Author

Prashi Jain

Defense Date

11-9-2011

Graduation Date

2011

Availability

Immediate Access

Submission Type

dissertation

Degree Name

PhD

Department

Medicinal Chemistry

School

School of Pharmacy

Committee Chair

Patrick Flaherty

Committee Member

Aleem Gangjee

Committee Member

Marc Harrold

Committee Member

David Lapinsky

Committee Member

Jeffry Madura

Committee Member

James Drennen

Keywords

Aminothiazole, Benzimidazoles, Buchwald reaction, CDK5, Drug design, Metal catalyzed reaction

Abstract

This dissertation describes the design, synthesis and biological evaluation of novel CDK5/p25 small molecule inhibitors. Cyclin dependent kinase 5 (CDK5) is a proline directed serine/threonine kinase which plays an important role in the pathology of Alzheimer's disease (AD). CDK5/p25 has been implicated in hyperphosphorylation of tau protein which forms neurofibrillary tangles (NFTs), a contributing factor to the pathology of Alzheimer's disease (AD). Based on the deposited X-ray crystal structure of CDK5/p25 with a non-selective CDK inhibitor R-Roscovitine (PDB ID: 1UNL), eight series of novel compounds with a benzimidazole core were designed, synthesized and tested as inhibitors of CDK5/p25. An efficient synthesis of trisubtituted benzimidazoles was developed to explore the SAR at the 1-, 4-, and 6- positions of the benzimidazole core. X-ray crystal structure verification of an intermediate confirmed selective alkylation of the N-1 position of the benzimidazole scaffold. Synthesis of N-1, N-4, C6-O, C6-N, C6-C and C-2 substituted benzimidazoles were achieved via Mitsunobu coupling, Suzuki Miyaura coupling, Buchwald coupling and reductive alkylation strategies. Aminothiazole scaffolds are an established class of CDK inhibitors including CDK5. A molecular hybridization technique was applied to the design of a series of 2-, 5- disubstituted aminothiazoles incorporating structural features of both the Meriolins, natural product CDK inhibitors, and known aminothiazole scaffolds. Synthetic techniques employed included aryl lithiation, deoxygenation and acylation.

Format

PDF

Language

English

Share

COinS