Defense Date
4-18-2017
Graduation Date
Summer 1-1-2017
Availability
One-year Embargo
Submission Type
dissertation
Degree Name
PhD
Department
Chemistry and Biochemistry
Committee Chair
Jeffrey D. Evanseck
Committee Member
Michael Cascio
Committee Member
M. Rita Mihailescu
Committee Member
Christopher K. Surratt
Committee Member
Robert B. Lettan II
Keywords
Molecular dynamics, Free energy perturbation, Inhibitor-stabilized conformation, Neurotransmitter transporter, Dopamine, Serotonin, Cocaine, Psychostimulant
Abstract
The monoamine transporter (MAT) proteins responsible for the reuptake of the neurotransmitter substrates, dopamine, serotonin, and norepinephrine, are drug targets for the treatment of psychiatric disorders including depression, anxiety, and attention deficit hyperactivity disorder. Small molecules that inhibit these proteins can serve as useful therapeutic agents. However, some dopamine transporter (DAT) inhibitors, such as cocaine and methamphetamine, are highly addictive and abusable. Efforts have been made to develop small molecules that will inhibit the transporters and elucidate specific binding site interactions. This work provides knowledge of molecular interactions associated with MAT inhibitors by offering an atomistic perspective that can guide designs of new pharmacotherapeutics with enhanced activity.
The work described herein evaluates intermolecular interactions using computational methods to reveal the mechanistic detail of inhibitors binding in the DAT. Because cocaine recognizes the extracellular-facing or outward-facing (OF) DAT conformation and benztropine recognizes the intracellular-facing or inward-facing (IF) conformation, it was postulated that behaviorally “typical” (abusable, locomotor psychostimulant) inhibitors stabilize the OF DAT and “atypical” (little or no abuse potential) inhibitors favor IF DAT. Indeed, behaviorally-atypical cocaine analogs have now been shown to prefer the OF DAT conformation. Specifically, the binding interactions of two cocaine analogs, LX10 and LX11, were studied in the OF DAT using molecular dynamics simulations. LX11 was able to interact with residues of transmembrane helix 8 and bind in a fashion that allowed for hydration of the primary binding site (S1) from the intracellular space, thus impacting the intracellular interaction network capable of regulating conformational transitions in DAT.
Additionally, a novel serotonin transporter (SERT) inhibitor previously discovered through virtual screening at the SERT secondary binding site (S2) was studied. Intermolecular interactions between SM11 and SERT have been assessed using binding free energy calculations to predict the ligand-binding site and optimize ligand-binding interactions. Results indicate the addition of atoms to the 4-chlorobenzyl moiety were most energetically favorable.
The simulations carried out in DAT and SERT were supported by experimental results. Furthermore, the co-crystal structures of DAT and SERT share similar ligand-binding interactions with the homology models used in this study.
Language
English
Recommended Citation
Jean, B. (2017). Modeling the Binding of Neurotransmitter Transporter Inhibitors with Molecular Dynamics and Free Energy Calculations (Doctoral dissertation, Duquesne University). Retrieved from https://dsc.duq.edu/etd/240