Defense Date

6-24-2020

Graduation Date

Winter 12-18-2020

Availability

Immediate Access

Submission Type

dissertation

Degree Name

PhD

Department

Chemistry and Biochemistry

School

Bayer School of Natural and Environmental Sciences

Committee Chair

Ellen Gawalt

Committee Member

Jeffrey Evanseck

Committee Member

Jennifer Aitken

Committee Member

Wilson Meng

Keywords

Corrosion, Polymers, Stainless steel 316L, Antifouling, SI-Polymers, Atom transfer radical polymerization

Abstract

Pitting corrosion is arguably one of the most destructive and dangerous forms of corrosion, resulting in damage to structures, the environment, and public health. In addition, damage caused to structures such as bridges, pipelines, and boats, corrosion also has a profound effect on the biomedical community. Implanted metallic devices (i.e., vascular stents and artificial joints) are prone to pitting corrosion caused by aggressive ions present in extracellular fluid. To provide a corrosion-resistant surface on SS316L, films of poly(styrene), poly(methyl acrylate), and poly(methyl methacrylate) were formed using surface-initiated atom transfer radical polymerization (SI-ATRP). The resulting hydrophobic polymer films had a fractional coverage of up to 99% and protection efficiencies of up to 99.6%, indicating that the modifications had excellent coverage of the surface and were capable of resisting corrosion, respectively. Additionally, films of poly(oligo(ethylene glycol)acrylate) and poly(oligo(ethylene glycol)methacrylate) were formed on SS316L in an attempt to create a surface modification that was both cell and corrosion-resistant. However, PEGylated SI-polymers were not capable of inhibiting corrosion to a high degree. To improve the corrosion resistance of the polymer films, an films of poly(styrene) were formed using SI-ATRP, then chain extended with PEGylated acrylate and methacrylate. The SI polymerization of epoxides provides an attractive opportunity to impart both antifouling and corrosion-resistant properties to a surface. Films of poly(propylene oxide) were synthesized using anionic ROP methodology; however, the result was not able to be replicated.

Language

English

Share

COinS