Role of Mitochondrial and Cytosolic Folylpolyglutamate Synthetase in One-Carbon Metabolism and Antitumor Efficacy of Mitochondrial-Targeted Antifolates

DOI

10.1124/molpharm.124.000912

Authors

Carrie O'Connor, Department of Oncology (C.O., M.S., S.K., X.B., J.L., L.H.M., Z.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., T.M., A.S., A.G.); Department of Chemistry, Indiana University, Bloomington, Indiana (J.M.K., C.E.D.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (S.K., X.B., J.L., L.H.M., Z.H.).
Mathew Schneider, Department of Oncology (C.O., M.S., S.K., X.B., J.L., L.H.M., Z.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., T.M., A.S., A.G.); Department of Chemistry, Indiana University, Bloomington, Indiana (J.M.K., C.E.D.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (S.K., X.B., J.L., L.H.M., Z.H.).
Jade M. Katinas, Department of Oncology (C.O., M.S., S.K., X.B., J.L., L.H.M., Z.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., T.M., A.S., A.G.); Department of Chemistry, Indiana University, Bloomington, Indiana (J.M.K., C.E.D.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (S.K., X.B., J.L., L.H.M., Z.H.).
Md Junayed Nayeen, Department of Oncology (C.O., M.S., S.K., X.B., J.L., L.H.M., Z.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., T.M., A.S., A.G.); Department of Chemistry, Indiana University, Bloomington, Indiana (J.M.K., C.E.D.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (S.K., X.B., J.L., L.H.M., Z.H.).
Khushbu Shah, Department of Oncology (C.O., M.S., S.K., X.B., J.L., L.H.M., Z.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., T.M., A.S., A.G.); Department of Chemistry, Indiana University, Bloomington, Indiana (J.M.K., C.E.D.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (S.K., X.B., J.L., L.H.M., Z.H.).
Tejashree Magdum, Department of Oncology (C.O., M.S., S.K., X.B., J.L., L.H.M., Z.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., T.M., A.S., A.G.); Department of Chemistry, Indiana University, Bloomington, Indiana (J.M.K., C.E.D.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (S.K., X.B., J.L., L.H.M., Z.H.).
Abhishekh Sharma, Department of Oncology (C.O., M.S., S.K., X.B., J.L., L.H.M., Z.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., T.M., A.S., A.G.); Department of Chemistry, Indiana University, Bloomington, Indiana (J.M.K., C.E.D.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (S.K., X.B., J.L., L.H.M., Z.H.).
Seongho Kim, Department of Oncology (C.O., M.S., S.K., X.B., J.L., L.H.M., Z.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., T.M., A.S., A.G.); Department of Chemistry, Indiana University, Bloomington, Indiana (J.M.K., C.E.D.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (S.K., X.B., J.L., L.H.M., Z.H.).
Xun Bao, Department of Oncology (C.O., M.S., S.K., X.B., J.L., L.H.M., Z.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., T.M., A.S., A.G.); Department of Chemistry, Indiana University, Bloomington, Indiana (J.M.K., C.E.D.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (S.K., X.B., J.L., L.H.M., Z.H.).
Jing Li, Department of Oncology (C.O., M.S., S.K., X.B., J.L., L.H.M., Z.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., T.M., A.S., A.G.); Department of Chemistry, Indiana University, Bloomington, Indiana (J.M.K., C.E.D.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (S.K., X.B., J.L., L.H.M., Z.H.).
Charles E. Dann, Department of Oncology (C.O., M.S., S.K., X.B., J.L., L.H.M., Z.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., T.M., A.S., A.G.); Department of Chemistry, Indiana University, Bloomington, Indiana (J.M.K., C.E.D.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (S.K., X.B., J.L., L.H.M., Z.H.).
Aleem Gangjee, Department of Oncology (C.O., M.S., S.K., X.B., J.L., L.H.M., Z.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., T.M., A.S., A.G.); Department of Chemistry, Indiana University, Bloomington, Indiana (J.M.K., C.E.D.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (S.K., X.B., J.L., L.H.M., Z.H.).
Larry H. Matherly, Department of Oncology (C.O., M.S., S.K., X.B., J.L., L.H.M., Z.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., T.M., A.S., A.G.); Department of Chemistry, Indiana University, Bloomington, Indiana (J.M.K., C.E.D.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (S.K., X.B., J.L., L.H.M., Z.H.) houz@karmanos.org matherly@karmanos.org.
Zhanjun Hou, Department of Oncology (C.O., M.S., S.K., X.B., J.L., L.H.M., Z.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., T.M., A.S., A.G.); Department of Chemistry, Indiana University, Bloomington, Indiana (J.M.K., C.E.D.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (S.K., X.B., J.L., L.H.M., Z.H.) houz@karmanos.org matherly@karmanos.org.

Document Type

Journal Article

Publication Date

9-17-2024

Publication Title

Molecular pharmacology

Volume

106

Issue

4

First Page

173

Last Page

187

Abstract

Folate-dependent one-carbon (C1) metabolism encompasses distinct cytosolic and mitochondrial pathways connected by an interchange among serine, glycine, and formate. In both the cytosol and mitochondria, folates exist as polyglutamates, with polyglutamylation catalyzed by folylpolyglutamate synthetase (FPGS), including cytosolic and mitochondrial isoforms. Serine is metabolized by serine hydroxymethyltransferase (SHMT)2 in the mitochondria and generates glycine and C1 units for cellular biosynthesis in the cytosol. is a novel pyrrolo[3,2-day]pyrimidine antifolate that targets SHMT2 in the mitochondria and SHMT1 and de novo purine biosynthesis in the cytosol. FPGS is expressed in primary pancreatic cancer specimens, and FPGS levels correlate with in vitro efficacies of toward human pancreatic cancer cells. MIA PaCa-2 pancreatic cancer cells with CRISPR knockout of FPGS were engineered to express doxycycline-inducible FPGS exclusively in the cytosol (cFPGS) or in both the cytosol and mitochondria (mFPGS). Folate and accumulations increased in both the cytosol and mitochondria with increased mFPGS but were restricted to the cytosol with cFPGS. inhibited SHMT2 ∼19-fold greater than By metabolomics analysis, mFPGS stimulated the C1 flux from serine in the mitochondria and de novo purine and dTTP synthesis far greater than cFPGS. mFPGS enhanced in vitro inhibition of MIA PaCa-2 cell proliferation by (∼30-fold) more than cFPGS (∼4.9-fold). Similar results were seen with other pyrrolo[3,2-d]pyrimidine antifolates (); however, elevated mFPGS adversely impacted inhibition by the nonclassical SHMT2/SHMT1 inhibitor SHIN1. These results suggest a critical role of mFPGS levels in determining antitumor efficacies of mitochondrial-targeted pyrrolo[3,2-d]pyrimidine antifolates for pancreatic cancer. SIGNIFICANCE STATEMENT: is a novel pyrrolo[3,2-d]pyrimidine antifolate that targets serine hydroxymethyltransferase (SHMT)2 in the mitochondria and SHMT1 and de novo purine biosynthesis in the cytosol. accumulation increases with folylpolyglutamate synthetase (FPGS) levels in both the cytosol and mitochondria. Increased mitochondrial FPGS stimulated one-carbon metabolic fluxes in the cytosol and mitochondria and substantially enhanced in vitro inhibition of pancreatic cancer cells by . Mitochondrial FPGS levels play important roles in determining the antitumor efficacies of pyrrolo[3,2-d]pyrimidine antifolates for pancreatic cancer.

Open Access

39048308 (pubmed); PMC11413923 (pmc); 10.1124/molpharm.124.000912 (doi); molpharm.124.000912 (pii)

Share

COinS