Defense Date
8-17-2010
Graduation Date
Fall 2010
Availability
Immediate Access
Submission Type
thesis
Degree Name
MS
Department
Computational Mathematics
School
McAnulty College and Graduate School of Liberal Arts
Committee Chair
Carl Toews
Committee Member
Donald Simon
Committee Member
Karl Wimmer
Committee Member
Jeffrey Jackson
Keywords
compressive sensing, expander graphs, random matrix, signal processing, sparse signal
Abstract
This work is an expository overview of certain key elements in the area of compressive sensing. As a sub-discipline of signal processing, compressive sensing is concerned with both sampling and reconstruction techniques. In this expository, sampling will center on random matrices and expander graphs, while reconstruction will use multiple numerical optimization techniques. Although theoretical performance bounds for these techniques can be found scattered throughout the published literature, there are few practical rules for concrete problems. This thesis helps fill this gap by experimenting on the asymptotic bounds of the number of measurements needed to guarantee perfect reconstruction. These numerical experiments help to identify specific sensing regimes in which performance begin to break down.
Format
Language
English
Recommended Citation
Booth, J. (2010). Compressive Sensing (Master's thesis, Duquesne University). Retrieved from https://dsc.duq.edu/etd/340