Defense Date
6-30-2011
Graduation Date
Summer 2011
Availability
Immediate Access
Submission Type
dissertation
Degree Name
PhD
Department
Chemistry and Biochemistry
Committee Chair
Partha Basu
Committee Member
Michael Cascio
Committee Member
Mihaela Rita Mihailescu
Committee Member
John F. Stolz
Keywords
Campylobacter, Heterologous expression, Molybdenum enzymes, Nitrate reductase, Periplasmic, Protein purification
Abstract
In this study the nitrate metabolism of Campylobacter jejuni and Sulfurospirillum barnesii will be examined, specifically the periplasmic nitrate reductase (Nap) enzyme which is transforms of nitrate to nitrite. The catalytic subunit, NapA, is a molybdenum dependent enzyme. Isolation of molybdenum containing enzymes is not straightforward as co-factor can be lost during protein purification procedures. This study used two protein purification methods to isolate NapA. First, NapA was isolated directly from S. barnesii using protein fractionation and anion exchange chromatography. Second, molecular cloning was used to express the recombinant affinity-tagged S.barnesii and C. jejuni NapA proteins from E. coli. Immobilized metal affinity chromatography was used to isolate the recombinant proteins. NapD was co-expressed with NapA to aid in post-translational modifications. The reduced methyl viologen assay was used to study the kinetics of nitrate reduction. Comparison of the native and recombinant NapA kinetic properties suggests that the recombinant enzyme have attenuated activity. The theoretical structure of C. jejuni NapA was calculated using homology modeling techniques. Comparison of the C. jejuni NapA with structures of NapA from other organisms indicates that C. jejuni NapA has large sequence inserts on the outside of the protein. Furthermore, the napA operon of C. jejuni and S. barnesii display distinct gene content and organization.
Format
Language
English
Recommended Citation
Sparacino-Watkins, C. (2011). Nitrate metabolism in the Epsilonproteobacteria: Campylobacter jejuni and Sulfurospirillum barnesii (Doctoral dissertation, Duquesne University). Retrieved from https://dsc.duq.edu/etd/1227