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ABSTRACT 
 

DEVELOPMENT OF A MICROFLUIDIC VISCOELASTIC HEMOSTATIC ASSAY 

FOR REAL-TIME VISCOSITY MEASUREMENTS OF BLOOD  

 

 

 

By 

Shay Kent 

August 2021 

 

Thesis supervised by Dr. Melikhan Tanyeri 

Blood coagulation disorders are malfunctions in the body’s ability to control blood 

clotting. It can result in either insufficient clotting causing an increased risk of bleeding or 

excessive clotting obstructing blood flow. The rapid and accurate diagnosis of 

coagulopathies is an important, unmet need in the clinical setting. Rapidly identifying the 

source of bleeding, either acquired or inherited, is critical to reduce the risk of major blood 

loss and deliver personalized hemostatic therapies. Viscoelastic hemostatic assays, or 

VHAs, deliver an effective solution to the diagnosis of coagulopathies by evaluating global 

hemostatic function using whole blood rather than plasma. VHAs are functional blood tests 

that monitor all phases of coagulation by measuring the viscoelastic properties of blood 

during clot formation and degradation to help determine the root cause of bleeding. 

Presently, the two major commercialized VHA techniques are the thromboelastometry 

(TEM) and the thromboelastography (TEG). These two instruments, however, have a high 
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acquisition cost, bulky benchtop size, and are mostly limited to use in surgical procedures. 

Here, we aim to develop a microfluidic viscoelastic hemostatic assay (µVHA) to facilitate 

point-of-care hemostatic tests based on digital microfluidics where whole blood samples 

are partitioned into nanoliter sized emulsion droplets. These devices have been fabricated 

using soft lithography techniques and are capable of determining viscoelastic properties of 

coagulating blood as a function of time. We employ digital microfluidics where blood 

samples are split into nanoliter sized droplets within a microchannel under constant 

pressure, and viscoelastic properties of blood are deduced from droplet properties such as 

droplet length and inter-droplet distance. The length of the droplets is correlated with 

aqueous phase viscosity at high ratios of aqueous-to-oil inlet pressure. Here, we 

demonstrate a proof-of-concept blood coagulation analysis device that can potentially 

deduce viscoelastic properties of whole blood under low shear conditions, thereby 

providing information about global hemostatic function from the beginning of clot 

formation through clot retractions and fibrinolysis. These portable and low cost µVHAs 

would ultimately reduce the footprint and overall cost, broaden potential applications 

beyond emergency and surgical procedures and enable adoption by military medics for 

field diagnosis of combat trauma patients. 
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Chapter I 

Introduction 

 

1.1 Introduction 

The rapid and accurate diagnosis and immediate initiation of treatment of 

coagulopathies are an important, unmet need in the clinical setting to prevent unnecessary 

mortality and morbidity [1]. In order to reduce the risk of major blood loss and deliver 

personalized hemostatic therapies, it is critical to rapidly identify the source of bleeding, 

either acquired or inherited. In the field of emergency care, diagnosis of coagulopathies 

requires quick diagnostic tools [2]. For effective diagnosis and treatment of chronic 

diseases such as cardiovascular diseases, certain biomarkers, such as blood viscosity, need 

to be routinely monitored, therefore diagnostic tools that require small sample volumes that 

can be carried out at the point-of-care show great potential [3].  

 

1.2 Microfluidic Technology 

Microfluidic technology, or lab-on-a-chip devices, manipulates miniscule amounts 

of fluids [4]. Microfluidic technology has emerged rapidly in various fields ranging from 

medical diagnosis to chemical synthesis [5]. At the microscale, gravitational forces are 

greatly reduced and other forces such as capillary forces, surface tensions, and viscous 

forces become more dominant [6]. The efficient transport of reactants within a miniaturized 

device allows for faster diagnosis, resulting in a decrease in cost, on-site testing and 
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diagnosis [5]. Droplet-based microfluidic systems generate a large number of isolated 

volumes via emulsions of two or more immiscible phases allowing each individual droplet 

to perform a different reaction from another droplet, therefore enabling parallel processing 

and multiplexing of reactions without significantly increasing device size or complexity 

[7]. A novel aspect of droplet microfluidics is the ability to produce uniform droplets at a 

high throughput without material exchange between droplets [7]. On-site testing using 

small sample sizes such as those from droplets would potentially allow for obtaining 

continuous blood viscosity data from patients, thereby improving diagnosis and treatment 

accuracy [5]. Microfluidic devices are revolutionizing the field of medical diagnosis by 

providing patients and healthcare providers with point-of-care diagnostic tools [8]. The 

integration and automation of the lab-on-a-chip systems remain as major challenges to their 

wide-spread adoption in many biological fields [5, 8].  

 

1.3 Blood Coagulation 

There are three pathways that make up the blood coagulation pathway: the intrinsic, 

extrinsic, and common pathway (Figure 1.3.1). Each of these pathways is governed by 

Figure 1.3.1 Clot formation: A diagram 
of clot formation.  
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biochemical interactions and coagulation factors [9]. A bleeding disorder is typically 

associated with the deficiency of one of the coagulation factors [10]. For instance, when 

tissue damage occurs, blood begins to clot to plug up the damaged tissue. First, clotting 

factors are released in response to an injury, followed by vasoconstriction of the blood 

vessels to limit blood flow and platelets form a plug. Then fibrin strands attach to the plug 

and form a clot. Conventional tests do not provide a global assessment of hemostatic 

function and biochemical processes that play a role during the clot formation process [11, 

12]. Viscoelastic hemostatic assays provide better insights into the coagulation cascade as 

it is performed with whole blood. 

 

1.4 Conventional Coagulation Tests 

 Bleeding disorders are routinely diagnosed by a panel of conventional coagulation 

tests, or CCTs [2, 11, 12]. CCTs are widely used in clinical settings to assess blood clotting 

function and can be extremely useful for identifying and characterizing bleeding disorders 

of secondary hemostasis [13]. The typical tests in a CCT panel include Hemoglobin 

concentration (Hb), hemocrit, platelet count, fibrinogen level, prothrombin time (PT), 

activated partial thromboplastin time (aPTT), international normalized ratio (INR), and D-

dimer. In these tests, blood samples are treated in vitro with an array of activation factors 

to measure the coagulation time [13, 14]. For example, prothrombin time is a plasma-based 

assay that evaluates the extrinsic and common pathways (specifically factors VII, X, V, II, 

and fibrinogen) where calcium and thromboplastin, a tissue factor and platelet 

phospholipids, are added to blood plasma to initiate the fibrin clot formation [9, 15]. The 

typical time to fibrin gel formation for PT is approximately 10-14 seconds [16]. 
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Prolongation of the PT usually implies a defective extrinsic and/or common pathways [17]. 

An aPTT test evaluates the intrinsic and common pathway where calcium, platelet 

phospholipids, and an activator (silica, celite, kaolin, or ellagic acid) are added to blood 

plasma to determine the clotting time in the absence of tissue factors [18]. The typical time 

to fibrin gel formation for aPTT is typically 20-50 seconds and prolongation of the aPTT 

indicates defective intrinsic and/or common pathways.  

The panel of CCTs, however, have numerous limitations as well [19]. For instance, 

CCTs do not measure the balance of the hemostatic components through all phases, from 

clot initiation through clot lysis and only provide end point measurements [2, 12, 20, 21]. 

They also do not account for the balance between coagulation and fibrinolysis, and 

therefore, are not sufficient to explain the pathways leading to hemostasis in vivo [20]. 

CCTs are limited in detecting the type of hypercoagulation and the shortening of PT/aPTT 

time is not a consistent predictor of hypercoagulability [12, 14, 22]. These tests cannot 

identify the root cause for certain bleeding disorders, especially induced coagulopathies or 

trauma-induced coagulopathies [22-25]. CCTs in general, and in vitro plasma-based tests 

such as PT and aPTT in particular, do not account for important interactions between 

molecular and cellular components (e.g. platelets, fibroblasts and clotting factors) in 

platelet activation and thrombin generation, as they are based on the cascade model of 

coagulation [26, 27]. Further, PT/aPTT tests do not assess overall strength and stability of 

clots as they are measured at the initiation of fibrin polymerization [12, 20, 21]. PT/aPTT 

do not detect hyperfibrinolysis or platelet dysfunction and are not prolonged until 

fibrinogen falls to very low levels [28]. CCTs are not point-of-care assays and long 

processing times can lead to treatment delays which is associated with mortality and 



 

 5 

morbidity, especially under time-constrained circumstances such as trauma and surgery [2, 

23, 29, 30]. Therefore, when CCTs fall short in providing sufficient diagnostic information, 

Viscoelastic Hemostatic Assays are performed to gain more insight into global hemostatic 

function. 

 

1.5 Viscoelastic Hemostatic Assays 

Viscoelastic hemostatic assays, or VHAs, deliver an effective solution to the 

diagnostic testing of coagulopathies by evaluating global hemostatic function using whole 

blood rather than plasma [2, 12, 14, 21, 31]. VHAs are functional blood tests that monitor 

all phases of coagulation by measuring the viscoelastic properties of blood during clot 

formation and degradation to help determine the root cause of bleeding [12]. The current 

commercialized VHA methods are the Thromboelastometry (TEM) and the 

Thromboelastography (TEG). These two instruments, however, have a high acquisition 

cost, bulky benchtop size, and are mostly limited to use in surgical procedures [32]. Here, 

I demonstrate a proof-of-concept device which can potentially be developed into 

microfluidic viscoelastic hemostatic assay (µVHA) to facilitate point-of-care hemostatic 

tests using a method based on digital microfluidics where whole blood samples are 

partitioned into nanoliter sized emulsion droplets. These portable and low cost µVHAs 

would reduce the footprint and overall cost of analytical systems, broaden potential 

applications beyond emergency and surgical procedures and would enable field/combat 

medics providing frontline trauma and medical care to deployed personnel [2, 4, 8, 14, 21]. 

 VHAs provide a point-of-care global and functional assessment of hemostasis by 

revealing contributions and interactions of all hemostatic components during clot 
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formation [12, 20]. Viscoelastic properties of the blood clot are evaluated starting at 

initiation of coagulation through amplification and propagation of the clot to fibrinolysis 

[12, 32]. VHAs help determine the root cause of bleeding and evaluate how fibrinogen 

forms fibrin [33]. Fibrin is an insoluble protein that is responsible for forming blood clots. 

It forms a fibrous mesh that will impede the flow of blood. VHAs enable diagnosis of both 

inherited and acquired bleeding disorders, including post-traumatic coagulopathies and 

mechanisms underlying traumatic hemorrhage, are often used as a diagnostic tool to guide 

patient-specific transfusion therapy [29, 34-36]. VHAs have several advantages over the 

typical panel of conventional coagulation tests, or CCTs, including providing an overview 

of global hemostatic function. First, they provide information on all phases of hemostasis, 

including initial fibrin formation, fibrin-platelet plug construction, and clot lysis [2, 12]. 

Second, VHAs are also capable of diagnosing hypo-coagulable conditions that are not 

evident with CCTs. They facilitate rapid diagnosis of coagulopathies and reduces overall 

transfusion requirements [20]. VHAs have been proven superior in predicting and 

diagnosing coagulopathies, guiding transfusion therapy, and found clinical applications in 

cardiac surgery, liver transplantation and obstetric hemorrhage [22, 35-38]. In cardiac 

surgery, where the risk of surgical bleeding or induced coagulopathy is higher, VHAs can 

help identify patients needing peri operative (mid-operation) or postoperative (after 

operation) transfusion therapy [27, 36, 37]. Transfusion therapy guided by VHAs reduces 

the frequency of blood product transfusions (red blood cells and platelets) and major 

bleeding following cardiac surgery [34, 39]. The advancements in VHAs will allow for 

point-of-care testing which yields quicker results and enables wider adoption of the method 

in emergency and operating rooms [12, 40]. Specifically, VHAs lead to cost-effective 
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practices for trauma and cardiac surgery patients in comparison to typical CCTs [39, 41]. 

Closely mimicking the major physiological processes of hemostasis in vitro helps 

providing insights into the root cause of bleeding disorders where plasma-based 

conventional coagulation tests (PT, aPTT, INR) have limitations in detecting impaired 

hemostasis [24, 27, 41].  

 Even though VHAs provide several advantages over the panel of CCTs that are 

usually used to diagnose coagulation disorders, they still have some limitations. Due to 

their bulky instrumentation size and high price tag, their implementation is currently 

limited to patients with trauma or undergoing surgical procedures [23]. The commercial 

VHA instruments are mainly used in operating rooms and emergency care units [40]. Their 

use in medical procedures is also limited to a few procedures including transfusion therapy, 

liver transplant, trauma, and cardiac surgery [23, 37, 38]. To increase the versatility and 

wide-spread adoption of VHAs in the biomedical field, improvements in blood sample 

handling, full automation of the assay protocols, simultaneous testing with multiple 

activators, integrated analysis software and enhancing robustness of the device are needed 

[2]. 

 

1.6 Thromboelastography and Thromboelastometry 

 Two of the most common VHAs on the market today are the Thromboelastography 

(TEG) and the Thromboelastometry (TEM). The TEG was first described in 1948 by 

Hartert who measured the viscoelastic changes of whole blood during coagulation under 
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low shear conditions [42]. He developed a graphical representation of the rate of fibrin 

polymerization and the overall clot strength, although the technique was not adopted for 

clinical use until the 1980s [3, 32]. The TEM was developed in 1995 as an enhancement 

for hemostasis testing in whole blood, providing differential diagnostic information [3, 32]. 

Both processes rely on a transducer that measures clot firmness as a function of time where 

300uL whole blood is placed into a cylindrical cup at 37 degrees Celsius [3, 12, 32]. A 

suspended pin is inserted into the cup, and the viscoelastic properties of blood clots are 

deduced by monitoring changes in the rotation of the pin (Figure 1.6.1). The pin is not in 

direct contact with the cup and the blood sample provides the physical link between the 

cup and the pin (Figure 1.6.1b-c). Coagulation activators are then added to the sample and 

coagulation is triggered by oscillating either the cup (TEG) or the pin (TEM) back and 

forth around the vertical axis [3, 12, 32]. The torque acting on the pin due to rotation is 

minimal at the beginning of the process. As the blood coagulates, the blood sample starts 

forming a clot between the cup and the pin which generates a torque proportional to clot 

A B C 

Figure 1.6.1 Major commercialized VHA systems: (A) An image of a 
commercial thromboelastometry (TEM) system. The schematic of (B) the 
TEG system and (C) the TEM system. Component 1 represents the cup, 2 
represents the blood sample, 3 represents the pin, 4 represents the transducer 
(optical/electrochemical) and 5 represents the data processing unit (Adapted 
from [20]). 
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firmness which is transmitted to the pin. The pin is connected to a detector system which 

measures torque applied to the pin. In the TEG, the detector system is a torsion wire and in 

the case of TEM, it is an optical detector [2, 3, 12, 32]. The strength of the formed clot is 

measured with an electromechanical (TEG) or an optomechanical (TEM) transducer during 

the coagulation process. The TEG and TEM curves produced from the process show clot 

firmness as a function of time.  

 The transducer data collected from the coagulation process are converted into 

TEG/TEM curves displaying clot firmness as a function of time (Figure 1.6.2a). From these 

curves, we can deduce the parameters representing characteristics of coagulation and the 

lysis process [2, 3, 12, 32]. The key parameters for a TEG curve include reaction time (R), 

kinetics (K), maximum amplitude (MA), clot lysis (CL), and the slope of K and 𝛼 (alpha).  

The key parameters for a TEM curve include clotting time (CT), clot formation time (CFT), 

maximal clot firmness (MCF), lysis (LY), and the slope of the tangent at 2mm amplitude 

(𝛼).  Reaction time, or clotting time, represents the time of latency, the time from the start 

of the test to the initial fibrin formation and is typically between 15 and 23 minutes [2, 3, 

12]. Kinetics, or clot formation time represents the time to achieve a certain level of clot 

strength and is typically between 5 and 10 minutes. The maximum amplitude, or maximal 

clot firmness, is a function of the dynamic properties of fibrinogen and represents the 

ultimate strength of the clot before it starts to degrade. The alpha angle (𝛼) measures the 

fibrin build-up and cross-linking speed, assessing the clot formation speed. The curves are 

divided into parts that reveal different successive stages of the hemostatic process, from 

initiation of coagulation to fibrinolysis. The typical TEG/TEM for a healthy patient shows 

a coagulation trace in the shape of a horizontal champagne flute. Anomalies seen in the 
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TEG/TEM curves are used to diagnose inherited or acquired bleeding disorder (Figure 

1.6.2b). In the presence of a coagulopathy (a coagulation disorder), the shape of the 

coagulation trace is modified, hinting at the root cause of coagulopathy [2, 3, 12]. The 

shape of the TEG/TEM curves can be analyzed to associate them with specific 

coagulopathies and then develop patient-specific therapies. For instance, hypercoagulation 

is diagnosed when reaction time (R) or clotting time (CT) is shortened; kinetics (K) or clot 

formation time (CFT) is also shortened; max amplitude (MA) or max clot firmness (MCF) 

is increased. Another example includes hemophilia where coagulation trace features show 

longer reaction time (R) or clotting time (CT), longer kinetics (K) or clot formation time 

(CFT), and smaller max amplitude (MA) or maximum clot firmness (MCF). Using the 

process of creating the TEG/TEM curves and deriving the key parameters from those 

Figure 1.6.2 Viscoelastic Hemostatic Assay 
(VHA) as a diagnostic tool: (A) Typical 
coagulation traces generated by TEG and 
TEM and expressed as clot firmness as a 
function of time. R and CT representing the 
reaction time to start clotting. MA and MCF 
representing the maximum clot firmness, and 
LY and CL representing clot lysis. (Adapted 
from [20]) (B) TEG/TEM traces can be used 
to diagnose acquired or inherited bleeding 
disorders and help guide patient-specific 
transfusion therapy (Adapted from [3]). 
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curves, it is possible to use anomalies in the curves to diagnose inherited or acquired 

bleeding disorders [23].  

 Even though the TEG and TEM are valuable tools for diagnosing inherited or 

acquired bleeding disorders, they do have some limitations. Both systems have a high 

acquisition cost. The TEG that is commercialized by Hemoscope Corporation, which is 

currently a subsidiary of Haemonetics, and its two-channel TEG 5000 system costs over 

$18K. The ROTEM delta, a four-channel rotational TEM system developed by TEM 

International GmbH (now part of Werfen) costs nearly $28K. The cost of running a “basic 

test” is about $10 and the platelet function test costs about $90. Finally, their bulky 

benchtop size limit widespread use of commercial TEG/TEM systems, mainly restricting 

their use in surgical procedures [1, 2].  

 

1.7 Microfluidic Viscoelastic Hemostatic Assays (μVHA) 

In this work, we propose to develop a microfluidic viscoelastic hemostatic assay 

(μVHA), a more accessible and low-cost diagnostic tool to facilitate point-of-care 

hemostatic tests. Our method is based on digital microfluidics where whole blood samples 

are partitioned into nanoliter sized emulsion droplets [1, 2, 43, 44]. These portable and low 

cost µVHAs would reduce the footprint and overall cost of analytical systems, broaden 

potential applications beyond emergency and surgical procedures. Our approach would 

enable development of field deployable platforms that can be utilized by military medics 

in trauma care immediately after injury to determine course of action and increase the 

effectiveness of treatment. Utilizing a digital microfluidic approach and implementing an 

optofluidic method to generate coagulation traces, it will transform the existing VHA 
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methods based on electromechanical or optomechanical transduction by mitigating its 

shortcomings and potentially extending its applications in biomedical fields [20, 39]. The 

µVHA is based on an established microfluidic technology, digital microfluidics, which 

involves generation and manipulation of nanoliter sized droplets within microchannels [7, 

45]. Blood samples are partitioned into droplets using a flow-focusing geometry by 

squeezing the sample stream by two orthogonal immiscible carrier fluid streams at a 

microfluidic junction where the stream is broken into monodisperse nanoliter sized droplets 

[7, 46]. During the emulsification process, droplet size and inter-droplet distance is dictated 

by the device and flow parameters such as device geometry (channel height, widths, and 

lengths), absolute and relative flow rates of sample fluid (e.g. blood) and immiscible carrier 

fluid, and the relative viscosities of the sample and carrier fluids [1, 43, 44, 47]. Droplet 

size and inter-droplet distance during droplet breakup process can be used to monitor 

changes in sample fluid viscosity [43]. For a given device geometry and sample-to-carrier 

fluid flow rate ratio (𝑄!/𝑄"), the droplet length decreases as the viscosity of the sample 

fluid increases [43]. As the coagulation process proceeds, the viscosity of the blood 

increases which leads to a reduction in droplet length [44]. In this manner, using the 

correlation between viscosity and droplet length, the viscosity of the blood can be actively 

monitored as a function of time during the coagulation process. Dynamic blood viscosity 

measurements during coagulation process allows for generation of clot firmness curves 

that are obtained through conventional VHA methods including TEG and TEM. Our goal 

is to develop a proof-of-concept, portable microfluidic VHA (μVHA) to generate 

coagulation traces throughout the coagulation process, similar to those from the TEG/TEM, 

for rapid and accurate diagnosis of bleeding disorders.  
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1.8 Novelty of our Approach 

The novelty of our approach is based on an innovative engineering tool, digital 

microfluidics, to enhance the status quo in coagulation monitoring by providing an 

enabling new technology for rapid diagnosis of bleeding disorders. The device will be an 

automated, droplet-based method for real-time monitoring of whole blood coagulation in 

vitro. Viscoelastic properties of whole blood during clot formation and degradation will be 

monitored using an optofluidic method. A microfluidic approach enables reduction of the 

sample size by a factor of 3, down to 100uL, and allow for parallel testing of various 

versions of VHAs using a single blood sample [2]. Reduction of the sample size and 

parallel testing potentially opens new applications of coagulation monitoring in point-of-

care testing [26, 38, 48]. For instance, reducing the sample size below 100μL could extend 

the application of VHAs to pediatric procedures [49]. The microfluidic system will shrink 

the overall size of the coagulation monitoring instrument, therefore reducing the cost and 

increasing portability [43, 50]. Mixing of the coagulation initiators will be automated 

which will minimize human errors encountered in TEG/TEM-based assays, improving 

reliability and robustness of viscoelastic coagulation assays [44, 51]. This method will also 

have the ability to measure non-Newtonian fluids and will be readily applicable to measure 

viscoelastic properties of other limited-volume biological samples such as cerebrospinal 

fluid, pleural fluid, and amniotic fluid for diagnostic purposes [52].  

 In μVHA, coagulation process and clot stiffness are monitored by quantitatively 

analyzing the droplet breakup process; and coagulation traces similar to the TEG/TEM 

systems are generated The slope of the linear relationship between the sample and the 

quantity given by 1/(𝐿* − 𝐿)) determines the sensitivity and the range of viscosity 
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measurements. This slope can be adjusted by the device and flow parameters such as 

channel dimensions, carrier fluid viscosity, absolute and relative flow rates of blood and 

immiscible carrier fluid [43, 44]. As the ratio of the sample flow rate to the carrier fluid 

flow rate (𝑄!/𝑄") increases, the sensitivity of measuring the viscosity measurements 

increases [43]. The range and sensitivity of the viscosity measurements can be tuned 

towards a specific application by adjusting the device geometry and flow parameters [43].  

 Our method relies on generating coagulation traces similar to the TEG/TEM 

systems by analyzing the droplet size and inter-droplet distance during the droplet breakup 

process. Using the coagulation traces, it is possible to derive fundamental parameters 

characterizing the coagulation process such as clot formation time, maximal clot firmness, 

and clot lysis. This requires extensive analysis of how microfluidic device geometry and 

flow parameters affect the generation of coagulation traces. Initially, the focus will be on 

testing samples from healthy individuals to demonstrate the applicability of the method to 

monitor coagulation using normal blood samples. To test the validity of our approach, the 

µVHA devices will be tested using samples from healthy individuals that are spiked with 

inhibitors and thrombin to mimic and hypercoagulable state with excessive blood clotting. 

The results will be compared against those from the TEG and TEG systems to illustrate the 

feasibility of this device towards the diagnosis of bleeding disorders.  

 Our approach has the potential to widen the adoption of VHAs by clinicians in 

procedures where blood loss or bleeding disorders have to be evaluated in the diagnostic 

and therapeutic decision-making process. The small size of the device will help reduce the 

footprint and overall cost the system, therefore broadening the potential applications of 

VHAs in medical practices beyond emergency and surgical procedures. The proposed 
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method will reduce the sample size three times, enable automatic fluid handling, increase 

the multiplexing capability by allowing more assays to run simultaneously in parallel, and 

substantially shrink the footprint of the instrumentation to enable portable and/or field-

deployable devices [53]. 

  



 

 16 

 

Chapter II 

Microfluidic Viscoelastic Hemostatic Assay for Real-Time 

Viscosity Measurements 

 

2.1 Introduction 

Viscosity of chemical and biological fluids is an important materials property. In 

medical diagnostics, changes in physical and chemical properties of biofluids can be 

correlated to a number of diseases. Laborious procedures, high testing cost and larger 

sample sizes are typical limitations associated with continuous viscosity measurements 

and, therefore, characterization of viscosity is often limited to end-point measurements 

[50]. Miniaturized viscometers can be developed using microfabrication and microfluidic 

technology, and the incorporation of droplet microfluidics can further reduce sample size 

from microliters to nanoliters [43, 47, 50, 51]. Here, we report a continuous droplet-based 

viscometer to measure viscosity of aqueous fluids based on the size and length of 

emulsified droplets generated under constant pressure.  
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2.2 Device Design 

We tested several designs for our microfluidic viscometer and the final version 

comprised of one oil inlet, one aqueous solution inlet and one outlet (Figure 2.2.1). 

Mask Design: 

The device designs were created using AutoCAD software. The device geometry was 

inspired by Li et. al. [43, 44]. The device consists of a droplet generator using a flow 

focusing geometry where a microchannel carrying the aqueous sample solution meets a 

perpendicular channel at a microfluidic junction. At this junction, the aqueous sample is 

split into droplets by two opposing streams of immiscible oil. The oil inlet was split into 

two channels which has a total length of 50.2 mm up to the microfluidic junction where it 

Outlet Blood 
Inlet 

Oil 
Inlet 9.4mm 

7.2mm 

4.8mm 

1mm 8mm 

1.5mm 

1.5mm 

4mm 

8mm 

40um 

70um 

Constriction 

Figure 2.2.1 Microfluidic viscometer device design: We 
designed a microfluidic device consisting of one oil inlet, one 
aqueous solution inlet and one common outlet channel. The length 
of the oil inlet, aqueous inlet, and outlet channels were 50.2mm, 
7.2mm and 8mm, respectively. Droplets are generated at a junction 
where the oil and aqueous inlets meet. The channel width and 
height across the device was 100 and 50 µm, respectively. The 
aqueous inlet and the outlet channel contained a 40µm wide and 
70µm long constriction at the junction. 
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meets with the sample/aqueous inlet. The length of the aqueous/sample channel was 7.2 

mm. Droplets generated at the microfluidic junction were carried down an 8 mm long outlet 

channel. All channel widths were 100 µm. At the microfluidic junction, the 

aqueous/sample channel and the outlet channel had a 40 µm wide constriction, which 

facilitated droplet generation. Channel height was approximately 50 µm which was 

determined by the thickness of the SU-8 during photolithography process. The dimensions 

of this device are shown in Figure 2.2.1. 

 

2.3 Device Fabrication 

The device is fabricated by conventional photolithography and soft lithography techniques 

[54] (Figure 2.3.1). 

Cleanroom Procedures: 

Gowning: 

A special gown including a 

coverall, shoe covers, boots, 

hair net, hood and gloves 

must be worn when 

fabricating the devices in the 

cleanroom to minimize dust 

and contamination.  

SU-8 Coating: 

Silicon wafers were cleaned 

using acetone and isopropyl 

Si wafer 

SU-8 

Si wafer 

SU-8 

PDMS 

Glass Slide 

Channel 

PDMS 

Si wafer 

SU-8 (negative photoresist) 

Mas

UV Light  

UV After 

PD Peel, 
Punch, 

Soft 

Photolithography 

Soft Lithography 
UV Exposure After Development 

 

PDMS Casting Peel, Punch, and Bond to a Glass 
Slide  

Mask 

Figure 2.3.1 Device fabrication: Fabrication process of 
microfluidic devices with photolithography and soft 
lithography. 
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alcohol and dried off with compressed dry air. The wafers were then placed on a hot plate 

(Torrey Pines EchoTherm HS40A) at 65 degrees Celsius to remove any surface water. 

After cleaning, the wafer was carefully placed on the spin coater (Laurell, WS-650Mz-

23NPPB), centering it to the chuck. Prior to spin coating step, the wafer was secured to the 

chuck by turning on the vacuum. A small amount of SU-8 2050 was dispensed onto the 

wafer such that the photoresist covered about 2/3 of the wafer. Any bubbles in the 

photoresist were carefully removed using a plastic disposable pipet. We then run the 

following program to spin coat the wafer with the photoresist: 

1.) Spin at 500 rpm for 5-10 seconds with acceleration of 100 rpm/second. 

2.) Spin at 2000 rpm for 30 seconds with acceleration of 300 rpm/second. 

This procedure typically yields 50 µm thick device features on the SU-8 mold. During spin-

coating, a build-up of photoresist, called edge bead, can occur on the edge of the substrate. 

A swab dipped in acetone can be used to wipe the edge of the wafer to minimize its impact 

on photomask contact during the lithography step. We then performed a soft bake step, 3 

minutes at 65°C and 9 minutes at 95°C, as suggested by the manufacturer. 

Exposure: 

To obtain vertical sidewalls with SU-8 2050, a long pass filter was used to eliminate UV 

radiation below 350 nm. The wafer was placed under the UV flood exposure unit (350W 

Model LS-150-3 NUV Exposure System, Bachur Associates) and the desired mask was 

placed on the wafer, a quartz slab was then placed on top of the wafer to bring the mask 

and the wafer into conformal contact. The wafer was then exposed to UV light for 

approximately 11 seconds. 
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Post Exposure Bake: 

The wafer was baked for 1-2 minutes at 65°C, then for 6-7 minutes at 95°C. After 1 minute 

of baking at 95°C, an image of the mask was visible in the photoresist. If no visible latent 

image is seen during or after PEB, the exposure, post-baking (or both) was insufficient. 

Development: 

We immersed the wafer to the solvent-based developer, PGMEA, for 7 minutes. The 

development times are approximate, since actual dissolution rates can vary widely as a 

function of agitation. While immersed, the wafer was agitated to fully remove any 

uncrosslinked SU-8. If successful, no white streaks should appear on the wafer. The wafer 

and SU-8 features should look clean and transparent. 

Rinse and Dry: 

The mold was then rinsed with isopropyl alcohol 3-4 times and dried with compressed dry 

air. The mold was then stored within a petri dish in the cleanroom. 

Hard Baking (optional): 

SU-8 has good mechanical properties, therefore hard bakes are normally not required. 

When cracks were observed in the device features, we hard-baked the wafer by gradually 

ramping the temperature up to 150°C, baking at this temperature for 5 minutes, then 

cooling it down to room temperature. 

 

PDMS Chip Fabrication: 

PDMS Preparation: 

To prepare the wafer for replica molding, the wafer was silanized by adding a few drops 

of silane into a petri dish, then incubating under vacuum for 15-30 minutes. PDMS was 
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prepared by mixing the base and the cross-linker component at a 10:1 (by mass) ratio. The 

two were mixed together in a plastic cup and degassed using a vacuum desiccator. The 

PDMS mixture was then poured onto the wafer in the petri dish. The wafer was placed into 

an oven at 75 degrees Celsius for a minimum of two hours.  

Preparing the final device: 

After taking the PDMS wafer out of the oven, it was left to cool down to room temperature. 

Then, using a scalpel, the PDMS layer was carefully cut out of the petri dish. Holes were 

punched into the PDMS to form the inlet and outlet ports for each device. 

Cutting: 

Using a razor blade, the PDMS slab was cut into sections that will fit onto a glass slide. 

Depending on the size of the devices, there could be many devices on a PDMS slab that 

can fit on one slide. We typically obtained two devices per 1x3” microscope slide. 

Bonding: 

The PDMS slabs were cleaned by adhesive tape to remove any dust particles and PDMS 

fragments from punching inlet and outlet ports. The PDMS slabs and clean glass slides 

were placed into the chamber of a plasma cleaner (Harrick Plasma PDC-001) and exposed 

to oxygen plasma at a power of 30W for approximately 20 seconds. The PDMS slabs 

containing microfluidic device features should face-up on the glass tray. After plasma 

activation, the PDMS and glass slide were brought into conformal contact to obtain a 

complete device. The bonded devices were put into a petri dish and baked at 75 degrees 

Celsius overnight.  
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Silanization: 

Prior to each experiment, we silanized our microfluidic devices using Aquapel (PPG 

Industries). Briefly, aquapel solution was transferred into a 1mL glass, gas-tight syringe, 

and the solution was introduced into the oil inlet port. The device was carefully filled with 

the Aquapel solution. 8-10 devices were treated at one time, allowing each device to be 

exposed to Aquapel solution for approximately 30-60 seconds. Next, using an empty 

syringe, air was pushed through each device to expel the Aquapel solution and dry the 

device. A second syringe with ethanol was used to wash the devices and remove any 

residual Aquapel. Subsequently, the empty syringe was used again to flow air through the 

devices to remove ethanol. The devices were then baked at 75 degrees Celsius for at least 

20 minutes.  

 

 2.4 Experimental Setup: 

The experimental setup consisted of a microfluidic device, an inverted microscope, 

a CCD camera, two electronic pressure regulators and a computer (Figure 2.4.1). The 

microfluidic chip was mounted onto the microscope (Nikon TS100) stage with a 4x 

objective lens, and images and videos were captured with a CCD camera (Basler acA800-

510um).  The glass slide was secured to the stage using tape to keep the device in focus 

during the experiment. 2 mL of the aqueous solution was transferred into a glass vial with 

a screw cap with precision-fit silicone and PTFE septum providing a leak-proof seal. The 

oil solution (Light mineral oil, Fisher Scientific) was also transferred into a similar 

container. Polymer tubing (Saint-Gobain Tygon Tubing, ND-100-80, .020" ID x .060" OD) 

with a metal tubing (New England Small Tube, NE-1310-03) at each end was used to 
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introduce fluids for each inlet. One end of the tubing was inserted through the septum of 

the vial and the other end, bent at a ninety-degree angle, was inserted into the device. Each 

inlet and outlet tubing is inserted into the device in a similar manner. Compressed dry air 

was fed into an electronic pressure regulator (ProportionAir, 

MPV1MBHEEZP30PSGAXL) to control air pressure through each inlet (Figure 2.4.1). 

Compressed dry air through the pressure regulator is connected to the vials containing the 

aqueous sample and the oil. The electronic pressure regulator was controlled by a custom 

LabVIEW code, where the magnitude of air pressure for both solutions was adjusted within 

0-30 psi. The same device was used for conducting viscosity measurements for different 

Oil 

Glycerol 

Outlet Oil 
Inlet Glycerol 

Inlet 

Junction 

Pressure 
Regulator

Air 
Compress

or 

Glycerol 
Solution 

Oil Oil 

A B 

C D 
Outlet 

channel 
Channel 

Outlet Channel 

Figure 2.4.1 Experimental setup for microfluidic viscometer: (A) 
Schematic of the experimental setup (B) Micrograph of droplet generation at 
the microfluidic junction (C) an image of the microfluidic device mounted 
on the microscope. (D) Image of droplets produced by the device in the outlet 
channel. 
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solutions. Between each measurement, the device was flushed by compressed dry air. 

Droplet images were captured along the outlet microchannel at a position just below the 

microfluidic junction. Droplet images were analyzed and droplet parameters including 

droplet length were extracted using ImageJ and MATLAB.  

 

2.5 Solution Preparation 

Aqueous Solutions: 

Blood viscosity ranges within 0-60 cP at medium shear rates (80-100 sec−1) for healthy 

individuals [55]. We prepared aqueous glycerol solutions ranging from 1 to 60 cP to mimic 

various stages of blood coagulation and used these solutions as the aqueous phase for the 

droplet generation. The solutions were created by mixing water and glycerol as given 

below, and the viscosity values were confirmed by a commercial rotational viscometer 

(Brookfield LVDV-II+CP). We prepared the glycerol solutions using a table reporting 

viscosity of glycerol and its aqueous solutions at various % weight (Table 2.5.1). We 

confirmed viscosity of each sample solution using a cone and plate viscometer (Figure 

2.5.1). Our results are 

in good agreement with 

the tabulated viscosity 

values for glycerol 

solutions. We further 

measured the viscosity 

of a human blood 

Glycerol (% weight) Viscosity (cP) @ 20ºC 

0 1.005 

20 1.76 

50 6 

60 10.8 

70 22.5 

75 35.5 

80 60.1 

Table 2.5.1: Viscosity and  % weight of aqueous glycerol 
solutions mimicking various stages of blood coagulation 
used in the experiments. 
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sample with the rotational viscometer and found out that the blood viscosity was 

approximately 9.75cP. 

Oil Solution: 

For the oil phase, we used light mineral oil (CAS 8042-47-5, Fisher Scientific). To facilitate 

droplet generation, 10% Silube (T308-16, Siltech Corporation) was added to the oil phase 

as surfactant.  

 

 

 

Figure 2.5.1 Viscosity measurements of glycerol solutions using a 
commercial cone-and-plate viscometer: The plot displays expected 
viscosity values for glycerol solutions shown in Table 2.5.1 versus the 
viscosity measurements performed with a rotational viscometer. The 
red star in the figure represents viscosity measurement for a human 
blood sample. 
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2.6 Measurements 

Using the LabVIEW program, the air pressure was regulated to flow oil and 

aqueous solution through the device (Figure 2.6.1). Droplets were formed at the junction 

where the aqueous phase was pinched by the oil phase. Flow rates through the inlets are 

 
 

Figure 2.6.1 Experimental setup control: (A) Image of the microfluidic junction as 
observed during experiments and (B) the LabVIEW interface used to control flow 
with the pressure regulator. 

6psi(aq) – 11psi(oil) 

100um 

Figure 2.6.2 Streamlined image 
processing to extract droplet 
parameters: (A) Droplet images 
from an aqueous solution of 1cP at 
an inlet pressure of 6psi (aqueous 
solution) and 11psi (oil). (B) 
Thresholded droplet images (C) 
Image stack was then analyzed to 
detect individual droplets. 

A B 

C 
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controlled by individually adjusting the pressure applied to each inlet. For efficient droplet 

generation, the oil phase should have a higher flow rate compared to the aqueous phase. 

Using a CCD camera, we acquired videos of droplet formation for two minutes at the 

beginning and end of an experimental run. In between videos, images were captured every 

second for ten minutes. Using ImageJ, images were converted into a stack and processed 

to determine the average length of the droplets (Figure 2.6.2). Briefly, droplet images were 

first converted into stacks. The 8-bit images were then thresholded for binary conversion. 

Then, we ran particle detection algorithms in ImageJ to detect each droplet and extract its 

key parameters including droplet length.  

 

2.7 Results  

The droplet-based viscometer uses pressure driven flow of an aqueous glycerol 

solution and mineral oil for droplet generation at a microfluidic junction and a 

1 cP

10 cP

20 cP

50 cP

60 cP

100 um
um

100 um
um

100 um
um

100 um
um

100 um
um

Figure 2.7.2: Viscometer 
calibration and viscosity 
measurements of Newtonian 
fluids. (A) Images of droplets 
with different viscosities 
generated in the device. (B) The 
length of the droplets increases 
with viscosity of the droplets. 
The measurements were 
conducted at the oil inlet 
pressure of 22 psi and applied 
pressure ratio (AIP/OIP) of 0.5.

A B

Figure 2.7.1: Microfluidic 
viscometer calibration: 
Viscometer calibration and 
viscosity measurements of 
Newtonian fluids. (A) Images of 
droplets with different viscosities 
generated within the microfluidic 
device. (B) The droplet length 
decreases with increasing fluid 
viscosity. The measurements were 
conducted at an aqueous to oil 
inlet pressure ratio (AIP/OIP) of 
0.5. 
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downstream channel for droplet measurement. Oil and glycerol solutions are introduced 

to the microchannels using various inlet pressures and the droplets are then dispensed 

into a centrifuge tube via the outlet tubing. At the junction, the aqueous phase is pinched 

by the two opposing oil streams and droplets form in the downstream outlet channel. The 

size of the droplets depends on the flow rate of the aqueous and the oil phase, the higher 

the ratio of oil to aqueous solution, the smaller the droplets become. Droplet size is also 

directly related to the viscosity of the aqueous solution. At a fixed pressure ratio, the 

length of the droplet is inversely related to the viscosity of the aqueous solution, as the 

viscosity increases from 1cP to 60cP, the droplet length decreases. A calibration curve 

was constructed to show a linear relationship between 𝜂$+ and 1/(𝐿, − 𝐿") (or an 

4psi(aq)-6psi(oil) 

4psi(aq)-11psi(oil) 4psi(aq)-13psi(oil) 

4psi(aq)-8psi(oil) 

A B 

C D 

100um 100um 

100um 100um 

Figure 2.7.2: Effect of AIP/OIP on droplet size: Images of droplets generated 
using 1cP aqueous solution and light mineral oil. The aqueous inlet pressure 
(AIP) is kept at 4psi, while the oil inlet pressure (OIP) is changed from (A) 6psi 
to (B) 8psi to (C) 11psi to (D)13psi. As OIP is increased, where AIP/OIP 
decreases, the droplet length decreases from (A) 417.98µm to (B) 195.64µm to 
(C) 145.33µm to (D) 119.99 µm. 
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inverse relationship between the droplet length and the aqueous phase viscosity) that can 

be used to calculate sample viscosities (Figure 2.7.1).  

 To generate droplets, the device needs to be operated such that the ratio of the 

aqueous inlet pressure to oil inlet pressure, denoted by AIP/OIP, is within a certain range. 

We focused on finding this optimal ratio range for each aqueous sample viscosity and then 

determining which AIP/OIP ratio would yield consistent droplets across viscosity values 

within 1-60cP (Figure 2.7.2). When the AIP/OIP is below the optimal range, the oil 

pressure is too high and causes the aqueous solution to retract back up the sample channel 

and no droplets can be formed. When the AIP/OIP is above the optimal range, the aqueous 

sample flow rate is too high, and it forms a stream, rather than generating droplets, that co-

flows with the oil phase as the oil flow is insufficient to pinch the aqueous phase. Within 

Figure 2.7.3 Droplet length at various aqueous phase viscosities and 
AIP/OIP ratios: Droplet length versus aqueous phase viscosity 
demonstrating an inverse relationship. As the viscosity increases, the droplet 
length will decrease at a given flow rate. (A) 1psi(aq)-2psi(oil), (B) 10psi(aq)-
30psi(oil), (C) 11psi(aq)-22psi(oil). 

A 

B 

C 
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the optimal range of AIP/OIP, the droplet size increases with increasing AIP/OIP (Figure 

2.7.2). The optimal value of AIP/OIP ratio should be the highest AIP/OIP that still 

generates a steady train of droplets without distortion. The sensitivity of the device to 

measure changes in viscosity increases with the AIP/OIP ratio, as can be seen in the 

viscosity versus droplet length curve (Figure 2.7.3). As the flow rate increases (while 

keeping the aqueous to oil inlet pressure ratio constant), the slope of the viscosity versus 

droplet length plot also increases, indicating an increase in sensitivity (Figure 2.7.3). 

Optimal results were obtained at high flow rates. For instance, setting the aqueous inlet 

pressure to 11psi and the oil inlet pressure to 22psi (AIP/OIP = 0.5) provided a wide 

dynamic range with high sensitivity for viscosity measurements (Fig. 2.7.3c). 

  



 

 31 

 

Chapter III 

Whole Blood Analysis 

 

3.1 Introduction 

 Abnormalities in blood clot formation is a major cause of morbidity and mortality 

worldwide. In emergency medicine, uncontrolled bleeding is a major cause of death that 

can be prevented [30, 40]. Coagulopathy, acidosis, and hypothermia are often referred to 

as the “trauma triad of death” [23, 30]. It is reported that about one-fourth of trauma patients 

suffer from coagulopathy [56]. Coagulopathy is also a major complication of sepsis and 

leads to rapid death with over 1 million cases of sepsis per year resulting in 250,000 deaths 

[27, 57]. With early diagnosis and early intervention and treatment, deaths due to 

coagulopathy can be prevented.  

 Non-Newtonian fluids, such as blood, are viscoelastic and their viscosities depend 

on shear rate. To characterize the viscosity profile of a non-Newtonian fluids, there are two 

types of viscometers, the cone-and-plate viscometers and capillary viscometers [50]. 

Rotational viscometers, such as the cone-and-plate viscometer, measure viscosity based on 

a velocity-driven flow field while capillary viscometers use pressure-driven flow to 

measure viscosity [50]. An advantage of the capillary viscometers is their ability to 

simulate real flow in tubular channels, such as blood vessels.  

 Droplet-based viscometers demonstrate advantages over existing microfluidic 

viscometers such as lower sample volume, higher potential for automation, continuous 
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operation capabilities and device reusability [43, 44, 47]. However, the droplet-based 

viscometer has not yet been proven to measure viscosities for all types of fluids, such as 

non-Newtonian fluids and highly viscous fluids. In this research, we use previously 

developed droplet-based viscometer methods and apply them to measure viscosities of non-

Newtonian fluids. 

 

3.2 Results 

Using our microfluidic viscometer, we performed viscosity measurements with 

human whole blood samples (Figure 3.2.1). Specifically, we introduced human whole 

blood samples with anticoagulants through the aqueous inlet and generated micron-sized 

droplets in mineral oil (Figure 3.2.1, top panels). We observed a similar trend with the 

droplet breakup process. We compared the length of the droplets from the blood sample to 

those from the aqueous glycerol solutions. We determined that droplet sizes for the blood 

1(blood)-2(oil) 2(blood)-7(oil) 11(blood)-22(oil) 

11(aq)-22(oil) 1(aq)-2(oil) 2(aq)-7(oil) 

100um 100um 100um 

x 

100um 100um 100um 

Figure 3.2.1: Droplet-based viscosity measurements of human whole blood 
samples: Droplet images comparing blood sample (top panels) and corresponding 
aqueous glycerol solutions (bottom panel). We observed that the average droplet 
length from blood samples were similar to those from 10cP glycerol solution. 
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sample closely matched the 10cP aqueous glycerol solution. Therefore, we concluded that 

the viscosity of the blood sample is approximately 10cP at the shear rates (~20 s-1). To 

further confirm this, we overlayed the data point obtained from the blood sample to the 

calibration plot obtained using aqueous glycerol solutions (Figure 3.2.2). We observed that 

the viscosity measurement for the blood sample lies on the droplet length vs. aqueous 

viscosity plot at the same aqueous and oil inlet pressures (and the same corresponding 

AIP/OIP). Viscosity of human whole blood samples range between 2-6 cP prior to 

coagulation [55]. Our viscosity value suggests that: i) viscosity measurements have a strong 

temperature dependence, and the sample temperature was not close to the ideal (37°C). ii) 

Despite the presence of anticoagulants, the viscosity value was above the expected value 

Figure 3.2.2 Blood viscosity measurements using microfluidic viscometer: 
The same graph from Figure 2.7.3c with an added data point from the blood 
experiments. The red star data point represents droplet length obtained from 
the blood sample at the same flow rate, 11psi(aqueous)-22psi(oil). Data from 
the blood experiments is in agreement with the data from the glycerol 
solutions. Error bars represent standard deviation for each data point. 
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due to partial coagulation. Finally, we plotted droplet length as a function of inlet pressure 

ratio (AIP/OIP) for the human whole blood sample (Figure 3.2.3). As expected, we 

observed that, the droplet length increases with increasing AIP/OIP ratio where the OIP is 

kept constant. A linear fit as shown in Figure 3.2.3 can be used to determine the minimum 

possible droplet length that can be generated for a given OIP value. Overall, we 

demonstrated that our microfluidic viscometer can be used to determine the viscosity of 

human whole blood samples. 

  

Figure 3.2.3 Droplet length of blood samples as a function of 
AIP/OIP: Droplet length increases as the aqueous inlet pressure 
increases at a constant oil inlet pressure. As a result, droplet 
length increases with the flow rate ratio. 
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Chapter IV 

Conclusion and Future Work 

 

4.1 Conclusion 

With our results, we have demonstrated the application of droplet-based 

microfluidic viscometers towards continuous measurement of viscosities for diagnostic 

analysis. Our approach provides a simple and low-cost method to detect viscosity changes 

in biofluids. Our method offers additional advantages for biological applications where 

samples are difficult to obtain or costly, particularly when continuous monitoring is 

necessary. This droplet-based microfluidic viscometer can measure viscosity of Newtonian 

and non-Newtonian fluids, including biological fluids. The pressure-driven flow and small 

channel size make it an ideal device for monitoring blood viscosity in cardiovascular 

applications.  

 Our droplet-based viscometer provides a simple way to measure viscosity using a 

minute sample size. With a pressure or a vacuum source to drive fluids within the device, 

the viscometer could be applied along with other microfluidic processes such as droplet-

based polymerization reactions to measure viscosity, improve uniformity performance of 

the products. The viscosity changes can be visualized and analyzed based on the length of 

the droplets or be measured in real-time with an on-chip sensor. This viscometer can be 

used to measure absolute viscosities at different shear rates or measuring viscosity changes 
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at a constant shear rate during a reaction leading to viscosity changes to monitor 

progression of biological reactions such as in blood coagulation.  

 

4.2 Future Work 

We demonstrated that our microfluidic device is capable of generating aqueous 

droplets with viscosities ranging from 1 to 60 cP into a carrier oil medium. We used our 

platform to measure viscosity of human whole blood samples. When conducting blood 

experiments, the blood sample was stored in vacutainers containing anticoagulants. To 

initiate clot formation, CaCl2 was added to the blood sample prior to loading on the 

microfluidic viscometer. However, once the coagulant is added, the blood coagulation 

begins immediately. The time that it takes for the sample to travel the distance between the 

sample vial and the microfluidic junction where the droplets are formed, limits the accuracy 

of the viscosity measurement. Future versions of μVHA could facilitate on-chip activation 

of coagulation by automatic mixing of coagulation activators and enable multiplexing to 

concurrently run multiple versions of VHAs [2, 44].In the future, we would like to explore 

a device design that administers the coagulant on chip, thereby minimizing the risk for 

undesired clot formation and potential clogging of the device (Figure 4.2.1). This design 

comprises of two oil inlets, one inlet for blood, and one inlet for coagulant. In addition, the 

design will include serpentine channels to allow for efficient on-chip mixing of the blood 

and the coagulant prior to droplet generation. Our next step would be to explore whether 

the coagulant can be mixed on chip. Ultimately, generating droplets through all stages of 

clot formation would help generate clot firmness curves similar to those obtained by TEG 

and TEM. 
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In the future, our droplet-based microfluidic viscometer can be automated for point-

of-care applications. Droplet parameters including droplet length and inter-droplet distance 

could be automatically measured and analyzed, and viscosities can be displayed in real-

time by incorporating on-chip electrodes enabling capacitive sensing (6). This viscometer 

could also be expanded/adapted to measure viscosity of blood plasma, deformability of red 

blood cells and kinetics of blood coagulation. By expanding the applications of the 

viscometer, this device could benefit patients and healthcare professionals, including 

emergency physicians, hematologists, surgeons, blood banks, and military medics. 

However, for developing a lab-on-a-chip device capable of conducting all of these tests, 

integration of components such as droplet generation, separation of whole blood into blood 

cells and plasma, mixing of reagents with blood droplets to trigger blood coagulation, and 

cell deformability assays are needed.  

 

Oil 
Inlet 

Oil Inlet 

Outlet 
Squiggles to mix 
blood and 
coagulant Blood Inlet 

Coagulant 
Inlet 

Junction of Blood 
and Coagulant 

Figure 4.2.1 A future microfluidic viscometer design: An alternative 
device design for enabling on-chip mixing of coagulants for future 
experiments.  
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