Numerical analysis of stenoses severity and aortic wall mechanics in patients with supravalvular aortic stenosis

Talha Lone, Department of Engineering, Rangos School of Health Sciences, Duquesne University, Pittsburgh, PA, USA.
Angelica Alday, Department of Engineering, Rangos School of Health Sciences, Duquesne University, Pittsburgh, PA, USA.
Rana Zakerzadeh, Department of Engineering, Rangos School of Health Sciences, Duquesne University, Pittsburgh, PA, USA. Electronic address: zakerzadehr@duq.edu.

Abstract

Supravalvular aortic stenosis (SVAS) is an aortic malformation characterized by a narrowing of the ascending aorta, resulting in abnormal hemodynamics and pressure drop across the stenosed region. It has been observed that the pressure drops measured from Doppler ultrasound exams often tend to be higher than those obtained from invasive cardiac catheterization. These misleadingly elevated pressure measurements may drive the decision to refer patients for surgical treatment prematurely. Considering this strong clinical association, the purpose of this work is to develop a computational modeling approach using a two-way coupled fluid-structure interaction methodology to determine an accurate prediction of trans-stenotic pressure drop and to further highlight the discrepancy between the SVAS assessment methods. Blood is modeled using Navier-Stokes equations while the aortic wall is simulated by a composite poroelastic structure to represent the three main layers of the arterial wall. The relationship between aortic wall elasticity and the blood flow conditions is examined in varying levels of stenosis, ranging from mild to severe degrees of vessel diameter narrowing. A substantial overestimation of the traditional Doppler pressure drop measurement is observed, especially for severe stenosis levels. The simulation results indicate that elasticity of the aortic wall has a relatively little effect on trans-stenotic pressure drop for the range of mild to moderate SVAS cases, but predicted to have a profound effect for severe SVAS cases. Moreover, significant sensitivity to the pressure drop across the SVAS region from stenosis severity is observed.