Ligand-receptor binding kinetics in surface plasmon resonance cells: A Monte Carlo analysis

DOI

10.1088/1478-3975/13/6/066010

Document Type

Journal Article

Publication Date

12-5-2016

Publication Title

Physical Biology

Volume

13

Issue

6

ISSN

14783967

Keywords

diffusion-limited reactions, ligand-receptor binding kinetics, Monte Carlo simulations, surface plasmon resonance chip

Abstract

Surface plasmon resonance (SPR) chips are widely used to measure association and dissociation rates for the binding kinetics between two species of chemicals, e.g., cell receptors and ligands. It is commonly assumed that ligands are spatially well mixed in the SPR region, and hence a mean-field rate equation description is appropriate. This approximation however ignores the spatial fluctuations as well as temporal correlations induced by multiple local rebinding events, which become prominent for slow diffusion rates and high binding affinities. Wereport detailed Monte Carlo simulations of ligand binding kinetics in an SPR cell subject to laminar flow. Weextract the binding and dissociation rates by means of the techniques frequently employed in experimental analysis that are motivated by the mean-field approximation.Wefind major discrepancies in a wide parameter regime between the thus extracted rates and the known input simulation values. These results underscore the crucial quantitative importance of spatio-temporal correlations in binary reaction kinetics in SPR cell geometries, and demonstrate the failure of a mean-field analysis of SPR cells in the regime of high Damkohler number Da > 0.1,where the spatio-temporal correlations due to diffusive transport and ligand-receptor rebinding events dominate the dynamics of SPR systems.

Open Access

Green Accepted

Share

COinS