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Chapter 1: Introduction 

1.1 Statement of the Problem 
In recent years, the biopharmaceutical industry experienced rapid development.1 The 

global demand for biopharmaceuticals was projected to be US$362.3 billion by 2026, with a high 

compound annual growth rate (9.2%) between 2018 and 2025.2 Although cell therapy and gene 

therapy have started to gain momentum, monoclonal antibodies (mAb) have led the global market 

in biopharmaceuticals. The mAb accounted for 65.6% of the total biopharma sales in 2017, with 

an expectation to continue to increase.1  

Monoclonal antibodies are therapeutic proteins that bind specifically to the target epitope, 

regulating metabolic pathways and suppressing the disease. An antibody's efficacy, safety, and 

stability are contingent upon the antibody's three-dimensional (3D) structure. The 3D structure is 

a function of many factors, e.g., primary amino acid sequence, deamidation, PTM including 

glycosylation, which impact charge variants and aggregation, etc. A list of quality attributes is 

available elsewhere.3 Since mammalian cells have the necessary machinery for PTM, they are the 

most frequently-used expression system. In comparison, other expression systems, such as 

prokaryotic cells and cell-free expression systems, are only used for relatively simple products, 

such as polypeptides, which require little or no PTM.4-6 A survey conducted in 2018 reported that 

79% of new biologics products (approved in 2014-2018) were expressed using mammalian cells.1 

The product expression requires cooperation between multiple organelles and can be 

disrupted by mild perturbations in a bioreactor, which may compromise both the productivity of 

the cells and the quality of antibodies. These perturbations include, but are not limited to, depleted 

media composition, shear stress, pH, DO (dissolved oxygen), temperature, toxin accumulation, 

osmolality change, and many other factors. A frequently reported perturbation is unsuitable media 
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composition as a result of the cell’s consumption in prolonged cell culture. For example, at the 

later stage of culture, the pool of glycosylation precursors shrinks due to the depletion of carbon 

and nitrogen sources, reducing galactosylation and sialylation.7-9 The toxic cell culture byproduct, 

ammonia, accumulates in the culture media and is reported to have a detrimental effect on 

sialylation at low concentrations and can impact cell health at higher concentrations.10 The 

deteriorating culture environment is worsened by the loss of cellular integrity during cell death, 

resulting in protease and other detrimental enzymes accumulating in the culture with negative 

impact to product quality.11 Additionally, the deteriorating culture environment induces cell death.  

The disintegrated organelles during the cell death process incurred affect productivity and quality. 

For example, the reactive oxygen species (ROS) accumulates in the endoplasmic reticulum (ER) 

and other organelles during cell death, disrupting the protein synthesis homeostasis.12,13 

Delaying cell death can improve product quality and cellular productivity. The cell death 

delay can be achieved by bolus feed, supplementation, temperature downshift, and other process 

control actions. The success depends on the knowledge of which substrate is in demand and the 

timing to implement those control actions. For instance, supplementing galactose, uridine, and 

manganese to the culture media was reported to modulate the galactosylation and was 

demonstrated as a controllable input through controllability analysis.14,15. However, a separate 

study showed that galactose increased the galactosylation precursor five-fold but resulted in 

insignificant changes to galactosylation.16 This contradiction may be explained if each study 

identified the limiting factor, e.g., lack of galactosylation in the latter study might result from 

insufficient enzyme or enzyme activity instead of low precursors. Analyses such as proteomics 

and metabolomics are needed to ensure the effectiveness of substrate feeding. The timing of 

process actions implementation was also critical to ensure maximized productivity since most 
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actions protect cell health by inducing cell growth arrest. For example, temperature downshift 

induces cell growth arrest and can deter cell death, resulting in increased specific productivity with 

fluctuation in glycosylation.17 However, if it is applied too early, the peak cell density will not be 

maximized and compromise productivity. Therefore, it is critical to determine the optimal time to 

prevent either reduction in peak cell density due to premature implementation or ineffective cell 

death deterrence due to late implementation. A similar concern applies to other process actions 

such as feeding and antioxidant supplementation. Excessive glucose and antioxidant at an early 

stage impede cell growth, whereas late feeding and antioxidant supplementation cannot prevent 

cell death.18,19 Therefore, process monitoring techniques that provide knowledge of the demand 

for different substrates and the timing for those actions are needed.  

Encouraged by the Process Analytic Technology (PAT) and Quality-by-Design 

initiatives,20-22 substantial process understanding is encouraged to ensure consistent product 

quality. Due to the complexity of the upstream bioprocess, most analyses of the product and culture 

require sample preparation to reduce the interference from the sample matrix. Therefore, the on-

line, at-line, and off-line analysis work on samples collected from a bioreactor is widely reported. 

For example, multi-dimensional liquid chromatography (mD-LC) that starts with protein-A (ProA) 

chromatography evaluates the mAb product quality directly from the cell culture sample, where 

the ProA is effectively a mAb purification step. The subsequent analysis techniques measure the 

product quality attributes, e.g., the size exclusion chromatography measures antibody aggregates 

and fragmentation, the mass spectroscopy measures the glycosylation profile, and the ion-

exchange chromatography measures charge variant, etc.23-25 Coupled with an auto-sampler, mD-

LC can be used as an on-line or at-line analysis method if the degree of automation is high.24 Other 

on-line applications involving different analysis techniques were also reported, such as enzyme-
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linked immunosorbent assay, flow cytometer, capillary electrophoresis, etc.26-28 More in-process 

analysis can be performed if the collected samples are delivered to the quality control (QC) lab 

(off-line analysis). The proteomics, metabolomics, transcriptomics, etc., can be performed to 

provide a comprehensive picture of the ongoing cell culture process.29-32 These analyses provide 

changes of various proteins, metabolites, and mRNA in extracellular and intracellular space over 

the culture progress. These changes can be used to infer the metabolic pathways’ regulation level 

and corresponding control methods.  Although the on-line and off-line analyses provide rich 

information, they are time-consuming and may be destructive, thereby limiting their application 

as a continuous monitoring method for timely control. Therefore, it is more feasible to perform the 

on-line and off-line analysis periodically or when it is in need. 

In comparison, in-line monitoring with an in-situ sensor can provide real-time information 

for immediate control actions. Many relevant attempts have been reported in recent years. For 

example, Raman spectroscopy was reported to monitor the cell density, nutrients (e.g., glucose 

and glutamine), and metabolites (e.g., lactate and ammonia).33,34 This in-line monitoring allowed 

feed-back controlled glucose feeding, resulting in a significant titer increase in a Biogen Inc. 

process.35,36 Other advanced real-time monitoring includes fluorescence spectroscopy/mapping, 

Fourier-transformed infrared (FTIR), near-infrared (NIR), in-process microscopy, and capacitance 

spectroscopy.37-48 Among these techniques, Raman, FTIR, and NIR, have been used primarily to 

monitor key nutrients and metabolite concentration, while microscopy and capacitance 

spectroscopy have the potential to monitor cell density and provide real-time viability-related 

information.47-49 Although the analytes of in-line monitoring are limited compared to off-line 

analysis, in-line monitoring may allow precise control with less process intervention. Moreover, 
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in-line monitoring can indicate the need for thorough information, i.e., the timing for off-line 

analyses. This effectively saves wasting resources and labor by avoiding unnecessary analyses. 

The goal of this dissertation is to develop an in-line monitoring method that monitors cell 

health status. The health status monitoring could be used to trigger corresponding feedback 

controls, such as media feeding. A previous report showed the media feeding reverses the 

unhealthy status and deter apoptosis.50 In addition, the in-line sensors may prompt the need for 

detailed analysis. Therefore, the in-line monitoring is expected to be the first line of the control 

scheme. For example, a recent paper reported that the capacitance spectroscopy along with the 

conductivity probe detected the bacterial contamination several hours before other commonly-used 

process parameters.51 However, the in-line conductivity alone may not be adequate to make critical 

decisions like batch termination, but it enables the subsequent off-line sampling and analysis to 

confirm the contamination. Overall, it still saves time by timely determination compared to relying 

on the routine off-line sampling only. 

Apoptosis is the most encountered regulated cell death pathway in cell cultures. It affects 

productivity and quality and needs to be monitored. Apoptosis is a lengthy process preceding the 

cell culture decline phase.30,50 Therefore, detection of the onset of apoptosis allows time for 

preventive control actions. Apoptosis induces various physical property changes to the cell, 

including cytoplasmic conductivity, membrane capacitance, cell volume, etc.52 Capacitance 

spectroscopy, which measures the capacitance of cell suspension at different alternating 

frequencies, can capture these apoptosis-related physical property changes.45,50,53 This dissertation 

proposes to develop an in-line monitoring system using capacitance spectroscopy to describe the 

percentage of apoptotic cells quantitatively.  
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SCADA software-calculated parameters (e.g., medium conductivity, cellular conductivity, etc.) 

were included in the X-matrix, with each listed as different columns of the X-matrix. However, 

the number of variables from capacitance spectra is much larger than other single-column variables, 

posing unnecessarily high leverage on the capacitance spectra. Therefore, PCA was applied to 

reduce the dimensionality of the capacitance spectra after they were preprocessed by area 

normalization and mean centering. The PCA was applied on run-1 and run-3 in-line spectra so that 

the run-2 spectra are the independent test set. The scores of PC were included in the X-matrix. To 

prevent loss of information, 12 PCs (explaining 99.98% of the variance) were added to the X-

matrix (Table 6.1). A PLS model was fitted between the new X-matrix and the dying cell 

percentage; the resulting model is referred to as the combined model. 

Table 6.1. The explained variance of the PCA loaded to the combined model 

PC number Variance Explained by This 

PC (%) 

Cumulative Explained 

Variance (%) 

1 95.38 95.38 

2 3.11 98.49 

3 0.83 99.32 

4 0.31 99.63 

5 0.13 99.76 

6 0.10 99.86 

7 0.04 99.89 

8 0.02 99.92 

9 0.02 99.93 

10 0.01 99.95 



 

118 
 

 

Figure 6.2 The 𝑓𝑐 trajectory of a run-2 batch 

6.3.2 Prediction Fluctuation Correction: EPO and Hierarchical Modeling 
Normalized spectra were preprocessed using EPO if they were interfered with by the 

process operations. A model insensitive to the interfering process operations was built using EPO 

preprocessed spectra. The spectra from 97.5 to 101.5 hours of two run-1 batches were defined as 

the clutter (Figure 6.3). Prediction fluctuation was observed during this period due to feeding and 

DS addition, whereas the dying cell percentage was assumed to be unchanged. Therefore, all X-

variance during this four-hour window experienced interference. Four principal components of the 

SVD-processed clutter covariance matrix were used to construct the filtering matrix and remove 

the interfering X-variance. A global calibration PLS model was built using the EPO-preprocessed 

at-line spectra and run-3 in-line spectra. The model was tested with the run-2 in-line spectra. As 

shown in Figure 6.4, the prediction fluctuation was substantially mitigated. However, the EPO 

preprocessing introduced noise as well, especially at the beginning of the culture. Therefore, a 

hierarchical model was desired, primarily applying the regular model and switching to the EPO 

preprocessed model when spectra were interfered.  
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Figure 6.3.  The prediction and corresponding conductivity within the selected clutter from a run-1 batch. 
Green transparent box indicates the time window  

 
Figure 6.4. The culture trajectory depicted by the EPO preprocessed model 

The criteria for the switch between different modes of the hierarchical model had two facets. 

The first relied on knowledge of the operation that induces interference, i.e., feed bolus and DS 

addition, in this study. Interference is expected at these events, and therefore it is appropriate to 

switch from the regular model to the EPO preprocessed model. However, there is no clear criterion 

for switching back to the regular model. A short period with an arbitrary length, e.g., 3 hours, can 

be determined empirically, but it may be more convincing to apply an index that identifies whether 

the spectra were affected, i.e., the need for EPO preprocessed model. The normalized Mahalanobis 
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window average (window size was 40 spectra, i.e., 20 minutes) was applied on the EPO model 

prediction in Figure 6.6B to remove the noise.   

6.3.3 Combined Model with a Single Mahalanobis Distance 
The combined model aims to explain the interference and improve the model performance 

by including more variables. Similar to defining the clutter in EPO preprocessing, the combined 

model needed instructions to give the same prediction to spectra with and without interference 

from the process operations. Therefore, the measured To-Pro-3% was extended to cover the 

fluctuation peaks, specifying that the prediction fluctuation was not expected during this time 

window (Figure 6.7). In comparison, if no fluctuation was involved, the To-Pro-3% was the same 

as the original used for global calibration model construction, i.e., a two-hour window as shown 

in the 106 hours in Figure 6.7.  

The combined model was constructed using the variables selected by iPLS, including the 

1st, 2nd, 4th, 5th PC, and the Mahalanobis distance of capacitance spectra. Other parameters, such 

as conductivity and mechanistic modeling shape factors, did not contribute to the model 

performance, as indicated by the iPLS result. Just as in section 6.3.2, the reference spectra of 

Mahalanobis distance were 3 hours before feeding and DS additions, i.e., 95 hours. Since it is not 

reasonable to calculate the Mahalanobis distance from the at-line spectra to any time point of the 

in-line spectra, the calibration set included the run-1 and run-3 batches, and the run-2 batches were 

the independent test set. A 4-LV PLS model was built using the autoscaled combined X-matrix, 

resulting in an RMSEP of 6.4% (equivalent to 8.2% of the prediction range). As shown in Figure 

6.8, the To-Pro-3% trend was described accurately using the combined model, with the capability 

of detecting the early cell death onset. To-Pro-3+% was observed to increase at 60 and 75 hours in 

both batches, which were even earlier than the deflection (Figure 6.8). This early cell death 



 

123 
 

increase was observed in the global calibration and EPO preprocess models, but it was not as clear 

as the combined model. Moreover, the fluctuation due to feeding was reduced with the combined 

model (Figure 6.8). However, the fluctuations due to DS addition at 98 hours and temperature 

change at 149 hours and 197.5 hours were not removed. It is important to note that the Mahalanobis 

distance to 95 hours is critical to the model performance, as the RMSEP increased to 9.8% after 

the exclusion of Mahalanobis distance. 

 
Figure 6.7. The global calibration model prediction on a run-1 batch overlaid with the extended To-Pro-

3%. The red circle/bar indicates the time window that participates in the model calibration 

(A)  (B)  

Figure 6.8. The culture evolution trajectory from the combined model, (A) the first run-2 batch, (B) the 
second run-2 batch 
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(A)  

(B)  (C)  

Figure 6.9. (A) The measured vs. predicted plot for the hierarchical model using the combined model, (B) 
The culture evolution trajectory of run-2 1 batch, (C) The culture evolution trajectory of run-2 2 batch 

Compared to the EPO model, the combined model did not introduce unnecessary noise, 

but a hierarchical model is still needed because the variable, Mahalanobis distance to 95 hours, is 

not available before 95 hours. A hierarchical model with the same structure as in Figure 6.6A was 

built for a fair comparison, but the EPO preprocessed model was replaced with the combined 

model in the hierarchical model structure. The RMSEP of this hierarchical model was improved 

to 6.0%, which equaled 7.7% of the prediction range. The prediction showed an R2 of 92.8% 

(Figure 6.9A). Again, the prediction trajectory aligned with the measured To-Pro-3%,  with 

mitigated feeding-related fluctuation (Figure 6.9B and Figure 6.9C). 
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6.3.4 Combined Model with Multiple Mahalanobis Distances  
It is possible to circumvent the hierarchical modeling approach if the combined model 

includes the Mahalanobis distance from an early time point range. For example, a combined model 

using Mahalanobis distance to 40 hours monitors the process after 40 hours but not before 40 hours. 

In this section, PLS models were built with the Mahalanobis distance to different time points. The 

naming convention is CbM plus the numbers indicating the hours used in the model, e.g., CbM-

40-50 is the combined model used two Mahalanobis distances, one is to 40 hours and the other is 

to 50 hours. A series of the combined models with the same capacitance spectra PC but different 

Mahalanobis distances were constructed, whose performances were shown in Table 6.2.  

Table 6.2. The model performance of combined models with the Mahalanobis distance to different time 
point 

Model  RMSEP (%) LV Fluctuation due to feeding? 

CbM-95 6.4% 4 No 
CbM-80 6.1% 4 Yes 
CbM-70 5.5% 3 Yes 

CbM-60 5.5% 3 Yes 
CbM-50 4.5% 4 No 
CbM-40 8.8% 3 No 

 

The CbM-50 showed the lowest RMSEP with no fluctuation due to feeding. The RMSEP 

was 4.5%, equaling 5.8% of the prediction range (Figure 6.10A). Moreover, the predicted 

trajectory showed the cell death deflection and an earlier death increase around 60 to 75 hours 

(Figure 6.10B and Figure 6.10C). Although the CbM-50 performance is superior to all models 

discussed above, Table 6.1 also showed that the combined model performance depends on the 

selection of reference spectra for Mahalanobis distance. A major concern is whether the selection 

of 50 hours is suitable for all cultures. It also concerns what the basis of the selection should be, 

i.e., time-based or cell culture progress-based (e.g., to a certain cell density, a health status, or 
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metabolic profiles, etc.)? It is difficult to find the answer to these concerns without more batches 

to challenge the model. 

(A)  

(B)  (C)  

Figure 6.10. (A) The measured vs. predicted plot for the CbM-50, (B) The culture evolution trajectory of 
the first run-2 batch, (C) The culture evolution trajectory of the second run-2 batch 

 
Figure 6.11. RMSEP development as the combined model includes more Mahalanobis distances 
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However, the combined model performance is less sensitive toward the reference spectra 

selection if multiple Mahalanobis distances are included. As shown in Figure 6.11, the RMSEP 

continuously decreased as more Mahalanobis distances were included and stabilized after 

including three Mahalanobis distances, i.e., 40, 50, and 60 hours. The CbM-40,50,60 showed the 

lowest RMSEP, which was 3.6%. Moreover, Table 6.3 shows the prediction performance of other 

combined models. Except for the CbM-80,95, all combined models showed substantially improved 

RMSEP compared to the EPO-preprocessed and the global calibration models. Therefore, the 

selection of reference spectra is less critical if multiple Mahalanobis distances are selected (more 

than two distances are recommended). 

A hierarchical model was needed as the combined model with multiple distances was not 

available at the early stages. A time-based hierarchical model was proposed, as shown in Figure 

6.12. The measured vs. predicted plot showed the accurate prediction with an RMSEP of 3.6%, 

equivalent to 4.6% of the prediction range (Figure 6.13A). The fitted line of predictions has an R2 

of 97.6%. Additionally, the predicted trajectory aligned with measured To-Pro-3% from flow 

cytometry (Figure 6.13B and Figure 6.13C), which was closer to the previous models reported. 

Table 6.3. The model performance of combined models with Multiple Mahalanobis distances 

Model RMSEP (%) LV Fluctuation due to 
feeding? 

CbM-40,50 4.8 4 No 
CbM-50,60 3.5 3 Yes 

CbM-60,70 4.1 3 Yes 
CbM-70,80 3.4 3 Yes 
CbM-80,95 6.4 3 Yes 

CbM-40,50,60 3.6 3 Yes 
CbM-50,60,70 3.8 3 Yes 
CbM-60,70,80 3.3 3 Yes 
CbM-70,80,95 3.6 3  Yes  

CbM-40,60,80 4.5 4 Yes 
CbM-50,70,95 3.8 4 Yes 


