Defense Date
4-15-2004
Graduation Date
Spring 2004
Availability
Immediate Access
Submission Type
thesis
Degree Name
MS
Department
Computational Mathematics
School
McAnulty College and Graduate School of Liberal Arts
Committee Chair
Stacey Levine
Committee Member
Constance D. Ramirez
Committee Member
Eric Rawdon
Committee Member
Kathleen Taylor
Keywords
denoising, image processing, image restoration, inpainting, nonstandard diffusion, optimization
Abstract
Many fields of study use images to make discoveries about the past, decisions for the present and predictions for the future. Images often acquire degradations such as a blur due to a patient moving during an x-ray or noise picked up through remote sensing imaging equipment. Images may also lose information through compression or
transmission. In this thesis, diffusion based models were used to solve the image restoration problem as these models can simultaneously remove noise, preserve edges and restore lost information. Specifically, numerical schemes were developed and tested for denoising via nonstandard diffusion that are more computationally efficient than the current method. Furthermore, a new model for digital inpainting is proposed based on the nonstandard diffusion model. Numerical results illustrate the effectiveness of both the denoising and inpainting models in image restoration.
Format
Language
English
Recommended Citation
Pirolli, M. (2004). Optimization Techniques for Image Restoration (Master's thesis, Duquesne University). Retrieved from https://dsc.duq.edu/etd/1049