risk of overfitting. The coefficients of determination (R2) and root-means-square 

errors of prediction (RMSEP) were calculated to evaluate the model performance using the test 

set. The two PLS models were mathematically expressed as the following equations: 

for scale factor λ, 

λ𝑑𝑑𝑢𝑢𝑡𝑡𝑡𝑡𝑑𝑑𝑑𝑑 = −0.109𝑋𝑋1 − 0.033𝑋𝑋2 + 0.341𝑋𝑋3 + 0.056𝑋𝑋4 − 0.067𝑋𝑋1𝑋𝑋2 + 0.238𝑋𝑋1𝑋𝑋3 +

0.059𝑋𝑋1𝑋𝑋4 + 0.122𝑋𝑋2𝑋𝑋3 + 0.061𝑋𝑋2𝑋𝑋4 + 0.061𝑋𝑋3𝑋𝑋4 + 0.349𝑋𝑋32                                                                                 

and for shape factor k, 

k𝑑𝑑𝑢𝑢𝑡𝑡𝑡𝑡𝑑𝑑𝑑𝑑 = −0.605𝑋𝑋1 + 0.019𝑋𝑋2 + 0.204𝑋𝑋3 + 0.027𝑋𝑋4 − 0.183𝑋𝑋1𝑋𝑋2 − 0.152𝑋𝑋1𝑋𝑋3 +

0.049𝑋𝑋1𝑋𝑋4 + 0.086𝑋𝑋2𝑋𝑋3 + 0.039𝑋𝑋2𝑋𝑋4 + 0.01𝑋𝑋3𝑋𝑋4 + 0.19𝑋𝑋32                                                    

where λ𝑑𝑑𝑢𝑢𝑡𝑡𝑡𝑡𝑑𝑑𝑑𝑑 and k𝑑𝑑𝑢𝑢𝑡𝑡𝑡𝑡𝑑𝑑𝑑𝑑 = autoscaled Weibull parameters; 𝑋𝑋1 = scaled fluidization air volume; 

𝑋𝑋2 = scaled relative humidity; 𝑋𝑋3 = scaled weight gain; 𝑋𝑋4 = PC1 score of GSD. 
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The predictors strongly correlate to the scale factor λ, with R2 being 0.967 for calibration and 

0.940 for cross-validation (Figure 3-8A). It reveals that the model explains most of the variance in 

the designed space. The RMSEC and RMSECV are 19.4 and 26.1 (unitless), numerically close to 

each other, indicating a reduced risk of overfitting. The R2 is 0.884 for the test set, and RMSEP is 

26.8, indicating that the model prediction on the test set is similar to the cross-validation. Figure 

3-8B depicts the correlation between the predictors and the shape factor k. The R2 value are 0.816 

for calibration, 0.756 for cross-validation, and 0.497 for prediction. The RMSEC, RMSECV, and 

RMSEP are 0.0220, 0.0256, and 0.0269. Although the prediction of k is not as accurate as λ, the 

PLS model significantly (F-test, P<0.05) reduces the error from the standard deviations of k values 

in calibration (0.0515) and test set (0.0349).  

 

Figure 3-8: The PLS model predicting (A) the scale factor 𝜆𝜆 and (B) the shape factor k 

 

Three latent variables were selected for the PC1 scores, and two latent variables were selected 

for the PC2 scores when predicting the PC scores from modeling dissolution. Figure 3-9A shows 

that the model predicting PC1 has good accuracy, with R2s being 0.983 for calibration, 0.970 for 

cross-validation, and 0.867 for prediction. However, the RMSEP (0.278) of the PC1 model almost 
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doubles the values of RMSEC (0.120) and RMSECV (0.162), suggesting a potential risk of 

overfitting. The mathematic form of the PC1 model can be expressed as the following equation: 

PC1 Score = 0.108𝑋𝑋1 + 0.038𝑋𝑋2 − 0.35𝑋𝑋3 − 0.062𝑋𝑋4 + 0.069𝑋𝑋1𝑋𝑋2 − 0.249𝑋𝑋1𝑋𝑋3 −

0.066𝑋𝑋1𝑋𝑋4 − 0.107𝑋𝑋2𝑋𝑋3 − 0.055𝑋𝑋2𝑋𝑋4 − 0.048𝑋𝑋3𝑋𝑋4 − 0.342𝑋𝑋32                                                                                 

where 𝑋𝑋1 = scaled fluidization air volume; 𝑋𝑋2 =  scaled relative humidity; 𝑋𝑋3 = scaled weight 

gain; 𝑋𝑋4 = PC1 score of GSD. Since PC1 scores of the dissolution profiles are mean-centered, the 

model equation does not have the intercept.  

Figure 3-9B reveals the correlation between the predictors and the scores of PC2 is weak, with 

R2s being 0.155 for calibration, 0.092 for cross-validation, and 0.048 for prediction. The root-

mean-square error of cross-validation (0.177) and prediction (0.100) are not significantly different 

(p>0.05) from the standard deviation of the calibration (0.150) and test (0.089). The PLS model 

cannot predict the scores of PC2 with the desired accuracy.  

 

Figure 3-9: The PLS model predicting (A) the scores of PC1 and (B) the scores of PC2. 

 

The PLS algorithm generated a few model statistics, which allowed us to gain some process 

understanding. The variable importance in projection (VIP) score is a ranking indicator of each 
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predictor, calculated using the regression coefficient b, weight vector wj, and score vector tj, as 

given in Eq. 3.14. 

𝑉𝑉𝐴𝐴𝑦𝑦 𝑦𝑦𝑠𝑠𝐹𝐹𝐹𝐹𝑦𝑦𝑘𝑘 = �𝐹𝐹
∑ 𝑏𝑏𝑖𝑖2𝐹𝐹𝑖𝑖𝑇𝑇𝐹𝐹𝑖𝑖(

𝑤𝑤𝑘𝑘𝑖𝑖
�𝑤𝑤𝑘𝑘𝑖𝑖�

)2𝑡𝑡
𝑖𝑖=1

∑ 𝑏𝑏𝑖𝑖2𝐹𝐹𝑖𝑖𝑇𝑇𝐹𝐹𝑖𝑖𝑡𝑡
𝑖𝑖=1

 Eq. 3.14 

where wkj is the kth element of the weight vector wj.  

A VIP score is a measure of variable contribution to predicting the response (Y), which does 

not reveal the statistical significance of a particular variable but indicates its importance relative 

to the other variables. Variables with higher VIP scores contribute the most to Y, and those with 

lower VIP scores have little influence on Y. However, the nature of the PLS algorithm makes the 

VIP calculation sensitive to collinearity. Highly collinear variables share one projection direction, 

which means the contributions of individual variables could appear low even if the projection 

direction is important. In this case, the VIP score of one variable could increase substantially after 

excluding the other collinear variables.  

To better understand the VIP scores in our study, we adopted a “jack-knifed confidence interval” 

method to assess the variables with statistical measures.171 The method repeatedly calculated the 

VIP scores from the PLS models using a leave-one-variable-out approach. A column of randomly 

generated values was added to the predictor matrix to function as a reference, no correlation 

between this column and the responses. Twelve PLS models were generated for one response after 

every variable was left out once. The confidence intervals of the VIP scores could be calculated 

for all variables. Figure 3-10A illustrates the VIP scores and the confidence intervals of the 

variables predicting the scale factor λ. The target weight gain (X3) and its quadratic term (X3^2) 

have significantly higher VIP scores than the other variables, including the column of random 
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values. Since the coating is applied to control the dissolution profile, It is anticipated that the target 

weight gain is the predominant variable determining the scale factor.  

In contrast, the fluidization air volume (X1) and the interaction between air volume and target 

weight gain have significantly higher VIP scores than the others in the PLS model, predicting the 

shape factor k, shown in Figure 3-10B. A likely explanation is that the air volume influences the 

fluidization pattern and leads to uneven coating deposits on the granules of different sizes. If more 

coating was deposited on the smaller granules, the apparent dissolution rate tended to appear 

slower at the early stage and faster at the late stage. In our study, we observed the different weight 

gains between small granules (< 355 µm) and large granules (> 355 µm) from the same batch. 

Although statistically insignificant, the ratios of weight gains between small and large granules 

were different between experimental runs of different air volumes.  

Figure 3-10C shows the VIP scores and the confidence intervals of the variables predicting the 

PC1 score, which has a similar pattern to the model predicting the scale factor λ (Figure 3-10A). 

Figure 3-10D reveals the correlation between the scale factor λ and the PC1 score, indicating a 

strong but nonlinear relationship (R2 = 0.974). It confirms that the scale factor λ of the Weibull 

function captures the major variability of the dissolution profiles, and the coating weight gain is 

the most influential variable impacting the dissolution profiles. The PLS models for the PC2 scores 

were not significant, and thus the importance of the variables was not investigated. 
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Figure 3-10: (A) VIP scores of the variables in the PLS model predicting the scale factor λ, (B) 
VIP scores of the variables in the PLS model predicting the shape factor k, (C) VIP scores of the 
variables in the PLS model predicting the score of PC1, (D) the correlation plot between the scale 
factor λ and the score of PC1. 𝑋𝑋1 = scaled fluidization air volume; 𝑋𝑋2 =  𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑦𝑦𝑦𝑦 relative humidity; 
𝑋𝑋3 = scaled weight gain; 𝑋𝑋4 = PC1 score of GSD; rand() =a column of random values 

 

3.3.3.2 Gaussian Process Regression (GPR) 

The GPR models were optimized using Bayesian optimization172, which stochastically 

determined the hyperparameters when the objective function was not available but known to be 

convex. The prior GPR model was a Gaussian distribution with added Gaussian noise σ, and the 
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kernel was a radial basis function with a kernel parameter θ. Thus, the prior distribution has the 

covariance 𝐾𝐾(𝑋𝑋𝑢𝑢𝑡𝑡𝑡𝑡𝑖𝑖𝑏𝑏𝑟𝑟𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡𝑛𝑛,𝑋𝑋𝑢𝑢𝑡𝑡𝑡𝑡𝑖𝑖𝑏𝑏𝑟𝑟𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡𝑛𝑛|𝜃𝜃) + 𝜎𝜎2𝐴𝐴. Fitting the GPR model to the calibration data is 

computationally-intensive to solve the noise σ and the kernel parameter θ. In this study, the 

Bayesian optimization algorithm was applied to maximize an acquisition function, called expected 

improvement (EI),173, 174 instead of a clearly defined objective function. It started with a random 

set of (θ, 𝜎𝜎) to obtain a series of posterior distributions of Y (the responses), and then iteratively 

change the values of (θ, 𝜎𝜎) using the method suggested by Bull.175 The optimization process 

stopped after 30 iterations because multiple runs from different seeds (start points) showed the 

optimization criteria converged before 30 iterations. The best set of (θ, 𝜎𝜎), which had the most 

significant expected improvement, was selected. Figure 3-11A revealed a strong correlation 

between the predictors and the Weibull scale factor λ, with R2s being 0.975 for calibration and 

0.901 for prediction. The RMSEC and RMSEP of the GPR model were 18.7 and 24.6. The T-test 

showed there was no significant difference between the RMSEPs of the GPR and PLS models at 

a 95% confidence level(P>0.05).  

Figure 3-11B showed the performance of the GPR model predicting the shape factor k. The R2 

of calibration is 0.825, and the R2 of prediction is only 0.495. The RMSEC (0.0222) and RMSEP 

(0.0260) of the GPR model were statistically insignificantly different from the previous PLS model 

(P>0.05) at a 95% confidence level. The PLS and GPR models had similar performance in 

predicting the Weibull parameters. 
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Figure 3-11: The GPR model predicting (A) the scale factor 𝜆𝜆 and (B) the shape factor k 

 

Figures 3-12 A and B depicted the performance of the GPR model predicting the PC1 and PC2 

scores of the dissolution profiles. The GPR model showed strong predictability on the PC1 scores, 

with R2s being 0.987 for calibration and 0.881 for prediction. The RMSEC and RMSEP of the 

model predicting the PC1 score were 0.13 and 0.26, insignificantly different from the PLS model 

(0.12 and 0.28). In contrast, the GPR model for PC2 scores exhibited a risk of overfitting, with R2 

being 0.999 for calibration and 0.281 for prediction. The RMSEP for PC2 scores was 0.082, which 

was 16 folds greater than the RMSEC (0.005). Compared to the PLS algorithm, GPR is a black-

box modeling method with little interpretability. Limited statistics are available to understand the 

contribution of each variable towards the final prediction. 
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Figure 3-12: The GPR model predicting (A) the scores of PC1 and (B) the scores of PC2. 

 

3.3.4 Reconstructed Dissolution Profiles from PLS and GPR.  

The previous section (3.3.3) discussed the performance of the four modeling methods:  

(1) the PLS model that predicted the Weibull parameters (λ and k) of the dissolution profiles,  

(2) the GPR model that predicted the Weibull parameters of the dissolution profiles,  

(3) the PLS model that predicted the PCA scores of the dissolution profiles,  

(4) the GPR model that predicted the PCA scores of the dissolution profiles.  

The predicted Weibull parameters and PCA scores were used to reconstruct the dissolution 

profiles. It should be noted that the PLS and GPR models cannot predict the PC2 scores of the 

dissolution profiles accurately. The dissolution curve based on the PCA fitting was reconstructed 

using the predicted PC1 scores and the mean dissolution profile. Since only 2.43% variance of the 

dissolution profiles was explained in PC2, the error caused by excluding PC2 from the model was 

considered acceptable. 
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The self-prediction, cross-validation, and test-prediction were used to estimate the accuracy of 

the reconstruction dissolution profiles. The RMSEC, RMSECV, and RMSEP profiles along 

individual time points of the dissolution profiles were calculated by subtracting reconstructed 

dissolution profiles from the actual dissolution profiles. Since the GPR model was optimized using 

Bayesian optimization instead of cross-validation, only the RMSEC and RMSEP profiles were 

presented.  

The absolute error vs. time plot of the first modeling method (Figure 3-13A) shows that the 

error gradually increases from 0 to 100 minutes in all three profiles. From 100 to 200 minutes, the 

error remains above 0.025 for RMSEC, 0.03 for RMSECV, and 0.035 for RMSEP. After the time 

point of 200 minutes, all three error profiles show a decreasing trend over time. Similar trends of 

the absolute vs. time plots are observed in the other three methods (Figure 3-13B, C, and D). This 

observation is consistent with the raw dissolution profiles (Figure 3-5), where the most substantial 

variability is observed from the second hour to the fourth hour between the design points. 

Comparing Figure 3-13A and B, the RMSEC and RMSEP profiles of the PLS and GPR models 

are similar when the same dissolution curve-fitting method: Weibull function fitting, was applied. 

The critical time points of the in-house specification are identified on the RMSEP profiles: the 

error values are around 0.02, 0.035, 0.035, and 0.025 at Hour 1, 2, 4, and 8, respectively. The 

highest values of the two RMSEP profiles are below 4% in both plots. The similarity of RMSEP 

profiles between the PLS and GPR models is depicted in Figures 3-13C and D, where the PCA 

model fits the dissolution curves. The RMSEP values at the critical time points are around 0.03, 

0.05, 0.045, and 0.03 at Hour 1, 2, 4, and 8, respectively. The highest RMSEP values of the two 

error profiles are both around 5%.   
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The results reveal that the PLS and GPR regressions had similar performance in terms of the 

errors between the actual and reconstructed dissolution profiles. It is consistent with the previous 

finding that the two regression methods have similar performance predicting the Weibull 

parameters or the PCA scores. Meanwhile, the models predicting the Weibull parameters 

outperform the models predicting the PCA scores. The previous discussion reveals that the pure 

errors of the two curve-fitting methods are similar (around 0.005 at most time points), and there is 

a fitting bias in the error profile of the Weibull function fitting. Therefore, the higher errors in the 

reconstructed dissolution profiles from the PCA model are mainly due to the higher errors of the 

process models, regardless of the regression methods. The process models do not accurately 

predict the scores of PC2 from the PCA model, which by default introduces 2.4% relative error 

into the reconstructed dissolution profiles. 
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Figure 3-13: Absolute error vs. time plots from the four modeling methods in calibration, cross-
validation, and prediction. (A) the PLS model that predicted the Weibull parameters of the 
dissolution profiles; (B) the GPR model that predicted the Weibull parameters of the dissolution 
profiles; (C) the PLS model that predicted the PCA scores of the dissolution profiles; (D) the GPR 
model that predicted the PCA scores of the dissolution profiles. 

 

3.4 Conclusion 

The impact of four predictors (fluidization air volume, coating weight gain, inlet air relative 

humidity, and granule size distribution (GSD)) on the in vitro dissolution of granules produced in 

a fluid bed coating process was studied using a response surface methodology. Both the GSD as a 
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predictor and the in vitro dissolution as the response had multiple variables. Principal component 

analysis (PCA) was used to reduce the GSD from a multivariate distribution to one variable (score 

of PC1). The in vitro dissolution profiles were fitted using two algorithms: Weibull function and 

PCA. Process models were established by regressing the in vitro dissolution on the four predictors. 

Two regression methods: PLS and GPR, were applied and compared. The process model using a 

combination of PLS regression and Weibull function showed the best performance in predicting 

the in vitro dissolution profiles.  

The study of this chapter accomplished Specific Aim 2 by developing the process models of the 

fluid bed coating process. The process models serve as the basis of feedforward control loops in 

the following studies. 
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Chapter 4 : Development of Real-Time Predictive Models for In-Process 

Monitoring and Feedback Control using Near-infrared Spectroscopy and 

Raman Spectroscopy 

 

Abstract 

A feedback control system for a coating process must maintain the in-process moisture level, 

and ensure polymer deposition, and preserve theophylline monohydrate at desired levels to prevent 

batch collapse and obtain reproducible product dissolution profiles. This study utilized NIR and 

Raman spectroscopic technologies to develop in-line and at-line models that predict the values of 

loss on drying (LoD), coating weight gain, and theophylline monohydrate concentration in coated 

granules. Partial least squares regression (PLS) was utilized as the modeling method to extract 

information from the multivariate spectral data correlated to the analytes of interest. NIR 

spectroscopy was successfully applied to predict 1) the LoD values of the granules, which was a 

surrogate indicator for the moisture level at the steady state of the coating process, and 2) coating 

weight gain to indicate when the desired target was reached. The NIR models were used to 

maintain the steady-state moisture level and terminate the spray phase of the coating process via 

closed-loop feedback control. Raman spectroscopy was employed to monitor and control the 

concentration of theophylline monohydrate in the coated granules during the drying stage. 

However, the predicted concentration of theophylline monohydrate was insufficient for the control 

of in vitro dissolution profiles due to the uncertainty of the Raman model at low concentrations 

(RMSECV = 2.5%w/w). Thus, instead, the NIR model for LoD was utilized to determine the 

drying endpoint of the coating process. This study showed that the PATs enabled the real-time 
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monitoring and control for the coating process, and the selection of PAT should be based on the 

practical considerations and model uncertainty. 

 

4.1 Introduction 

Process analytical technology (PAT) has drawn a great deal of attention as a tool to optimize, 

monitor, and control the pharmaceutical manufacturing process to improve product quality. 

Adopting PAT allows the pharmaceutical industry to take in-line, on-line, or at-line measurement 

of the critical quality attributes (CQAs) for in-process or end products. PAT offers several 

advantages as a real-time analysis method, including minimal sample preparation and rapid data 

collection of the variability from physical and multiple chemical sources.176 

Near-infrared (NIR) spectroscopy is a widely used PAT tool for process monitoring under the 

QbD paradigm. The NIR signals are the overtones of the mid-IR band caused by asymmetric 

molecular vibration. NIR radiation is absorbed by the chemical bonds that present a change in the 

dipole moment with molecular vibration. The typical low absorptivity of a chemical substance in 

the NIR region results in the ability to examine a sample with no or minimal sample preparation, 

enabling a rapid and non-destructive measurements.177 Water is probably the most common 

measurement made using the NIR spectroscopy since it has four strong characteristic bands in the 

NIR region of 970, 1200, 1450, and 1950 nm. NIR had been reported for use in a fluid bed 

processor to determine the in-process product moisture level in real-time.96, 178, 179 In addition, 

several studies have shown applications of NIR spectroscopy in monitoring drug potency, content 

uniformity, and coating weight gain for pharmaceutical unit operations, including wet granulation, 

blending, tableting, roller compaction, and coating.96, 180-183  



130 
 

As a complementary technique to NIR spectroscopy, Raman spectroscopy is the observation of 

inelastically scattered photons upon their interaction with electromagnetic radiation and molecular 

vibrations, phonons, or other excited vibrational states, resulting in a frequency shift of the incident 

light. Raman scattering is highly selective, so that it becomes an ideal alternative PAT to NIR. 

Raman spectroscopy has been used in characterizing coating properties,184 in-line monitoring fluid 

bed coating process,185 and detecting theophylline hydration and dehydration.120 

Both NIR and Raman spectral data often include hundreds to thousands of variables. With 

advancements in computational devices and chemometrics, analysis of the raw spectra is practical 

and computationally feasible. Chemometric techniques, including variable selection, data 

pretreatment, and dimension reduction methods, are often required to minimize the noise and 

extract relevant information for quantitative analysis. The optimization of the NIR and Raman 

models is critical because the prediction needs to be accurate, precise, and robust. Under or over-

fitting of the spectral data can result in poor future model performance. 

The framework of this chapter was built upon the experimental design described in Chapter 3. 

The blocks of yellow dashed lines in Figure 4-1 illustrate how the development of NIR and Raman 

models was related to the experimental design for process modeling. In-line NIR predictive models 

that monitored LoD values (in-process moisture level) and coating weight gain were established 

using the data collected during the calibration batches of the process models. The LoD model was 

utilized to facilitate a feedback control loop that proportionally adjusted the spray rate based on 

the deviation of moisture level from the target value for the test set. The coating weight gain model 

was developed to indicate the time when the target coating weight gain was obtained so that the 

spraying of the coating process could be terminated. The performance of the coating weight gain 

model was evaluated using the data of the test runs; model statistics (R2 and RMSEP) being 
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calculated. In contrast to the NIR model calibration, the design of calibration for the Raman model 

that predicts theophylline monohydrate (w/w) in the dried granules is independent of the 

experiments for process modeling. The predicted theophylline monohydrate concentration (w/w) 

was used to determine the endpoints of the drying phases.  

 

Figure 4-1: Illustration of the experimental plan and data analysis for the process modeling and 
the development of PAT models (shown in blocks of yellow dashed lines). The NIR models were 
developed using the data collected during the response surface design described in Chapter 3. The 
Raman model was established based on an independent design of calibration. 
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4.2 Materials and Methods 

4.2.1 Materials and Equipment 

The details of the materials, coating equipment, and NIR sensor set-up were described in 

Chapter 3. The off-line Raman spectra of the coated granules were collected during the drying 

phase using an RXN2 Hybrid analyzer (Kaiser Optical Systems, Ann Arbor, MI) with a 

thermoelectrically cooled charge-coupled detector. The raw data of NIR and Raman spectroscopy 

were processed using Matlab software (with Optimization Toolbox, version R2017a, Mathworks 

Inc., Natick, MA) and PLS Toolbox (version 8.2.1) by Eigenvector Research (Manson, WA).  

 

4.2.2 Design of Calibration 

NIR models 

The DoE for process modeling was described in Section 3.2.2. This study developed two in-

line NIR models to monitor in-process moisture level and coating weight gain using the data 

collected in the previously described calibration and test coating batches. It should be noted the 

loss on drying (LoD) value was used as a surrogate indicator for in-process moisture level since 

no volatile component other than water was presented in the formulation of both coated core and 

coating dispersion.  

Raman model 

The Raman model was developed to predict theophylline monohydrate concentration during 

the drying process. As a complex system containing a core and a coating layer, the coated granules 

were ground to powder using mortar and pestle to obtain representative Raman spectra. The 

calibration of the Raman model used a powder mixture of the pure API and excipients. The API 

and excipients were also ground using mortar and pestle for the same amount of time as the 
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granules to estimate the effect of grinding on the theophylline solid-state form. The calibration set 

was designed to decorrelate theophylline anhydrous and monohydrate signals, shown in Figure 4-

2A. The coefficient of determination in the calibration design between the concentrations of the 

hydrate and anhydrate was 0.0221. Theophylline monohydrate was prepared by recrystallization 

from supersaturated theophylline solution and stored at the 95% RH condition maintained by a 

saturated solution of potassium nitrate. 

In addition to the theophylline, the coated core also contained 1% w/w Hypromellose (HPMC), 

18.5% w/w microcrystalline cellulose (MCC), and 19.5% w/w lactose monohydrate. The seven 

design points on the diagonal from the top left to the bottom right of Figure 4-2A were augmented 

with additional design conditions that included the excipient variability to enhance the robustness 

of the model. Shown as Figure 4-2B, the augmented design kept the 1% w/w HPMC consistent, 

varied the concentration of lactose monohydrate in three levels (10%, 19.5%, 29% w/w), and 

adjusted the concentration of MCC to a total of 100%. The powder mixtures were blended with an 

additional 20% w/w of the coating, of which the film was cast on a petri dish and then ground to 

powder using mortar and pestle. 
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Figure 4-2: (A) the design of the ratio between theophylline anhydrous and theophylline 
monohydrate. (B) The three lactose concentration levels augment the seven design points on the 
leading diagonal of (A).  

 

4.2.3 Near-infrared Spectra (NIRS) and Raman Spectra Collection 

A NIR spectrometer (model: NIR-256-2, Control Development Inc., South Bend, IN) and 

halogen light source with a bifurcated fiber optic probe (Ocean Optics, Dunedin, FL) were used to 

collect spectra during the coating process. The probe was inserted through the side port of the fluid 

bed bowl, directly contacting the coated material. Each spectrum was acquired in real-time by 

averaging 16 scans over the range of 1077 – 2226 nm with a resolution of 1 nm. The integration 

time for one scan was determined using a Teflon reference sample to optimize the integration time 

(approximately 0.015 ms, varying by 0.002 ms for different batches). A near-infrared spectrum 

was recorded every 5 seconds, as the average of 16 spectra. The NIR Models were established by 

regressing the responses (LoD and coating weight gain) on the spectra using PLS algorithm. The 

primary methods to measure the responses were described in Section 2.2.4.3. 
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The Raman spectra were collected offline using a non-contact optic device (PhAT probe) after 

the coated granule samples were ground. The calibration samples were powder mixtures that did 

not require grinding but were still ground as if they were granule samples to reproduce the 

variability caused by grinding. The ground powders were stored in a 20 mL Thermo Scientific 

sample storage glass vial and scanned in a dark environment. The excitation laser was projected 

onto the top surface of the powder bed in the vial, forming a circular illuminated area of 6 mm 

diameter. The Raman spectra were collected with an exposure time of 5 seconds. The range of the 

Raman spectrum was 150 -1890 cm-1 wavenumbers, with a resolution of 1 cm-1. The model 

response was the concentration of theophylline monohydrate, for which the values were 

gravimetrically determined.  

 

4.2.4 Model Calibration and Evaluation 

The predictive models were established following a procedure (Figure 4-3) to optimize the 

model performance. The calibration data were subjected to two pretreatments, including data 

preprocessing and variable selection. The preprocessing included a combination of mathematical 

methods to reduce the random noise and structured interference (i.e., scattering effects in NIR 

spectra and fluorescence in Raman spectra). The variable selection was performed to focus on the 

signal from the analyte of interest by excluding irrelevant and noisy variables. The regression 

algorithm was PLS, of which the number of latent variables was optimized using a five-fold, five-

iteration cross-validation. The cross-validation was performed using a random subset method 

which randomly partitioned the calibration data into five subsets. One of the five subsets was 

retained as the test set, and the rest four subsets were used as training data. The procedure was 

repeated five times so that all samples were used in both training and test, and each sample was 
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used as a test exactly once. The randomization process of data partition was done five times to 

obtain an average error value from multiple cross-validation runs.  

The NIR-LoD model was implemented to control the in-process moisture level by adjusting the 

spray rate for the test batches. The model performance was evaluated by randomly sampling in-

process products for actual LoD measurements. The measured LoD values were then compared to 

the model predicted LoD values. In contrast, the performance of the NIR model for coating weight 

gain was evaluated by the test batches of which the coating weight gain values followed a D-

optimal design (described in Section 3.2.2). Model statistics, including the coefficients of 

determinations (R2) of calibration, cross-validation, and prediction, and the root-mean-square 

errors of calibration (RMSEC), cross-validation (RMSECV), and prediction (RMSEP), were 

calculated. The values of R2 represented the precisions of the models, which focused on the pure 

errors. The root-mean-square error (RMSE) was a combined measure of both accuracy and 

precision. It was calculated using Eq. 4.1: 

𝑅𝑅𝑀𝑀𝑦𝑦𝑆𝑆 = �
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�)2𝑛𝑛
1

𝐹𝐹
 Eq. 4.1 

where 𝑦𝑦𝑖𝑖  and 𝑦𝑦𝚤𝚤�  are measured and predicted responses, respectively, and n is the number of 

samples in calibration, cross-validation, or prediction. It should be noted the model parameters 

share the total degrees of freedom with the calibration and cross-validation errors but do not 

influence the degrees of freedom of the prediction errors from the test set. Thus, the formula used 

the sample size instead of the degrees of freedom for normalization to allow fair comparisons of 

RMSEC, RMSECV, and RMSEP.  
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Figure 4-3: Modeling procedure for both NIR and Raman predictive models. 

 

Both NIR and Raman spectra had thousands of highly correlated variables. The major 

variability related to the analyte of interest was buried in a few dimensions, leaving the remaining 

dimensions representative of noise. The linear combination of these noise sources sometimes 

matched well with the variance structure of the analyte of interest, which caused overfitting. The 

overfitted model explained the calibration data well but failed to predict new samples accurately. 

Therefore, the NIR and Raman predictive models were subjected to permutation tests to evaluate 

overfitting risks.  

The permutation test randomly shuffled the order of the response (Y) and built the model by 

regressing the mismatched responses (Y) on the predictors (X): each sample was assigned to 

incorrect Y values, while the distribution of Y was retained. The permutation test was repeated to 
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generate the distributions of RMSEC, RMSECV, and RMSEP from the incorrect models. The 

distributions were then compared to RMSEC, RMSECV, and RMSEP from the correct model. The 

probability that the error statistics of the correct model were from the same error distribution as 

the incorrect models indicated the overfitting risk. 

 

4.3 Results and Discussion 

4.3.1 NIR Models Predicting Coating Weight Gain 

NIR and Raman spectroscopies are complementary methods. Both detect the vibrational modes 

in molecules. In general, compounds with strong bands in the NIR spectrum have weak peaks in 

the Raman spectrum and vice versa. There are many chemical components in the coated granules 

that are NIR or Raman sensitive. The coating film is a complex polymeric system consisted of 

PVAc, PVP, SLS, TEC, Talc, and blue lake. The drug-loaded core is a mixture of theophylline, 

lactose monohydrate, MCC, and HPMC. The correlation between the NIR spectral change and the 

coating weight gain came from the increased signal of the coating film on the surface and the 

decreased signal of the drug-loaded core. Figure 4-4 shows the spectral responses to the change in 

coating weight gain (13%, 17%, and 20% w/w) of fluidized coated granules for both NIR (Figure 

4-4A) and Raman spectroscopies (Figure 4-4B). In addition to the chemical variability, the NIR 

spectra are influenced by the scattering effect due to the fluidization in the fluid bed processor, 

which is observed primarily as a baseline shift. Thus, NIR spectra are impacted by both coating 

weight gain and the baseline shift. Unlike the broad peaks of the NIR spectra, the Raman spectra 

showed distinctive peaks. Changes in slope and offset of the baseline were observed in the Raman 

spectra, probably caused by the fluorescence of the coating film.  
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Figure 4-4: the NIR spectra (A) and Raman spectra (B) of fluidized coated granules at three 
different weight gain. 

 

Although both NIR and Raman spectra have signals related to the change of coating weight 

gain, the NIR spectroscopy has the advantage of moisture sensitivity, while Raman spectroscopy 

is known to have weak signals from water molecules. Fluid bed coating is a wet process, and the 

dynamical change of the moisture level in the system potentially influences the batch stability and 

the product quality. The NIR spectra are used for the prediction of both coating weight gain and 

LoD.  

The coating weight gain model was calibrated on the 30 samples from the calibration set and 

tested on the 27 samples from the test set. Ten spectra were collected within a 50-second interval 

at each designed time point when the granule samples were drawn for coating weight gain 

measurements. The noisy spectral regions of 1077 – 1150 nm and 2100 – 2226 nm were excluded 

from the model.  The NIR predictive model was developed using partial least squares (PLS) 

regression. Since the major interference in the raw NIR spectra (Figure 4-5A) was the baseline 

shift, several preprocessing methods were evaluated to optimize the model performance. The 
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number of latent variables was chosen along with the selection of preprocessing method using 

cross-validation. The optimal preprocessing method for the spectra (X-block) was standard normal 

variate (SNV) followed by mean centering. Auto-scaling was applied to the coating weight gain 

data (Y-block). The model using four latent variables (Figure 4-5B) yielded the best results, where 

the values RMSEC, RMSECV, and RMSEP stopped decreasing with the increase of the number 

of latent variables. The calibration and prediction statistics (all values are absolute error) are in 

Figure 4-5C: RMSEC of 0.003, RMSECV of 0.003, and RMSEP of 0.005.  The reduced Q 

residuals vs. Hoteling T2 plot (Figure 4-4D) indicates that most of the test samples are within the 

95% confidence interval of the calibration, suggesting that they are insignificantly different from 

the calibration data. The calibration utilizes the 99.68% variance from the spectral data to explain 

over 99% of the variance in coating weight gain. The total calibration range is from 0.10 to 0.29 

fraction weight gain; the R2 is 0.98, and an error of 0.005 (absolute) for the test set is observed.  
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Figure 4-5: The NIRS predictive model for coating weight gain: (A) Raw NIR spectra of the 
calibration set; (B) Scree plot for the optimized preprocessing method: SNV + mean centering; 
(C) Predicted vs. measured weight gain; (D) Q residual vs. Hotelling T2 plot. 

 

The permutation test was repeated 100 times to get representative distributions of RMSECs, 

RMSECVs, and RMSEPs from the models using “incorrectly assigned” responses. Four latent 

variables were selected for all the models. The results of the permutation test are shown in Figure 

4-6. The means of the RMSECs (0.049) and RMSEPs (0.042) are the same as the standard 

deviations of the responses (Y) in the calibration (0.049) and test sets (0.042). The introduction of 
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modeling uncertainty probably causes the higher mean (0.055) of the RMSECVs than the 

RMSECs. It is interesting to observe that the distributions of RMSEC and RMSECV are much 

narrower than RMSEP. It is probably because some of the incorrect models coincidently explain 

some variability in the responses of the test set, resulting in relatively low RMSEPs. However, the 

RMSEC (0.003), RMSECV (0.003), and RMSEP (0.005) of the original model predicting correct 

responses are one order of magnitude lower than the three distributions. The probability is less 

than 0.0001 that the original model is from the same population as the randomly shuffled models 

regarding either RMSEC, RMSECV, or RMSEP. 

 

Figure 4-6: Distribution of RMSEC, RMSECV, and RMSEP from the permutation test of coating 
weight gain models. 

 

The NIR model was utilized to enable the real-time monitoring of coating weight gain and 

determine the spraying endpoint. Figure 4-7 shows one example of a predicted coating weight gain 
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trajectory during the preheating and spraying phases. The blue line is the predicted weight gain of 

which the NIR model generated every five seconds. The fluctuation of the weight gain predictions 

is probably caused by granule fluidization, moisture variability, and instrumental noise. The 

baseline shift due to the fluidization has the highest leverage among the three probable causes 

because it changes the sample presentation for every scan. The initial flat region in Figure 4-7 

indicates no coating weight gain during the preheating phase, and the increasing region shows that 

the increase of coating weight gain is steady and linearly correlated to time. The spraying 

automatically ended when the mean of 15 consecutive predictions reached the target, 20% w/w in 

this plot. The orange circles in Figure 4-7 indicate the time points when samples were drawn from 

the coating process for reference testing. Three samples were subjected to the assay and LoD 

measurements for every sampled time point. The actual coating weight gains were calculated using 

Eq. 2.2. The orange circles align well with the blue line (Figure 4-7), suggesting the NIR model 

predicts the coating weight gain with the desired accuracy. The seeming bias of the first two orange 

circles is only exhibited in this example by chance. No systematic errors were observed in other 

NIR model monitored coating batches.  
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Figure 4-7: Process trajectory of the predicted coating weight gain using the NIR model. 

  

4.3.2 NIR Models Predicting Loss on Drying  

The moisture equilibrium in the coating system has a substantial effect on process stability and 

product quality.143 Excessive moisture leads to the liquid bridge formation between the particles, 

which induces agglomeration and defluidization. Excessive drying can reduce the coating 

efficiency due to the premature of coating droplets. Water evaporation from the particle surface is 

a driving force of film formation. The surface tension of water residual in the coating promotes 

the ordering and deformation of the polymer particles, leading to particle coalescence to form a 

continuous film.186, 187 Thus, maintaining the moisture level during the c0ating process is essential 

to prevent batch failure and consistently deliver quality products. 
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The screening study (Chapter 2) revealed the in-process moisture level was critical for 

maximizing coating efficiency, minimizing agglomeration, and preventing batch failure. Loss on 

drying (LoD) was used as a surrogate marker for the in-process moisture level, and the LoD value 

was found to be optimal at 5.5% w/w. A real-time monitoring tool was desired to prevent batch 

collapse and consistently deliver extended-release granules with efficient coating efficiency. In 

contrast to the humidity sensor, which measured the in-process air relative humidity, NIR 

spectroscopy had the advantage of directly measuring the moisture level of the granules. The in-

line prediction of product LoD allowed a feedback loop to control product moisture level directly.  

The samples that were used for the calibration of the NIR model for LoD were drawn at random 

time points during the 30 calibration runs in the response surface study. The LoD values of the 

samples were primarily in the range of 2% - 7% w/w. There were only three samples of the higher 

LoD values than 7% w/w and four lower LoD values than 2% w/w. Thus, we randomly selected 

samples with LoD in the 2% - 7% w/w range to make a relatively uniform distribution of the 

responses (Y-block) in the range of 1% - 10% w/w. The average of five NIR spectra collected at a 

25-second time interval of each sampling time point was used as the predictors (X-block) to 

minimize random variability in spectral scans. The NIR wavelength range of 1350 – 2125 nm was 

selected for the modeling, and two latent variables were used. The optimal preprocessing methods 

were standard normal variate (SNV) followed by mean centering for the X-block and auto-scaling 

for the Y-block. Figure 4-8A shows the correlation plot of the cross-validation predicted LoD vs. 

the measured LoD. The error statistics were calculated from the calibration and cross-validation 

with RMSEC of 0.254 and RMSECV of 0.324.  The total calibration range was 1% - 10% w/w 

LoD; the R2s were 0.988 for the calibration and 0.980 for the cross-validation. Figure 4-8B depicts 

the loading shape of the first latent variable in which 82.35% variance in the X-block explains 
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94.51% variance in the Y-block. The two major peaks were at 1400 -1450 nm and 1900 – 1950nm, 

both relevant to the O-H bond. It reflects the model specificity to the moisture level.  

 

Figure 4-8: The NIRS predictive model for coating weight gain. (A) cross-validation (CV) 
predicted vs. measured LoDs, (B) the loading of the first latent variable. 

 

The permutation test was repeated 100 times for the NIR-LoD models. The distributions of 

RMSECs and RMSECVs from the models using “incorrectly assigned” responses were generated 

using two latent variables, shown in Figure 4-9A. The standard deviation of the LoDs in the 

calibration was 2.2%, matched with the mean of RMSECs (2.2%) from the incorrect models. The 

distribution of RMSECVs has a higher mean (2.75%) and a broader range than those of RMSECs. 

This is probably caused by the extrapolation during random subset in the cross-validation process. 

The RMSEC (0.25%)  and RMSECV (0.32%) of the original correct LoD model were one order 

of magnitude lower than the values of the two distributions from incorrect models. The risk of 

overfitting is deemed low because the probability of the original model being from the same 

population as the incorrect models is less than 0.0001. 
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The LoD model was subsequently applied as a surrogate sensor to monitor and control the moisture 

level of the test coating runs. In order to maintain a steady moisture level, the spray rate was 

adjusted proportionally to the deviation of the target in-process LoD value (5.5%) using Eq. 4.2: 

𝛥𝛥𝑦𝑦𝑑𝑑𝐹𝐹𝑠𝑠𝑦𝑦 𝑅𝑅𝑠𝑠𝐹𝐹𝑦𝑦 = − 20 × (𝑦𝑦𝐹𝐹𝑦𝑦𝑦𝑦𝐹𝐹𝑠𝑠𝐹𝐹𝑦𝑦𝑦𝑦  𝑦𝑦𝐹𝐹𝐿𝐿 − 5.5%) 𝐹𝐹/𝑚𝑚𝐹𝐹𝐹𝐹 Eq. 4.2 

where 𝛥𝛥𝑦𝑦𝑑𝑑𝐹𝐹𝑠𝑠𝑦𝑦 𝑅𝑅𝑠𝑠𝐹𝐹𝑦𝑦 is the adjustment of the spray rate, and 𝑦𝑦𝐹𝐹𝑦𝑦𝑦𝑦𝐹𝐹𝑠𝑠𝐹𝐹𝑦𝑦𝑦𝑦  𝑦𝑦𝐹𝐹𝐿𝐿 is the NIR model 

predicted LoD value. The proportional control coefficient was optimized at 20 based on the 

stability of the observed LoD predictions. The target LoD value was set at 5.5% based on the 

screening study results (Chapter 2), where the balance between maximizing process efficiency and 

minimizing agglomeration was reached.  

Figure 4-9B shows an example of the model-controlled LoD trajectory in the preheating and 

spraying phases in one of the test runs. The blue line is the predicted LoD, and the orange circles 

represent the time points when samples were taken during the coating process and subjected to 

offline LoD measurements for verification. During the pre-heating phase, the LoD decreased due 

to the evaporation of pre-existing moisture in the uncoated granules. The LoD values start to 

increase in the initial stage of the spraying phase and became stable at around 5.5% w/w LoD. The 

standard deviation of the LoD predictions during the steady-state is 0.3%, and thus the 95% 

confidence interval of the LoD prediction is 4.9% - 6.1% w/w. The offline LoD values (orange 

circle) also reveal the actual moisture fluctuation in the steady-state is with the range of 5% - 6% 

w/w. It suggests the feedback loop controls the coating process with a relatively stable moisture 

level of the steady state. 
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Figure 4-9: (A) Distribution of the values of RMSEC and RMSECV from the permutation test of 
the LoD models; (B) controlled process trajectory of the predicted LoD using the NIR model. 

 

4.3.3 Raman Model Predicting Theophylline Monohydrate 

Chapter 3 revealed the presence of theophylline monohydrate retarded the dissolution of coated 

granules. Since the aqueous coating process introduced water to the drug-loaded granules, the 

moisture levels of the coated granules, indicated by their model predicted LoD values, fluctuated 

around 5.5% w/w. Theophylline anhydrous Form II (CSD ref. code BAPLOT01) was partially 

converted to a monoclinic channel hydrate (CSD ref. code THEOPH01) upon contact with water 

during the spraying phase, but in the subsequent drying phase, the hydrate form lost the bound 

water at low relative humidity and elevated temperature. The Raman model was developed to 

monitor the partial conversion of theophylline monohydrate to the anhydrous form during the 

drying phase. The fluid bed chamber size limited the in-line application simultaneously using 

Raman and NIR spectrometers because the excitation laser Raman interfered with the NIR 

measurements. The Raman spectra were taken at-line after the samples were taken out from the 

fluid bed chamber and ground to powder form. Figure 4-10 suggests grinding did not cause peak 
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position change on the Raman spectra of the theophylline anhydrous (Form II) and theophylline 

monohydrate. However, the ground theophylline has lower Raman intensity than the unground, 

observed in both hydrate and anhydrous forms, probably due to the particle size reduction. This 

phenomenon was also reported by Gómez et al.188 that Raman intensity increased with the increase 

of API particle size. 

 

Figure 4-10: the Raman shift of the unground and ground theophylline anhydrous (THO) and 
monohydrate (THM).  

 

The Raman model was developed using the mixture of ground dish-casted polymer film, 

theophylline monohydrate, theophylline anhydrous, lactose monohydrate, MCC, and HPMC. The 

raw spectra of the calibration set are shown in Figure 4-11A. The baseline offset and slope change 

were probably caused by the fluorescence of MCC and the coating film. Normalization to the unit 

area followed by mean centering was applied on the Raman spectra (X-block) to minimize the 
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impact of the baseline effect on model prediction, and autoscaling was used for the concentration 

of theophylline monohydrate (Y-block). Figure 4-11B is the scree plot of the Raman models where 

the RMSEC and RMSECV are plotted against the number of latent variables. Two latent variables 

were used to establish the theophylline monohydrate model since the decrease of RMSECV 

became trivial when the third latent variable was added into the model. Figure 4-11C is the 

correlation plot of cross-validation predicted vs. measured theophylline, with an RMSEC of 0.017 

and an RMSECV of 0.025. The R2 values of calibration and cross-validation are 0.991 and 0.984, 

suggesting that Raman spectra have a linear correlation with theophylline monohydrate 

concentration. The 95% confidence interval of 5% w/w theophylline monohydrate of the cross-

validation is 0 - 10% w/w, which means any prediction below 5% w/w is statistically the same as 

0% w/w at a 95% confidence level. Figure 4-11D shows the results from the permutation test, 

revealing the Raman model has a low probability (<0.0001) being from the same population as the 

models using “incorrect values” of theophylline monohydrate concentration as the responses. 
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Figure 4-11: The Raman predictive model for the concentration of theophylline monohydrate: (A) 
Raw Raman spectra of the calibration set; (B) Scree plot for the optimized preprocessing method: 
normalization to the unit area + mean centering; (C) Predicted vs. measured concentration of 
theophylline monohydrate; (D) Distribution of the values of RMSEC and RMSECV from the 
permutation test of the theophylline monohydrate models. CV: cross-validation 

 

The Raman model was tested on a sample of coated granules taken before the drying phase of 

the coating process. The granules were stored in a desiccator (room temperature: 20-22 °C) for 14 

days, and four sets of samples were taken on Days 0, 3, 7, and 14. Each sample set was allocated 

to three parts, one for the Raman scan, one for the LoD measurement, and the last for the in vitro 
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dissolution test. Figure 4-12 shows the dissolution profiles of the samples taken on the four 

different days. The Raman model was applied to predict the concentrations of theophylline 

monohydrate. The sample from Day 0 was the granules taken from the fluid bed immediately after 

the spraying phase, in which there were 10.2% w/w theophylline monohydrate and 5.8% w/w loss 

on drying. The sample of Day 3 had a reduced concentration of theophylline monohydrate (6.0% 

w/w) and reduced LoD (4.2% w/w). Day 7 had 3.1 % w/w theophylline monohydrate concentration 

and 1.9% w/w LoD, while Day 10 had 0.6% w/w LoD with undetected theophylline monohydrate 

concentration (the Raman prediction was a negative value). Day 0 and 3 had slower dissolution 

rates than Day 7 and Day 14. The dissolution profiles of Day 0 and 3 were statistically similar, the 

f2 value being 87 (greater than 50). The results suggest the coated product can tolerate at least 3.1% 

w/w theophylline monohydrate and produce similar dissolution profiles. However, as previously 

discussed, the Raman model cannot statistically distinguish 0% w/w from 5% w/w theophylline 

monohydrate at a 95% confidence level, suggesting the model uncertainly made it unsuitable for 

the drying endpoint determination.  

In contrast, the LoD measurement was an offline method of less uncertainty than the Raman 

predictive model. The limit of 1.9% w/w offline LoD measurement is probably a better target for 

drying termination than 3.1% w/w at-line predicted theophylline monohydrate concentration to 

produce coated granules with consistent dissolution profiles. As an alternative to the offline LoD 

measurements, the model using NIR spectroscopy was used in real-time to predict the LoD value.  

With the RMSEP of 0.5% w/w, the NIR model using a limit of 0.9% w/w LoD for drying 

termination was used to ensure the consistency of the dissolution profile at a confidence level of 

95%. 
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Figure 4-12: the dissolution profiles of four samples at different stages of the drying process. TMO: 
theophylline monohydrate, LoD: loss on drying. 

 

4.4 Conclusion 

This chapter discussed the PAT applications of NIR and Raman spectroscopies to monitor the 

fluid bed coating process and facilitate the development of feedback control loops.  

Two NIR models were successfully established using PLS regression algorithm to predict 

coating weight gain and LoD values of granules as an indicator of moisture level, respectively. 

The performance of the NIR model for coating weight gain was evaluated using a test set, with an 

RMSEP of 0.5% w/w and an R2 of 0.98. The NIR model for LoD values was used to help control 

the moisture level of the test runs, adjustments being made to maintain the LoD values of the in-

process granules within the 5 – 6% w/w range. 

A Raman model was developed to predict the concentration of theophylline monohydrate. A 

good correlation was found between the Raman spectra and theophylline monohydrate 
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concentration, with an R2 of 0.99. However, based on the dissolution results of granules at different 

drying phases, the uncertainty of the Raman model made it unsuitable for the determination of the 

drying endpoint. Instead, the in-line NIR-LoD model was used as an indicator to produce the dried 

coated granules with consistent dissolution profiles. 

This work demonstrated that the process analytical technologies were powerful tools for real-

time monitoring of the fluid bed coating process. It also suggested the selection of PAT tools 

should be based on practical considerations and model uncertainty. The rapid and robust feedback 

control loops enabled by the NIR models accomplished Specific Aim 3. 
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Chapter 5 : Construction, Evaluation, and Validation of the Combined 

Feedforward-Feedback Control System Using Monte Carlo Simulation and 

Test Batches.  

 

Abstract 

This work demonstrates the use of combined feedforward and feedback loops to control (1) the 

in-process moisture and (2) the product in vitro dissolution profiles. In the moisture-control system, 

the feedback loop described in Chapter 4 was used to maintain a steady-state moisture level. In the 

dissolution-control system, the feedforward loops adjust the setpoints of the fluidization air volume 

and the target coat weight in the fluid bed processor to accommodate the variabilities of the inlet 

air relative humidity and the size distribution of input granules. NIR spectroscopy was utilized to 

monitor the coating weight gain and determine the spraying endpoint to achieve the desired 

dissolution profile. The control performance was evaluated by comparing the outcome of a Monte-

Carlo simulation with and without the feedforward components. Twelve additional test batches 

were conducted to verify the simulated tolerance space. The simulation results revealed the 

feedforward controller reduced the probability of a dissolution failure, and the test batches verified 

the integrated control system produced quality products with desired dissolution profiles at 

extreme conditions. 

 

5.1 Introduction 

Pharmaceutical manufacturing relies on feedback controls to maintain the prescribed conditions 

necessary to manufacture quality products.189 However, standard feedback control loops are 
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susceptible to input disturbances and uncertainties.190 Thus, a control system must be designed to 

accommodate foreseeable variation in the input to the process.107 Examples of typical disturbances 

in a pharmaceutical process include changes in raw material properties.1, 4 Such disturbances can 

arise from the chemical and physical properties of APIs and excipients. In response to such 

disturbances, feedback systems must wait until the disturbance has an observable effect on the 

control system, produce reduced quality product, or create an instability in the loop.191 In each of 

these scenarios, the product quality is at risk until the disturbance has been mitigated. The 

feedforward structure has the potential15, 16 to mitigate all of these risks to product quality in a 

pharmaceutical manufacturing process. 

Feedforward/feedback loops are used in this work in a control system to apply an extended-

release coating to granules in a fluid bed processing system. Theophylline anhydrous was used as 

a model drug, and the extended-release layer was formed by a pH-independent aqueous-insoluble 

film,131  using polyvinyl acetate. The minimum film formation temperature was reported as 18 °C 

without plasticizer,128, 130 and curing was found unnecessary in previous studies (Chapter 2). The 

coating was applied to modulate the API dissolution to match a twice-daily dosing regimen for 

theophylline151. The ultimate goal of the coating process is to produce granules with a consistent 

release profile that meets appropriate specifications.  

A significant challenge to this process is the batch-to-batch variation in granule size distribution 

and relative humidity, impacting both the process stability and product quality. The in vitro 

dissolution models, described in Chapter 3, are built based on the four parameters: inlet air relative 

humidity, the particle size distribution of the granules, inlet air volume, and target coating weight 

gain. As illustrated in Figure 5-1, the feedforward control was built based on the process models 

to account for the variability in granule size distribution and inlet air relative humidity. It provided 
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the coating process (and the feedback loops associated with it) set points that converted a given 

batch of granules to a coated system that met the required dissolution specifications. The specific 

set points from the feedforward loops were the fluidization air volume and the total quantity of 

coating (weight gain) to be applied. In essence, the feedforward loops established setpoints for the 

process, and the feedback loops achieve those set points. In this system, the feedback loops are 

inherently static, while the feedforward loop created a dynamic response to changes in the input 

material and environment. Near-infrared spectroscopy (NIR) as a process analytical technology 

was integrated into the feedback loop to monitor the coating process and terminate it when the 

feedforward loop determined target coat weight was achieved. The combination of feedforward 

and feedback loops created a control system capable of mitigating variation in the input materials 

and producing a product with consistent in vitro dissolution profiles.  

 

 

Figure 5-1: The schematic of the control system. FFC: feedforward control, FBC: feedback 
control. 
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This chapter aimed to fulfill the requirements of Specific Aim 4, which was also the ultimate 

testing of the hypothesis. The work included (1) the integration of the feedforward and feedback 

loops in a real-time data management system (SynTQ),  (2) Monte Carlo simulations of the fluid 

bed coating process with and without the feedforward components, and (3) test batches conducted 

near the edge of failure of the simulated design space. 

 

5.2 Materials and Methods 

The materials and equipment used for the test batches were described in Chapter 2. The real-

time analytical models and process models were developed in previous studies, and the details 

were discussed in Chapters 3 and 4. This chapter focused on developing a combined feedforward-

feedback control system for a fluid bed coating to control product dissolution and prevent 

agglomeration. A Monte Carlo simulation was applied to explore the tolerance space of the coating 

process with and without the feedforward component for the dissolution control. The improvement 

of the control system on product consistency was analyzed using process capability.  

 

5.2.1 Control System 

The feedforward component to control product dissolution was established using the PLS and 

GPR-based process models (Chapter 3). The two curve-fitting methods (Weibull function fitting 

and PCA) generated different fitting-error profiles (Section 3.3.2), while the two regression 

methods (PLS and GPR) showed similar performance on the Weibull parameters or PCA scores 

prediction (Section 3.3.4). The PLS algorithm had the advantage of generating a known regression 

vector which was readily transformed into an optimization function over the GPR algorithm. Thus, 
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The PLS-based process models were chosen over GPR to develop feedforward loops. Figure 5-2 

shows how a process model was used in a feedforward loop. The disturbances were inlet air 

relative humidity and size distribution of input granules, the process parameters included 

fluidization air volume and target coating weight gain, and the response (Y-block) is Weibull 

parameter or PCA score. The regression vector of the PLS-based process models was calculated 

using the calibration batches. For new batches, the regression vector, the desired responses (Y), 

and the measured disturbances were used as known input.  

  

Figure 5-2: illustration of the feedforward controllers that solve for the process parameters: air 
volume and target weight gain, based on measured disturbance (inlet air relative humidity and 
size distribution of input granules), desired and target dissolution parameters (Y), and the PLS 
regression vectors. 
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The feedforward controller solved the process parameters by minimizing the cost function (J), 

which is the sum of squared error between the predicted and desired responses (Y). A constrained 

global searching algorithm (“fmincon” function coded in Matlab)12, 13 was utilized. The 

feedforward controllers for Weibull parameters and PCA score had different cost functions (J), 

shown as Eq. 5.1 and Eq. 5.2, respectively: 

𝐽𝐽 = (�̂�𝜆 − 𝜆𝜆𝑡𝑡𝑡𝑡𝑟𝑟𝑔𝑔𝑑𝑑𝑡𝑡)2 + (𝑘𝑘� − 𝑘𝑘𝑡𝑡𝑡𝑡𝑟𝑟𝑔𝑔𝑑𝑑𝑡𝑡)2 Eq. 5.1 

where �̂�𝜆 and 𝜆𝜆𝑡𝑡𝑡𝑡𝑟𝑟𝑔𝑔𝑑𝑑𝑡𝑡 were the predicted and target scale factors; 𝑘𝑘� and 𝑘𝑘𝑡𝑡𝑡𝑡𝑟𝑟𝑔𝑔𝑑𝑑𝑡𝑡 were the predicted 

and target shape factors from the Weibull function fitting. 

𝐽𝐽 = ( 𝑦𝑦𝐶𝐶1� −𝑦𝑦𝐶𝐶1𝑡𝑡𝑡𝑡𝑟𝑟𝑔𝑔𝑑𝑑𝑡𝑡)2 Eq. 5.2 

where 𝑦𝑦𝐶𝐶1�  and  𝑦𝑦𝐶𝐶1𝑡𝑡𝑡𝑡𝑟𝑟𝑔𝑔𝑑𝑑𝑡𝑡 were the model predicted and target scores of PC1 from the PCA 

decomposition. Since the process models were empirical, constraints were applied to both 

equations Eq. 5.1 and Eq. 5.2 to limit the solution of the process parameters to the model explored 

ranges: 25 - 35 m3/h for fluidization air volume and 12% - 26% for weight gain.  

The feedback controllers were described in Chapter 4, where near-infrared spectroscopy was 

employed to control the moisture level, determine coating weight gain during the spraying phase, 

and terminate the drying phase when the desired LoD (<0.9%) was achieved. The feedforward and 

feedback controllers were integrated into an automated control system, incorporating the fluid bed 

processor, an open platform communication system (OPC, DeltaV), and a real-time data 

management system (SynTQ). The fluid bed processor received and sent analog signals, while 

SynTQ managed discrete digital signals. The DeltaV system helped SynTQ access the fluid bed 

data by transferring the analog signals to the digital tags. In the SynTQ process orchestration, The 

fluid bed coating process was divided into three distinct phases: 

(1) preheating phase, in which the uncoated granules were heated to an elevated temperature,  
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(2) spraying phase, in which the polymer suspension was deposited onto the granules,  

(3) drying phase, in which the excess solvent was dried and the drug (theophylline) transferred 

from hydrate form to anhydrous form.  

The process control commands and the PAT models were programmed as shown in Figure 5-

3. The adjustment of process parameters and the collection of NIR spectra were synchronized to a 

5 s cycle. The initiation of automation required manual input of the size distribution of the input 

granule cores measured by an offline canty particle size analyzer. The process model calculated 

the inlet air volume and the target coating weight gain in the first circle of the preheating phase. In 

the spraying phase, the coating process weight gain was first predicted by the NIR model to 

determine the phase transition point, and then if staying in the spraying phase, the spray rate was 

adjusted with the assistance of the LoD NIR model. The drying phase started when the target 

weight gain was reached and ended when the predicted LoD value reached the end process 

criterion (0.9% w/w LoD). The coated products were discharged and stored in a desiccator at room 

temperature after the coating process automatically ended.   
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Figure 5-3: SynTQ orchestration implemented with the process and PAT models. PSD: particle 
size distribution of input granule; RH: inlet air relative humidity; LoD: loss on drying. 

 

5.2.2 Monte Carlo Simulation methods 

Monte Carlo simulation was applied to estimate the dissolution variability of the final products 

when the coating process was with or without the control of the integrated feedforward-feedback 

control system. The dissolution variability of the products manufactured without feedforward 

control mainly came from three sources: 

(1) the variability of relative humidity (RH) and granule size distribution (GSD), 

(2) the prediction error of the NIR model on coating weight gain, 

(3) the inherent variability of the coating process. 

In contrast, the process with feedforward control loops minimized the variability of the first 

source (RH and GSD) but introduced additional variabilities related to the process models, 

contributing to the control uncertainty. In order to test the center hypothesis: “a combined 

feedforward-feedback control system (1) improves the product quality and consistency, and (2) 
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grants flexibility to the process in terms of input material attributes and environmental 

disturbances”, two Monte Carlo simulations were conducted to compute the dissolution profiles. 

The hypothesis is true only if the impact of the model uncertainty on the in vitro dissolution is 

smaller than the impact of RH and GSD. 

Simulation 1 

The first simulation (Simulation 1) was executed using the conditions near the center level of 

the response surface study to demonstrate that the feedforward component helped improve product 

quality and consistency. The granule size distribution (GSD, D50 = 480 nm) and the inlet air 

relative humidity (40 – 50%) were used as the initial input with their natural variabilities. The 

variability of the GSDs was calculated from the canty measurements of five samples from the 

center batch, simulating a coating process with tightly controlled GSD of input material. Five 

repeated GSD measurements of the same batch were projected to the PCA model, which was 

previously established from three different batches (Details of the model calibration were 

described in Section 3.3.1). The PC1 scores of the five replicates were assumed to follow a normal 

distribution, and thus the mean and the standard deviation were calculated. The normal distribution 

was then used to represent the natural variability of the input granule size. The natural variability 

of the inlet air relative humidity was assumed as a uniform distribution in the 40 – 50% interval. 

Different PC1 scores for GSDs and inlet air relative humidities were randomly sampled from the 

normal distribution and the uniform distribution, respectively. 

Simulation 2 

The second simulation (Simulation 2) expanded the simulated range of the GSD and RH to the 

boundary conditions of the previous response surface study. The GSD was represented using its 

PC1 score. Since the PCA model had one degree of freedom, each D50 value of the GSDs, 392, 
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419, 460, 480, and 504 µm in the calibration set, only corresponded to one PC1 score. The 

simulation process utilized 49 combinations (Figure 5-4) of D50 in the range of 390 - 510 µm and 

inlet air relative humidity in 20 – 80% as inputs. The resolutions of D50 (X-axis) and relative 

humidity (Y-axis) were 20 µm and 10%, respectively. Simulation 2 was performed to test whether 

the feedforward component caused the coating process to respond correctly to the size distribution 

of input granules and inlet air relative humidity. 

 

Figure 5-4: the array plot of the 49 combinations of D50 and relative humidity.  

 

Simulation Procedure 

The schematic of the Monte Carlo simulation is illustrated in Figure 5-5. The target dissolution 

profile was generated based on the in-house specification (Table 3-2), which had four acceptance 

intervals at each of the four specified time points ((1, 2, 4, and 8 hours). The centers of the 

acceptance intervals were 20%, 42.5%, 67.5%, and 90%. The target Weibull parameters were 

calculated by fitting the Weibull function to the four centers, using percentage drug dissolved as 
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dependent variables and dissolution time as independent variables. The PC1 score of the target 

dissolution profile was solved by minimizing the sum of the least squared errors between the PC1-

score-reconstructed dissolution and the target dissolution profile. The Weibull parameters (λ and 

k) and the PC1 scores were used as the target response (Ytarget) in the searching algorithm of the 

feedforward controllers. In Simulation 1, the input values of RH and GSD were randomly sampled 

from the defined distributions. The distributions of pure error from curve-fitting, the process 

models, and the NIRS model were assumed to have Gaussian shapes. The simulation algorithm 

ran in the following sequence:  

1. the feedforward controller determined the fluidization air volume and target weight gain 

based on the input GSD and RH. 

2. one error value was randomly selected from the error distribution of the NIRS model 

(𝜎𝜎(𝑁𝑁𝐴𝐴𝑅𝑅𝑦𝑦)) and applied to the target weight gain, 

3. the error incorporated weight gain value was employed for the calculation of the scale and 

shape factors (Weibull function) or the score of PC1 (PCA model) using the process models,  

4. error values were randomly chosen from the error distributions of process models (𝜎𝜎(𝜆𝜆) 

and 𝜎𝜎(𝑘𝑘), or 𝜎𝜎(𝑦𝑦𝑠𝑠𝐹𝐹𝐹𝐹𝑦𝑦 𝐹𝐹𝑜𝑜 𝑦𝑦𝐶𝐶1),) and applied to the scale and shape factors or the score of 

PC1, respectively, 

5. the dissolution curve was reconstructed using the error incorporated scale and shape factors 

or the score of PC1, 

6. bias and a randomly selected pure error profile were applied to the dissolution curve to 

complete one simulation loop.  

The out-of-specification rate was calculated after every generation of 100 simulated dissolution 

profiles. In Simulation 1, the algorithm was repeated until the out-of-specification rate converged: 
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the difference between the new and previous rate was smaller than 0.1%. Multiple runs were 

conducted and the algorithm stopped after generating 8,000-9,000 dissolution profiles. Therefore, 

10,000 dissolution profiles were generated to get a representative simulation result, and the 95% 

tolerance intervals were calculated for the time points (1, 2, 4, and 8 hours) of the in-house 

specification. A mathematic expression of the dissolution profiles, with error terms, is described 

in Eq. 5.3 and Eq. 5.4:  

𝜑𝜑 = 1 − 𝑦𝑦−( 𝑡𝑡
𝜆𝜆+𝜎𝜎(𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃)+𝜎𝜎(𝜆𝜆)�

�𝑘𝑘+𝜎𝜎(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁)+𝜎𝜎(𝑘𝑘)�

+  𝑏𝑏𝐹𝐹𝑠𝑠𝑦𝑦 + 𝑑𝑑𝑎𝑎𝐹𝐹𝑦𝑦 𝑦𝑦𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 Eq. 5.3 

where 𝜑𝜑 is the fraction of drug released, 𝜎𝜎(𝑁𝑁𝐴𝐴𝑅𝑅𝑦𝑦) is from the error of weight gain from the NIRS 

model, 𝜎𝜎(𝜆𝜆) and 𝜎𝜎(𝑘𝑘) are the errors of dissolution parameters from the process models, bias and 

pure error are from the Weibull function fitting. 

𝐿𝐿𝐹𝐹𝑦𝑦𝑦𝑦𝐹𝐹𝑠𝑠𝑎𝑎𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 =  (𝑇𝑇 𝑝𝑝𝑢𝑢1 + 𝜎𝜎(𝑁𝑁𝐴𝐴𝑅𝑅𝑦𝑦) + 𝜎𝜎�𝑇𝑇 𝑝𝑝𝑢𝑢1�) × 𝑦𝑦𝐶𝐶1 + 𝐹𝐹𝑜𝑜𝑜𝑜𝑦𝑦𝑦𝑦𝐹𝐹 + 𝑑𝑑𝑎𝑎𝐹𝐹𝑦𝑦 𝑦𝑦𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 Eq. 5.4 

where 𝐹𝐹𝑜𝑜𝑜𝑜𝑦𝑦𝑦𝑦𝐹𝐹 is the mean dissolution profile of the calibration set in the response surface study, 

 T pc1 is the score of PC1,  𝜎𝜎(𝑁𝑁𝐴𝐴𝑅𝑅𝑦𝑦) and 𝜎𝜎�𝑇𝑇 𝑝𝑝𝑢𝑢1� are the errors from the NIR model and process 

model, respectively. The pure error is from the PCA modeling of dissolution profiles.  

Simulation 2 used 49 initial known conditions of relative humidity and GSD instead of 

randomly sampling. Each initial condition was simulated using the same procedure as Simulation 

1, and the procedure was repeated 10,000 times. The probability of the simulated dissolution 

profile that failed to meet the specification was calculated for each initial condition.  

Simulation 1 and 2 were also performed without the feedforward control (step 1) to understand 

the contribution of the feedforward component to the control system. In Simulation 1, the mean 

values of the process parameters (target fluidization air volume and target coating weight gain) 

from the simulation with feedforward control were used as the setpoints for the simulation of 

feedback control alone, and the same setpoints were used in the 10,000 runs. In Simulation 2, the 
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setpoints of process parameters were kept constant for all runs, using the mean values of the 49 

individual fluidization air volumes and weight gains generated by the simulation with feedforward 

control. The failure rates and the tolerance spaces were calculated using the same amount (10,000) 

of simulated dissolution profiles.  

 

Figure 5-5: illustration of the procedure for the Monte Carlo simulation. 

 

5.2.3 Control Performance Evaluation 

The simulation results were used to evaluate the performance of the integrated feedforward-

feedback control system. Simulation 1 was used to understand the fluctuation of final product 
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dissolution profiles, which could be assessed using process capability. Two process capability 

indices, 𝐶𝐶𝑝𝑝 and 𝐶𝐶𝑝𝑝𝑘𝑘, were used as indicators. The calculations were shown as Eqs. 5.5 and 5.6: 

𝐶𝐶𝑝𝑝 =
𝑈𝑈𝑦𝑦𝑦𝑦 − 𝑦𝑦𝑦𝑦𝑦𝑦

6𝑦𝑦
 Eq. 5.5 

and 

𝐶𝐶𝑝𝑝𝑘𝑘 = 𝑚𝑚𝐹𝐹𝐹𝐹 [
𝑈𝑈𝑦𝑦𝑦𝑦 − µ

3𝑦𝑦
,
µ − 𝑦𝑦𝑦𝑦𝑦𝑦

3𝑦𝑦
] Eq. 5.6 

where USL and LSL are upper and lower limits of CQA specifications, µ and s are the mean and 

standard deviation of six test runs. The value of  𝐶𝐶𝑝𝑝 measures the natural variability of the process, 

and the value of 𝐶𝐶𝑝𝑝𝑘𝑘 indicates the risk of failure. The drug fraction released at the four time points: 

1, 2, 4, 8 h, were the CQAs. The specifications were defined based on the USP standard drug 

release test 2 for theophylline extended-release capsules, where LSL and USL are 10% and 30% 

for Hour 1, 30% and 55% for Hour 2, 55% and 80% for Hour 4, and 80% and 100% for Hour 8. 

Therefore, four 𝐶𝐶𝑝𝑝𝑦𝑦 and four 𝐶𝐶𝑝𝑝𝑘𝑘𝑦𝑦 were calculated to evaluate the stability of one CQA: in vitro 

dissolution. Due to the correlation between the fraction of drug released at the four time points, 

multivariate process capability indices (MPCIs) were adapted to reduce the number of indices from 

8 to 2. Various researchers have proposed alternative approaches to calculate the MPCIs, including 

the volume ratio method by Taam et al.192, the three vectors method by Shahriari et al.193, and the 

multiple bilateral tolerance zones method by Chen.194 In this study, we applied a relatively simple 

approach suggested by Raeisi195, which used the weighted mean of the individual 𝐶𝐶𝑝𝑝s and 𝐶𝐶𝑝𝑝𝑘𝑘s. 

This approach assumed the dissolution value at any of the four time points followed a normal 

distribution, and thus the joint distribution of the four dissolution values followed a multivariate 

distribution. The MPCIs were defined by Eqs. 5.7 and 5.8: 
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𝑀𝑀𝐶𝐶𝑝𝑝 =  �𝑊𝑊𝑖𝑖

4

𝑖𝑖=1

𝐶𝐶𝑝𝑝(𝑖𝑖) Eq. 5.7 

and 

𝑀𝑀𝐶𝐶𝑝𝑝𝑘𝑘 =  �𝑊𝑊𝑖𝑖

4

𝑖𝑖=1

𝐶𝐶𝑝𝑝𝑘𝑘(𝑖𝑖) Eq. 5.8 

where 𝑀𝑀𝐶𝐶𝑝𝑝 and 𝑀𝑀𝐶𝐶𝑝𝑝𝑘𝑘  act as equivalents for 𝐶𝐶𝑝𝑝(𝑖𝑖) and 𝐶𝐶𝑝𝑝𝑘𝑘(𝑖𝑖) in multivariate circumstance and 𝑊𝑊𝑖𝑖  

is the normalized importance weight of the drug dissolution at the ith time point based on the user’s 

decision. It should be noted the sum of 𝑊𝑊𝑖𝑖  equals 1.  

Simulation 2 explored the tolerance of the controlled fluid bed coating process to the variability 

in relative humidity and size distribution of input granules. A response surface, namely tolerance 

space, was derived from the simulation results of the 49 conditions to interpolate the failure rate 

of the product dissolution within the studied range. The response surface was established for the 

coating processes using the combined control system or the feedback control alone.  

Twelve test runs were conducted to verify the tolerance space from the simulation. Six different 

combined conditions of inlet air relative humidity and GSD were selected on the edge of the 

tolerance space. Six test runs of those conditions were conducted using the combined control 

system, while another six test runs of the same six conditions were carried out using feedback 

control alone. The feedforward controller used in the test runs employed the Weibull parameters 

as the model response because its simulated tolerance space had higher success rates than PCA. 

The actual dissolution profiles of 12 test runs were measured and compared to verify the 

contribution of the feedforward control. 
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5.3 Results and Discussion 

In this section, the results of the two Monte Carlos simulations were discussed. The indices of 

process capability were calculated based on the result of Simulation 1. In Simulation 2, the 

tolerance spaces were established in the studied ranges of relative humidity and GSD. The impact 

of the dissolution curve-fitting methods (Weibull function or PCA) on the control performance 

were investigated. The tolerance space was verified using 12 test coating runs near the edge of 

failure, generated using the Weibull-function-facilitated control system.  

 

5.3.1 Simulation 1 for Process Capability 

The results of Simulation 1 are illustrated in Figure 5-6, including four subplots. Each subplot 

shows a joint distribution of fractions of drug released at two specified time points (Hour 2 vs. 

Hour 1, or Hour 8 vs. Hour 4) of the dissolution profile with or without the feedforward control. 

The specifications are illustrated in the subplots, and the 95% confidence intervals of the joint 

distributions are calculated. Since the GSD and the inlet air relative humidity are constrained to a 

narrow range in Simulation 1, most simulated dissolutions met the in-house specification (the 

black squares). The process regulated by the combined feedforward-feedback control generates 

narrower 95% confidence intervals (the blue squares) than the feedback control alone (the red 

squares). It is noteworthy the 95% confidence intervals of the Weibull function fitted dissolution 

results are narrower than the PCA model fitted dissolution in all four specified time points (1, 2, 

4, and 8 h), in both cases with and without feedforward control. The combined feedforward-

feedback control coupled with Weibull function fitting generates a smaller area of the 95% 

confidence interval, comparing Figure 5-6A to Figure 5-6C or comparing Figure 5-6B to Figure 

5-6D. It is probably because the PCA-facilitated process model has only one degree of freedom 
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(the PC1 score), resulting in greater prediction errors in the reconstructed dissolutions than the 

Weibull-function-facilitated process model which has two degrees of freedom (λ and k). The 

greater errors in the PCA-facilitated process model propagate to the feedforward controller and 

lead to higher uncertainty in the simulated dissolution profiles.  

 

Figure 5-6: Results of Simulation 1: (A) simulated % drug released at Hour 1 and 2 using the 
Weibull function to fit dissolution profiles; (B) simulated % drug released at Hour 4 and 8 using 
the Weibull function to fit dissolution profiles; (C) simulated % drug released at Hour 1 and 2 
using the PCA model to fit dissolution profiles; (D) simulated % drug released at Hour 4 and 8 
using the PCA model to fit dissolution profiles. FFC: feedforward controller. 
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The 95% confidence intervals in Figure 5-6 B, C, and D have the same center as the center of 

the specification squares, while Figure 5-6A depicts a bias of the simulated dissolution profiles 

from the center of the specifications in the first two specified time points (1 and 2 hours). The bias 

is caused by the biased error profiles (Figure 3-7) due to Weibull function fitting, in which the 

reconstructed dissolution profiles are lower at Hour 1 and higher at Hour 2 than the actual 

dissolution profiles.  

The calculated indices of process capability (Table 5-1) support the observations (Figure 5-5) 

of the dissolution profiles from Simulation 1. The Cps and Cpks were calculated for each specified 

time point in the four control systems: 

(1) Weibull-function-facilitated feedback control alone,  

(2) Weibull-function-facilitated combined feedforward-feedback control,  

(3) PCA model facilitated feedback control alone,  

(4) PCA model facilitated combined feedforward-feedback control.  

The four specified time points of the specification were deemed equally critical to the drug 

release profile. Therefore, the MCPIs, short for multivariate process capability indices, were 

calculated using the average of the four process capability indices. The values of Cp and Cpk 

increased when the combined feedforward-feedback control was used instead of the feedback 

control alone, regardless of the dissolution curve-fitting methods. It suggests the feedforward 

control advances the product quality by reducing the variability in the in vitro dissolution profiles, 

thus improving product consistency. The Weibull function fitting outperformed the PCA fitting,  

the Cpk value of the Weibull-function-facilitated control being greater than the PCA-facilitated 

control at every specified time point of either feedback control alone or the combined control, even 

with the bias presented in the Weibull function fitted dissolution profiles at Hour 1 and 2. The 
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combined feedforward-feedback control system coupled with the Weibull function fitting method 

had the highest MCPIs, 1.945 for Cp and 1.773 for Cpk. 

Table 5-1: indices for process capability in four cases: (1) feedback-controlled coating process 
using the Weibull function to fit dissolution profiles; (2) feedback-controlled coating process using 
the PCA model to fit dissolution profiles; (3) combined feedforward-feedback coating controlled 
process using the Weibull function to fit dissolution profiles; (4) combined feedforward-feedback 
controlled coating process using the PCA model to fit dissolution profiles. MCPI: multivariate 
process capability index, calculated by taking the average of the process capability indices at the 
four specified time points (1, 2, 4, and 8 hours). 

Time 

Feedback control alone Combined feedforward-feedback control 

Weibull PCA Weibull PCA 

Cp Cpk Cp Cpk Cp Cpk Cp Cpk 

Hour 1 1.111 0.889 0.855 0.684 1.852 1.481 1.042 0.833 

Hour 2 1.157 1.019 0.926 0.815 1.984 1.746 1.096 0.965 

Hour 4 1.344 1.317 1.225 1.201 1.984 1.944 1.437 1.408 

Hour 8 1.282 1.256 1.111 1.089 1.961 1.922 1.333 1.307 

MCPI 1.224 1.120 1.029 0.947 1.945 1.773 1.227 1.128 

 

5.3.2 Simulation 2 for Design Space 

Simulation 2 had 49 initial conditions and generated 490,000 simulated dissolution profiles, 

10,000 simulations for each initial condition. The simulated dissolution profiles were compared to 

the in-house specification, and the tolerance space was established based on the rate of failure. The 

contour plots (Figure 5-6) depict the tolerance spaces of the four control systems. The four control 

systems were the same four as described in Simulation 1. The tolerance spaces were built to reflect 

the probabilities of successful batches at different combinations of initial conditions. The X-axis 

of the plots is D50, an indicator of the GSD. The Y-axis is inlet air relative humidity. The colors 
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indicate the probabilities of successful batches (meeting specification). The yellow regions are the 

conditions of product dissolution profiles with a greater than 95% chance to meet the specifications. 

The 95% tolerance space is the design space of the coating process when the corresponding control 

strategy is applied to assure the product quality. The area of the yellow region increased 

substantially when the Weibull-function-facilitated combined feedforward-feedback control 

system (Figure 5-6B) was applied to replace the feedback control alone (Figure 5-6A). The same 

trend was observed in the PCA-facilitated control systems, comparing Figure 5-6D to Figure 5-

6C. It suggested adjusting the process parameters using the feedforward controller increased the 

chance of success for the initial conditions where the product qualities were at risk (tolerance level 

<95%) using feedback control alone.  

Comparing the two pairs of subplots, Figure 5-6A to Figure 5-6C, and Figure 5-6B to Figure 5-

6D, the 95% tolerance space (design space) generated from the Weibull function fitted dissolution 

profile has a larger area than the PCA fitting, regardless of the control systems. It suggests the 

Weibull function outperforms the PCA fitting in terms of establishing a larger tolerance space. 

This observation aligns with the finding in Simulation 1. Therefore, the Weibull-function-

facilitated control system was used to define the six initial conditions of GSD (D50) and relative 

humidity (RH) for the test runs 1-6:  

(1) D50 = 392µm, RH = 23%, 

(2) D50 = 392µm, RH = 75%, 

(3) D50 = 504µm, RH = 24%, 

(4) D50 = 504µm, RH = 78%,  

(5) D50 = 419µm, RH = 23%, 

(6) D50 = 480µm, RH = 76%.  
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Each initial condition was subjected to two runs with and without the feedforward controller. 

Three out of the six products coated using feedback control alone fail to meet the specification, 

shown in Figure 5-7. Two batches (Test run 3 and 4) have slower dissolution profiles, and one 

batch (Test run 1) has faster dissolution than the specification. In comparison, the dissolution 

profiles of the coated granules produced from the combined feedforward-feedback control system 

meet the specification with no exceptions. The results suggest that intentional changes to the in-

process parameters can mitigate batch-to-batch variation in the input if a well-designed 

feedforward loop is used. 

 

Figure 5-7: Results of Simulation 2. the tolerance space of coating process using (A) the feedback 
control alone coupled with Weibull function fitting for dissolution, (B) the combined feedforward-
feedback control coupled with Weibull function fitting, (C) the feedback control alone coupled 
with the PCA model fitting, (D) the combined feedforward-feedback control coupled with the PCA 
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model fitting. The yellow regions indicate the process had the probability of meeting specifications 
greater than 95%. 

 

 

 

Figure 5-8: Dissolution profiles of the 12 test runs with or without the feedforward controller. 

 

5.4 Conclusion 

The feedforward control loops for the fluid bed granular coating were developed and integrated 

with the feedback control loops. The combined feedforward-feedback control system was 

deployed using the SynTQ rea-time data management system to control the fluid bed coating 

process by adjusting the fluidization air volume and coating weight gain to mitigate the undesired 

impact of variable granule size and inlet air relative humidity on the in vitro dissolution. 
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The performance of the combined feedforward-feedback control system was evaluated using 

two Monte Carlo simulations. Simulation 1 was designed to test whether the combined control 

system improved the product quality and consistency when the variabilities of GSDs and relative 

humidity were tightly controlled. Simulation 2 was used to test whether the combined control 

system adjusted the coating process to mitigate the impacts of different levels of GSDs and relative 

humidities.  

The simulation results showed the coating process with the feedforward component had higher 

process capability and larger tolerance space than the process without the feedforward component. 

The twelve test batches showed the coating process controlled by the combined feedforward-

feedback control system had a higher probability of succeeding near the edge of the failure of the 

tolerance space than the process controlled by feedback control alone. This study showed the 

employment of the combined feedforward-feedback control system on the coating process fulfilled 

the requirements in ICH Q8“…the control of the process such that the variability (e.g., of raw 

materials) can be compensated for in an adaptable manner to deliver consistent product quality.” 

11 
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Chapter 6 : Summary and Future Directions 

The US Food and Drug Administration requires pharmaceutical companies to develop 

extensive process understanding and comprehensive control strategy for product manufacturing. 

The current pharmaceutical quality by design (QbD) is a systematic approach to enhance process 

understanding and identify an acceptable range of material and process variables for each unit 

operation to assure the product quality specification is consistently met. In contrast to the 

traditional quality by test, which only characterizes the final product, the QbD approach tries to 

identify the sources of variabilities and understand their impacts on product characteristics to 

implement a flexible and robust process to deliver consistent quality products, referred to as a 

design space. The common practice to establish the design space is to use a number of experiments 

to determine the association between process parameters and critical quality attributes (CQAs). 

Moving within the design space is not considered a change by the regulatory bodies and requires 

no supplementary submission for regulatory approvals. The process parameters can be modified 

in a feedback manner to control the product quality during the routine manufacturing process. 

Typically, limited studies are conducted during the development of design space to investigate the 

effects of environmental disturbance and material variations on process robustness. However, a 

major disturbance affecting drug product quality is the lot-to-lot variability of the incoming raw 

materials. Additionally, environmental changes can influence manufacturing processes and 

clinical performance of products. The ICH Q8 guideline11 defined the highest control level as a 

system where the process parameters were adjusted to compensate for undesired disturbance and 

stabilize drug product quality. The critical challenges of enabling this level of control include 

effectively understanding the process and converting the process knowledge to an implementable 

system. 
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This dissertation presented a combined feedforward-feedback control system as a solution to 

enable the highest control level. An extended-release theophylline oral dosage form was employed 

as the model drug product, manufactured using a top-spray fluid bed processor. The QbD approach 

was adopted to gain process understanding and facilitate the development of the control system.  

In chapter 2, the quality target product profile of the extended-release multiparticulate dosage form 

was defined. The critical quality attributes, critical formulation variables, and critical process 

parameters of the fluid bed coating process were identified and confirmed using risk assessments 

and screening studies. In addition, the theophylline solid-state form change in the drug product 

was identified as a high-risk failure mode since it significantly altered the in vitro dissolution. 

Chapter 3 demonstrated a response surface design and related statistical data analysis. Process 

models using critical material attributes and process parameters to predict the in vitro dissolution 

profiles were established using two regression methods, including PLS and GPR. The two methods 

showed similar performances in predicting new samples from a test set. The process models serve 

as the basis of feedforward control loops. 

Chapter 4 showed the development of feedback control loops using NIR and Raman 

spectroscopies as PAT tools to monitor the fluid bed coating process in real time. In Chapter 5, 

The feedforward control loops for the fluid bed granular coating were developed and integrated 

with the feedback control loops. The combined feedforward-feedback control system was 

deployed using the SynTQ rea-time data management system to control the fluid bed coating 

process. The performance of the combined control system was evaluated using Monte Carlo 

simulations and twelve test batches. The result showed the combined feedforward-feedback 

control system reduced the batch failures and improved product quality and consistency. The 

control system also increased the process robustness against the input material attributes and 
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environmental disturbance, which offered tremendous flexibility to pharmaceutical companies in 

selecting raw material from different sources. 

Though this dissertation demonstrated the establishment and application of a combined 

feedforward-feedback control system as part of process development, there are still gaps to be 

filled. The future research directions are briefly summarized in three aspects:  

1) The feedforward component relies on incoming material characterizations, which cost a 

substantial amount of time and prevent the material from entering the manufacturing 

process. The holding time can be minimized if rapid analytical methods are applied. 

Process analytical technologies, such as near-infrared spectroscopy, Raman spectroscopy, 

real-time particle size analyzer, and on-line X-ray diffraction analyzer, are promising 

candidates for in-line, on-line, or at-line material characterization. The development of 

such real-time characterization methods will enable automated feedforward-feedback 

controls in continuous manufacturing.    

2) When pharmaceutical companies attempt to identify and study the sources of variability in 

their original DoE during the process development phase, it is almost impossible to include 

all of them. Over time unpredicted and uncontrollable changes, such as lot-to-lot variability 

of input material or equipment aging, can significantly and adversely impact the process 

and product quality. In such a situation, criteria (e.g., Westgard rules) are required to set 

the performance limit so that undesired shifts and trends can be detected from the data of 

routine manufacturing runs. Risk management and experimental studies are needed to 

analyze the root cause of the undesired impact. Once the source of variability is identified, 

a cost-effective methodology is highly desired to expand the knowledge space of the 
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manufacturing process and mathematically adapt the combined control system to the new 

variability. 

3) This dissertation focuses on the development of the control system and the evaluation of 

control performance. However, a vital point of deciding whether a feedforward component 

is necessary or not is the economic benefit. The system performance improvement in the 

output to the additional cost is the primary consideration of the pharmaceutical industry. 

There is a lack of study on the practicality of feedforward control in the current body of 

literature. More industrial applications and cost-effectiveness analysis are needed to 

understand the value of the combined feedforward-feedback control.  
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