Investigation of the therapeutic potential of N-acetyl cysteine and the tools used to define nigrostriatal degeneration in vivo



Document Type

Journal Article

Publication Date


Publication Title

Toxicology and Applied Pharmacology



First Page


Last Page





Dopamine, FluoroGold, N-acetylcysteine, Neurodegeneration, Parkinson's disease, Retrograde, The reference trap


The glutathione precursor N-acetyl-l-cysteine (NAC) is currently being tested on Parkinson's patients for its neuroprotective properties. Our studies have shown that NAC can elicit protection in glutathione-independent manners in vitro. Thus, the goal of the present study was to establish an animal model of NAC-mediated protection in which to dissect the underlying mechanism. Mice were infused intrastriatally with the oxidative neurotoxicant 6-hydroxydopamine (6-OHDA; 4 μg) and administered NAC intraperitoneally (100 mg/kg). NAC-treated animals exhibited higher levels of the dopaminergic terminal marker tyrosine hydroxylase (TH) in the striatum 10d after 6-OHDA. As TH expression is subject to stress-induced modulation, we infused the tracer FluoroGold into the striatum to retrogradely label nigrostriatal projection neurons. As expected, nigral FluoroGold staining and cell counts of FluoroGold+ profiles were both more sensitive measures of nigrostriatal degeneration than measurements relying on TH alone. However, NAC failed to protect dopaminergic neurons 3 weeks following 6-OHDA, an effect verified by four measures: striatal TH levels, nigral TH levels, nigral TH+ cell counts, and nigral FluoroGold levels. Some degree of mild toxicity of FluoroGold and NAC was evident, suggesting that caution must be exercised when relying on FluoroGold as a neuron-counting tool and when designing experiments with long-term delivery of NAC-such as clinical trials on patients with chronic disorders. Finally, the strengths and limitations of the tools used to define nigrostriatal degeneration are discussed.

Open Access

Green Accepted