The design, synthesis and biological evaluation of conformationally restricted 4-substituted-2,6-dimethylfuro[2,3-d]pyrimidines as multi-targeted receptor tyrosine kinase and microtubule inhibitors as potential antitumor agents

DOI

10.1016/j.bmc.2015.03.061

Document Type

Journal Article

Publication Date

5-15-2015

Publication Title

Bioorganic and Medicinal Chemistry

Volume

23

Issue

10

First Page

2408

Last Page

2423

ISSN

9680896

Keywords

Antitubulin, Conformation restriction, Multitargeted inhibitors, Receptor tyrosine kinase inhibitors, Synthesis

Abstract

A series of eleven conformationally restricted, 4-substituted 2,6-dimethylfuro[2,3-d]pyrimidines was designed to explore the bioactive conformation required for dual inhibition of microtubule assembly and receptor tyrosine kinases (RTKs), and their biological activities are reported. All three rotatable single bonds in the lead compound 1 were sequentially restricted to address the role of each in SAR for microtubule and RTK inhibitory effects. Compounds 2, 3, 7 and 10 showed microtubule depolymerizing activity comparable to or better than the lead 1, some with nanomolar EC50 values. While compound 8 had no effect on microtubules, 8 and 10 both showed potent RTK inhibition with nanomolar IC50s. These compounds confirm that the bioactive conformation for RTK inhibition is different from that for tubulin inhibition. The tetrahydroquinoline analog 10 showed the most potent dual tubulin and RTK inhibitory activities (low nanomolar inhibition of EGFR, VEGFR2 and PDGFR-β). Compound 10 has highly potent activity against many NCI cancer cell lines, including several chemo-resistant cell lines, and could serve as a lead for further preclinical studies.

Open Access

Green Accepted

Share

COinS