Cuspidal ribbon tableaux in affine type A
DOI
10.5802/alco.260
Document Type
Journal Article
Publication Date
1-1-2023
Publication Title
Algebraic Combinatorics
Volume
6
Issue
2
First Page
285
Last Page
319
Keywords
Khovanov-Lauda-Rouquier algebras, quiver Hecke algebras, ribbon tableaux, Specht modules, Young diagrams
Abstract
For any convex preorder on the set of positive roots of affine type A, we classify and construct all associated cuspidal and semicuspidal skew shapes. These combinatorial objects correspond to cuspidal and semicuspidal skew Specht modules for the Khovanov-Lauda-Rouquier algebra of affine type A. Cuspidal skew shapes are ribbons, and we show that every skew shape has a unique ordered tiling by cuspidal ribbons. This tiling data provides an upper bound, in the bilexicographic order on Kostant partitions, for labels of simple factors of Specht modules.
Open Access
Gold
Repository Citation
Abbasian, D., Difulvio, L., Muth, R., Pasternak, G., Sholtes, I., & Sinclair, F. (2023). Cuspidal ribbon tableaux in affine type A. Algebraic Combinatorics, 6 (2), 285-319. https://doi.org/10.5802/alco.260