Defense Date

7-11-2007

Graduation Date

2007

Availability

Immediate Access

Submission Type

dissertation

Degree Name

PhD

Department

Chemistry and Biochemistry

School

Bayer School of Natural and Environmental Sciences

Committee Chair

Mitchell Johnson

Committee Member

Partha Basu

Committee Member

Charles Dameron

Committee Member

David Gallaher

Keywords

capillary electrophoresis, laser induced fluorescence, quantum dots, fatty acids

Abstract

Through the modification of capillary coating procedures electroosmotic flow was controlled without altering the buffer properties. Aqueous buffers of differing ionic strengths were utilized in order to develop a better understanding of the surface properties of nanocrystalline lattices known as quantum dots. Secondary determination of nanocrystal surface properties was determined through the use of a zetasizer.

Non-aqueous buffers were utilized in order to determine the effect of the coating on aseparation of hydrophobic, biologically relevant fatty acids. A dynamic capillary surface coat was compared to a successive multiple ionic layer (SMIL) polymeric coat in reguards to resolution and stability. The SMIL coat was further modified to improve resolution in non-aqueous analysis of fatty acids.

Laser induced fluorescence detection was utilized for detection of fluorescently tagged fatty acids. The labeling reaction was studied in order to determine the low concentration limit of the labeling reaction. This reaction was then utilized to label an extraction of free fatty acids from bovine omentum. The electrophoretic technique was utilized to separate the extract to identify fatty acid composition.

Format

PDF

Language

English

Share

COinS